Managing (VoIP) Applications – DYSWIS

Henning Schulzrinne
Dept. of Computer Science
Columbia University
July 2005
Overview

- User experience for VoIP still inferior
- Existing network management doesn’t work for VoIP and other modern applications
- Need *user-centric* rather than *operator-centric* management
- Proposal: peer-to-peer management
 - “Do You See What I See?”
- Also use for reliability estimation and statistical fault characterization
VoIP user experience

- Only 95-99.5% call attempt success
 - "Keynote was able to complete VoIP calls 96.9% of the time, compared with 99.9% for calls made over the public network. Voice quality for VoIP calls on average was rated at 3.5 out of 5, compared with 3.9 for public-network calls and 3.6 for cellular phone calls. And the amount of delay the audio signals experienced was 295 milliseconds for VoIP calls, compared with 139 milliseconds for public-network calls." (InformationWeek, July 11, 2005)

- Mid-call disruptions
- Lots of knobs to turn
 - Separate problem: manual configuration
Traditional network management model

SNMP
Assumptions

- Single provider (enterprise, carrier)
 - has access to most path elements
 - professionally managed
- Typically, hard failures or aggregate problems
 - element failures
 - substantial packet loss
- Mostly L2 and L3 elements
 - switches, routers
 - rarely 802.11 APs
- Indirect detection
 - MIB variable vs. actual protocol performance
Managing the protocol stack

- **Media**
 - Echo gain problems
 - VAD action

- **RTP**
 - Protocol problem
 - Playout errors

- **UDP/TCP**
 - TCP neg. failure
 - NAT time-out
 - Firewall policy

- **SIP**
 - No route
 - Packet loss

- **IP**
Call lifecycle view

- get addresses
- REGISTER
- SIP INVITE
- get 200 OK
- exchange media
- terminate call

Special cases:
- STUN failure
- auth? registrar?
- outbound proxy? dest. proxy?
- loss? gain? silence suppression?
Types of failures

- **Hard failures**
 - connection attempt fails
 - no media connection
 - NAT time-out

- **Soft failures (degradation)**
 - packet loss (bursts)
 - access network? backbone? remote access?
 - delay (bursts)
 - OS? access networks?
 - acoustic problems (microphone gain, echo)
Diagnostic undecidability

- symptom: “cannot reach server”
- more precise: send packet, but no response
- causes:
 - NAT problem (return packet dropped)?
 - firewall problem?
 - path to server broken?
 - outdated server information (moved)?
 - server dead?
- 5 causes → very different remedies
 - no good way for non-technical user to tell
- Whom do you call?
Additional problems

- ping and traceroute no longer works reliably
 - WinXP SP 2 turns off ICMP
 - some networks filter all ICMP messages
- Early NAT binding time-out
 - initial packet exchange succeeds, but then TCP binding is removed ("web-only Internet")
“Do You See What I See?"

- Each node has a set of active measurement tools
- Nodes can ask others for their view
 - possibly also dedicated “weather stations”
- Iterative process, leading to:
 - user indication of cause of failure
 - in some cases, work-around (application-layer routing) → TURN server, use remote DNS servers
- Nodes collect statistical information on failures and their likely causes
Failure detection tools

- STUN server
 - what is your IP address?
- ping and traceroute
- Transport-level liveness
 - open TCP connection to port
 - send UDP ping to port
Failure statistics

- Which parts of the network are most likely to fail (or degrade)
 - access network
 - network interconnects
 - backbone network
 - infrastructure servers (DHCP, DNS)
 - application servers (SIP, RTSP, HTTP, ...)
 - protocol failures/incompatibility

- Currently, mostly guesses
- End nodes can gather and accumulate statistics
How to find management peers?

- Use carrier-provided bootstrap list
- Previous session partners
 - e.g., address book
- Watcher list
What’s missing?

- Request diagnostic
 - “send this message”; return result
 - do specific high-level operation (ping, traceroute, DNS resolution)
- Failure statistics protocol and data exchange format
- Algorithm specification for steps
 - “if no response to REGISTER, check server liveness”
 - “if bad voice QoS, ask subnet neighbor; then ask somebody close to destination”
Security issues

- Indirect denial-of-service attacks
 - limit per-requestor rate
 - return cached results to querier
- Lying
- Non-participation (“leechers”)
 - usual P2P mechanisms such as blacklists
Conclusion

- Existing management mechanisms ineffective
- Outline of user-centric management approach
- Next steps
 - what protocols are needed?
 - trust and security issues?