SAIL NetInf global connectivity – routing and forwarding

Bengt Ahlgren, SICS
(in collaboration with many SAIL-ors)
IRTF ICN RG meeting, Stockholm, Feb 15, 2013
ICN global routing scalability

• The scalability issue:
 – Sheer number of named data objects (NDOs)
 • “bookkeeping” to keep track of them
 – Cf. current Internet: number of IP addresses

• How many objects?
 – One trillion (1,000,000,000,000) unique URLs on the web
 (Google 2008)
 – At least 7 billion web pages (http://www.worldwidewebsize.com/)

• Some numbers to compare with:
 – 129 million second-level domain names in the DNS (Feb 2012)
 • Applicable if we can aggregate routing on the publisher level
 – 400K IP prefixes in the global, BGP routed, IP routing table
 – 60,000 AS numbers, of which 34,000 announced in BGP
Aggregation is key

- **For scalability**
 - Hard to handle routing state for individual NDOs
 - (Believe that NRS state for individual NDOs is possible)

- **For performance**
 - Amortise NRS cost over many individual objects
 - (note: majority of objects are small)
 - Enable fast forwarding of requests for individual objects
Notion of NDO aggregate

• A set of NDOs that for resolution and routing purposes are treated the same
 – NRS mappings and routing/forwarding information can be shared (and thus cached) for all NDOs in the aggregate

• NDO aggregates occur naturally:
 – Publishers normally make many objects available from the same origin
 – Examples: chunks of a video, photos in a collection, objects on a web page/site, and so on.

• NDOs may “belong” to more than one aggregate
NetInf routing a variant of

• GIN/REX:

• (PSIRP scopes and DONA explicit aggregation use similar idea)
Routing of NDO requests in the NetInf DFZ

- Routing/resolution in the NetInf “default-free zone”
 - corresponding to BGP-routed Internet
- Alternative to global DHT or similar solutions
 - Edge domains can use other schemes!
- Main issue: scalability
 - Need aggregation of routing information
 - Want caching in DFZ
Hybrid scheme

- Two name spaces
 - ni: naming scheme:
 - ni://example.com/sha-256;B_K97zTsFuOhug27fke4_Zgc4Myz4b_1ZNgsQjy6fkc
 - locators (IP address namespace)
- GET messages are forwarded using ni names and/or locators
 - but hard to do ni name routing in NetInf DFZ!
- Routing hint lookup service
 - global name resolution system
 - maps ni: URI authority field into a set of routing hints (locators)
Why multiple routing hints?

• explicit aggregation
 – can provide better aggregation than longest-prefix match
 – don't need full locator routing tables -> increased scalability
 – ideally use anycast and only exact match

• enable retrieving from multiple sources

• enable selecting the “best” source
 – for instance, from multiple hosting sites, or multihomed sites
• DFZ routers only need the prio=1 hints in their tables
• May want to delay adding prio 2 and 3 hints to request till actually needed
 – Means another NRS lookup at D
Where do we get next-hop from?

- **Why not directly use the routing hints?**
 - no hint forwarding table needed
 - results in sparse caching in the DFZ (one hop over DFZ)
 - less control over path taken

- **Design choice: use hint forwarding table!**
 - where the routing hints are looked up
 - require a way to populate those tables
 - or use IP forwarding table, and all IP hops will need to be NetInf routers
 - enables dense caching in the DFZ
 - enable more control over path taken
Convergence Layer Issues

• Can't assume all nodes support all CLs
 – Choice of CL is only a matter between the two nodes the CL connects
• CL is a consequence of selecting next-hop
 – *Thus can't encode CL in routing hints*
• Selection of next-hop is made using the object name, one of the routing hints, or a default entry
• Conclusion:
 – Need **next-hop table** that both selects next-hop, and which CL to use
NetInf node forwarding tables

• **Ni-name forwarding table**
 – Forwarding table for nodes using name-based forwarding

• **Locator (hint) forwarding table**
 – Forwarding table for nodes using locator-based forwarding

• NetInf nodes have *one or both* of them!
Ni-name forwarding table

<table>
<thead>
<tr>
<th>ni-name</th>
<th>next-hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>ni://example.com/sha-256;XYZ</td>
<td>http://local.example.com/netinfproto/get</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>default</td>
<td>http://gw.edge.net/netinfproto/get</td>
</tr>
</tbody>
</table>

- Exact matching
- Next-hop specifies CL and next-hop address
Locator forwarding table

<table>
<thead>
<tr>
<th>hint</th>
<th>next-hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>130.237.0.0</td>
<td>http://edge.example.com/netinfproto/get</td>
</tr>
<tr>
<td>10.1.10.1</td>
<td>http://local.example.com/netinfproto/get</td>
</tr>
<tr>
<td>default</td>
<td>http://gw.edge.net/netinfproto/get</td>
</tr>
</tbody>
</table>

- Exact matching
- Next-hop specifies CL and next-hop address
Forwarding process configuration

• The forwarding process is highly dependent on configuration

• What tables to use (one or both of):
 – ni-name forwarding
 – locator forwarding

• What NRS:es to consult (zero or more of):
 – any number of local ones
 – DFZ-NRS
Forwarding process

• 1. Check cache
• 2. Check ni-name forwarding table
• 3. Perform any NRS lookups
 – Resulting in additional hints
• 4. Check locator forwarding table
 – Look up all routing hints with exact match
 – Use entry that matches hint with highest priority
Scalability (admittedly handwavy)

• Number of NDO aggregates?
 – Most likely more than the number of names in DNS today
 – If using DNS – adding more leaf names should not be an issue, or?

• Number of routing hints (prio=1)
 – Network topology is not expected to change from today
 – Can therefore argue that no more needed than current number of IP prefixes
Implementation status

• Implemented as two new modules for the NEC NetInf Router Platform (NNRP)
 – hint_lookup
 • Maps the authority part of ni name to set of routing hints
 • Static table and from DNS TXT records
 – forward_lookup
 • Looks up routing hints in a forwarding table, and select the next hop
 • Static table
NetInf routing summary

• Aggregation of named data objects (NDOs)
 – Same NRS lookup and routing for all NDOs in an aggregate

• Hybrid scheme using two namespaces
 – ni: NDO naming scheme
 – locators (routing hints)

• NDO aggregate is mapped to routing hints

• Request forwarding using the hints