RTCWEB architecture
Harald Alvestrand
RTCWEB goals

- Real Time Communication in the Browser
 - Browser to Browser is Job Number One
 - Usable by JS applications
 - Not (just) for apps we have already deployed
- Motherhood and Apple Pie
 - Secure
 - Manageable
 - Network Friendly
Provider Interop Case

Application Provider 1

JS/HTML App

Browser

SIP

Application Provider 1

JS/HTML App

Browser

Media + Media Path
Signaling (ICE/STUN/TURN)
RTC is not a green field

- Lots of protocols defined
 - Code
 - Knowledge
 - Hardware
- Lots of stuff deployed
 - Proprietary
 - Using standard protocols internally
 - Interoperable
RTCWEB constraints

- Browser environment
 - A few, massively deployed implementations
 - Scrutiny on code complexity, security, size

- Uncontrolled LAN environment
 - All kinds of middle boxes (NAT, FW, proxy)
 - No ability to configure local network
 - Must work with zero configuration
Function layers

- Data transport
- Data framing and securing
- Data formats
- Connection management
- Presentation and control
- Local system support

draft-alvestrand-rtcweb-overview
Data transport

- IP (obvious)
- ICE for establishing desire to communicate
- Direct if possible, with TURN relay fallback
- UDP if possible, with TCP fallback

Controversy:
- Whether all of ICE is appropriate
 - Draft-kaufman-rtcweb-traversal
- Congestion control strategies (TFRC?)
Data framing

- RTP for media, using RTP/SAVPF profile
- RTCP multiplexing, symmetric RTP/RTCP
- More details

draft-cbran-rtcweb-protocols
draft-perkins-rtcweb-rtp-usage

Controversial:
- RTP multiplexing – session-per-media-stream?
- Framing of non-media data - UDP/DCCP/DTLS?
Data formats

- MTI Codec selection
 - OPUS (may be uncontroversial)
 - At least one low-quality “phone” audio codec

Controversial:
- Video codec status (do not discuss now)
- Telephone events (important use case?)
- Formats for non-media data
Connection management

- Clear requirement to negotiate connections
 - Legacy has SDP as “lingua franca of descriptions”
 - SDP has lots of legacy with it
- No dominant accepted management protocol
 - Large SIP installed base – limited interoperability
 - XMPP has separate following
 - Simple use cases may be better off on proprietary
 - Gateway solutions better on browser footprint?
Presentation and Control

- User control over his own devices
- Management of streams locally
- May interact with stream control, but mostly a local matter – may be better addressed in W3C?
Local system support functions

Such as:

- Echo cancellation
- Automatic gain control
- Camera zoom/pan/tilt

Some aspects are inter-user and may need standardization.
Others are matters of “good citizenship” (“mute when not speaking in large meetings”).

For now, leave it for later.
Summary

- Consider the environment!
- We have lots of things that are obvious
 - Some of these have implementations
- We have a few known controversies
 - Need to figure out if one alternative has “rough consensus” and move forward
 - If no rough consensus – what do we need to test?
- We will find more controversies over time

Rough consensus and running code.