NAT Traversal

draft-kaufman-rtcweb-traversal-00

Matthew Kaufman

8 June 2011
Drawbacks of a Full ICE Implementation

• Limits Adaptability
• Hampers Innovation
• Unnecessary Cost in some Cases
Summary of approach

• Expose primitives for sending and receiving STUN connectivity tests
• Do NOT implement ICE internally

• Primitives are:
 • Send Test
 • Receive Test at Far End (and reply)
 • Receive Reply
Before Test

• Assume a PeerConnection object

• Must support:
 • Get (or set) local STUN credentials
 • Client SHOULD generate the credentials itself and provide an API for read-only access

• Credentials are transmitted out-of-band
Send Test (Initiator)

- Client provides a function to send a STUN connectivity test
 - Parameters:
 - far address and port number
 - the far username and password
 - additional ICE attributes to be included in the STUN Binding Request message.
 - This function causes a single STUN RFC 3489 [RFC3489] Binding Request with short-term credentials to be sent to the far address from the initiating client.
 - Username concatenation is performed as per ICE 7.1.2.3.
- **MUST** rate limit transmission of these requests
- **MUST NOT** allow the user of the API to specify or examine the transaction ID for this request
 - prevents spoofing of successful replies by an attacking host.
- STUN request is safe: very unlikely to simulate other traffic
- STUN request is sent from the exact same IP address and port that the PeerConnection object will use for subsequent media traffic
Receipt of Test (Responder)

- Upon receipt of a STUN Binding Request with valid credentials
 - SHOULD automatically generate and send the STUN transaction response
 - If it does not, an API for sending the transaction response MUST be provided
 - Triggers a callback function or event that delivers:
 - attribute/value pairs received in the Binding Request
 - locally derived (reflexive) address from which the Binding Request was received
Receipt of Response (Initiator)

- Upon receipt of a valid STUN transaction response
 - Triggers a callback function or event that delivers:
 - attribute/value pairs received in the response
 - one of which is the reflexive address.
 - Adds the now-verified address to the “Transmit Whitelist”
 - This is a list of socket addresses to which sending of media is now permissible. The client MUST NOT allow media to be sent to any address/port combination that has not been added to the Transmit Whitelist.
- Note: Response MUST be ignored if the receivedSocketAddress does not match the socket address to which the matching transaction ID was sent (ICE 7.1.3.2)
Capabilities of Proposed Model

• ICE in Javascript
• Server-Based ICE
• STUN-Only
• Non-ICE
Security Considerations

• “Transmit Whitelist”
 • prevents a client from sending media to an endpoint which has not properly responded to a STUN request.

• Client must:
 • internally generate the transaction ID
 • not allow it to be explicitly set or read back
 • This prevents spoofing of the STUN test replies.