RTCP XR VoIP Metrics Overview

Alan Clark
CEO, Telchemy, Inc

Amy Pendleton
Nortel
Outline

- VoIP Management Requirements
- Time varying packet level impairments
- Rationale behind XR VoIP Metrics
- Outline of metrics
- Integration into IP endpoints
- Future work
VoIP Management Requirements

• Calls can experience transient problems
• Impairments include loss, jitter, high/low signal level, echo, noise, delay
• Ideally
 – Need to monitor every call
 – Need to provide enough data to post-analyze
 – Need to deal with system level problems such as echo
• Protocols also need to be firewall friendly, in order to support IP Centrex, Residential VoIP and similar applications
Jitter is caused by congestion - transient!!
Packet Loss Distribution

Number of lost packets in burst vs Burst length (packets)

- 100 percent burst density
- 20 percent burst density
Packet Loss and Discard Distribution

Number of packets lost in burst vs. Burst length (packets)

100 percent burst density
25 percent burst density
Leads to time varying call quality

Average can be misleading
Implications?

- Loss and jitter are time varying
- Jitter leads to packet discard (similar impact to packet loss)
- Need to measure distribution of lost and discarded packets
Measuring loss/discard distribution

Arriving Packets

Discarded

Jitter buffer

CODEC

Loss/ Discard events

4 State Markov Model

Statistical Model
Gather detailed packet loss info in real time
Packet Loss Model

Loss/ Discard events

Burst state: High loss rate
Consecutive losses

Burst length
Burst density
Number of bursts

Gap state: Low loss rate
Isolated losses

Gap length
Gap density

Computationally efficient way to gather information on packet loss/discard distribution

Packet loss model standardized in ETSI TS 101 329-5 Annex E and RFC3611
Signal Level Problems

Amplitude Clipping occurs -- speech sounds loud and “buzzy”

0 dBm0

Temporal Clipping occurs with VAD or Echo Suppressors -- gaps in speech, start/end of words missing

-36 dBm0
Echo problems

Echo is a “system level” problem, involves interaction between several network components and impairments
Need to consider “analog” impairments

- Signal level, noise level, echo level
- Difficult to measure mid-stream (packet decoding, Secure RTP...)
- Easy to measure inside DSP (already handling voice samples and canceling echo)
- Why not make the DSP do the work of measuring these parameters?
Basic design philosophy behind RTCP XR

- Embed measurement in the endpoints
- Correlate data in real time - send less data that is more meaningful
- Measure distribution of lost and discarded packets
- Leverage the DSP to measure analog parameters
- Provide support for understanding system level problems such as echo
- Use a protocol that exists and is firewall friendly
RFC3611 - RTCP XR

<table>
<thead>
<tr>
<th>Loss Rate</th>
<th>Discard Rate</th>
<th>Burst Density</th>
<th>Gap Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst Duration (mS)</td>
<td></td>
<td>Gap Duration (mS)</td>
<td></td>
</tr>
<tr>
<td>Round Trip Delay (mS)</td>
<td></td>
<td>End System Delay (mS)</td>
<td></td>
</tr>
<tr>
<td>Signal level</td>
<td>RERL</td>
<td>Noise Level</td>
<td>Gmin</td>
</tr>
<tr>
<td>R Factor</td>
<td>Ext R</td>
<td>MOS-LQ</td>
<td>MOS-CQ</td>
</tr>
<tr>
<td>Rx Config</td>
<td>-</td>
<td>Jitter Buffer Nominal</td>
<td></td>
</tr>
<tr>
<td>Jitter Buffer Max</td>
<td></td>
<td>Jitter Buffer Abs Max</td>
<td></td>
</tr>
</tbody>
</table>
The role of RTCP XR

1. Provides a useful set of metrics for VoIP performance monitoring and diagnosis
2. Supports both real time monitoring and post-analysis
3. Extracts signal level, noise level and echo level from DSP software in the endpoint
4. Exchanges info on endpoint delay and echo to allow remote endpoint to assess echo impact
5. Provides midstream probes/ analyzers access to analog metrics if secure RTP is used
6. Traverse firewalls........
New/ Future Work

- High Resolution metrics
- Video metrics
- Modem/Fax quality metrics