Econometric Promise Theory

part 2

Mark Burgess
Living with uncertainty

WE HAVE MET THE ENEMY AND HE IS US.
Promises have value

- In terms of what is received
- In terms of what it costs to implement
- Involves an exchange of trust
 - Can a promise be exploited?

promise
Exploited or spoiled?
Value is important in autonomy

- The nodes can do whatever they please
- Why should they make/keep their promises?
- Give away value – want something in return?
 - What is the currency of exchange?
 - e.g. promise me web-service, promise you money
 - e.g. promise to forward your packets (both ways)
 - Reliability
Cooperation - bargaining

- Bargaining or trade of valuable promises is a basis for understanding the probability of cooperative behaviour.

- **Cooperative dilemma**: do we or don't we?
 - Autonomy: why should I?
 - “You scratch my back, I'll scratch yours”

- **Cooperation**: obey policy and keep promises

- **Defection**: fail to obey policy
Game theory

• Economics and bargaining are described using game theory
 – Rational agents, base judgement on perceived value
 – Selfish (autonomous) individuals, place their own gains first

• Archetypal example
 – Prisoner's dilemma
 – Bargaining games (Nash equilibrium)
Multi-agent systems

- Have “commitments”
- The idea seems to be like promises, except
 - A model of distributed computation
 - Task oriented
 - More like programming
 - More about dependency and delegation than autonomy
- This is not a model of voluntary cooperation
- Has no notion of value judgement
Promises and games

- A 2 player game involves moves and responses by its players
- Two choices: keep or break promise
 - Cooperate / Defect

```
<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>(R,R)</td>
<td>(S,T)</td>
</tr>
<tr>
<td>D2</td>
<td>(T,S)</td>
<td>(P,P)</td>
</tr>
</tbody>
</table>
```
Typed/labelled graph

• Promise types:
 – Service promises (promise to constrain behaviour)
 – Cooperative promise (promise to do the same as)
 – Usage promise (promise to make use of)

• Atomicity rule:
 – Only one promise of a given type per pair:
 – Broken promise => two different promises

\[X \neq Y \]
Cooperation and 3rd parties

- When two nodes agree to cooperate $C(p)$ it can be viewed as something that can be verified by a third party – or monitor.
- Trust is a form of valuation of agreement.
- Adjudicator = 3rd party.
Roles and 3rd parties

- Works both ways: pledge allegiance to a 3rd party also implies local cooperation.
- Thus common promises to an external agent imply harmonization of roles
- Define a role
 - Appointed role (observer)
 - Cooperative role (allegiance)
- Roles can tell us a lot
- *(Hold this thought)*
How is value measured?

- Promises are initially *typed constraints*
- The currency of value transfer is a *function* of the constraint – what does it mean to the agent
 - Different agents can measure differently
 - Local policy determines the importance
- Global measures with respect to an imaginary third party can be computed using graph theory
 - Centrality <-> objective to external observer
 - Topological valuations <-> reliability
- Common currency graph
Example: BGP

• Autonomous peer system
 – Access promises
 – Transit promises

• Peering agreements
 – “Once a customer, never a peer”
 – (See W.B. Norton analysis of peering)
Social importance - Centrality

• Measure of scalar importance, based on social importance – global statistical **roles**
• Prototype tool for computing - Archipelago
Adjacency matrix

- Adjacency matrix contains the whole structure of the graph

\[A_{ij} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \]

- Use two characteristics that relate to security and reliability
 - Eigenvector decomposition (importance)
 - Percolation (connectivity)
Eigenvector centrality

• Matrix A sums neighbours recursively
• Gives eigenvector equation
 • Principal eigenvector = centality

$$A \vec{v} = \lambda \vec{v}$$
Scan of student system

Isolated work groups with autonomous cooperation
Scan of staff system

Staff “trust” each other far more (distrust only students!)
Staff + student system

Implicit links in previously separate groups
Gnutella peer-to-peer
Summary

- Promises (as games) describe steady equilibria, not causal development
- Cooperative agreement builds stability
- Common currency graph \leftrightarrow reliability
- Warfare in peering promises – experience BGP
 - Predict these problems before they arise
 - Determine a policy to minimize uncertainty