Using IPFIX for VoIP monitoring

Sven Anderson

Institute of Computer Science
University of Göttingen

in cooperation with

NEC Laboratories Europe
Heidelberg

EMANICS/IRTF-NMRG Workshop on Netflow/IPFIX Usage in Network Management
Munich, October 2008
Outline

Introduction
- Motivation
- Challenges
- Reference Scenario

IPFIX Extensions
- New Information Elements
- Flow Types
- Device Extensions

Existing IPFIX Extensions

Use Case Examples
Motivation

- VoIP deployment increasing fast (long distance calls, "last mile", NGN/IMS, ...)
- Increased attack surface
- "Best effort" brings unreliability
- Control- and user data plane are decoupled
- Routes change and hard to predict

Monitoring:
- required for QoS, call integrity, attack and abuse detection, ...
- must be distributed
- must inspect application layer (DPI)
Challenges of SIP Monitoring

- Signalling and media may take different paths
- Media detection needs session description (SIP content)
- SIP and media probes may not know each others location
- Correlation of distributed measurements (e.g. OWD)

Requirements:
- Distributed measurements
- Application layer inspection (SIP, SDP, Media)
- Export of data in appropriate time intervals
- Efficient convergence of data
Reference Scenario

Collector

media stream

media gateways

IPFIX

SIP server

SIP Proxy

SIP Proxy

SIP Proxy

SIP Proxy

SIP server
SIP Header IEs

Mandatory:

- **sipFrom** (*alice@example.com*)
- **sipTo** (*bob@example.org*)
- **sipCallId** (*xyz@192.168.0.1*)

Tuple referred to as "sipDialogId"

Further examples:

- **sipRequestMethod** (*INVITE, REGISTER, BYE, ...*)
- **sipRequestURI** (*sip:bob@example.org*)
- **sipResponseStatus** (*2xx, 4xx, 5xx, ...*)
Media IEs

Derived from SIP content (SDP):

- **sipMediaId (mandatory)**
 - Unique identifier for media stream descriptions
- sipMediaProtocol (e.g. RTP/AVP)
- sipMediaType (audio, video, ...)
- sipMediaEncoding (G722, GSM, PCMU, ...)
- ...

Derived from SDP or RTP:

- rtpPayloadType
- ...
Performance Metric IEs

- mediaPacketLoss
 - ratio of lost packets to total packets
- mediaDelayFromTerminal
 - OWD from media gateway to the terminal and vice versa
- mediaDelayToTerminal
 - OWD from ingress to egress media gateway
- rtpJitter
 - interarrival jitter as defined by the RTP
- ...
Flow Type Definitions

- SIP Flow
 - Flow of SIP packets
 - Must include "sipDialogId" (sipFrom, sipTo, sipCallId)
 - May include other SIP header IEs

- Media Flow
 - Flow of media packets
 - No mandatory IEs
 - Can be exported by standard IPFIX device

- Media Flow Descriptor
 - Pseudo flow (expected, not observed)
 - Extracted from media descriptors (SIP content)
 - Must contain "sipDialogId" and sipMediaId
 - No counter IEs
Flow Type Dependencies

- SIP Header
- SIP Content (SDP)
- SIP Packet
- SIP Flow
- Media Flow Descriptor
IPFIX Probe Extensions

- Efficient deep packet inspection
- SIP Flows: SIP header parser
- Media Flow Descriptors: SIP & SDP parser
- Media Flow: no requirements in general
- Media Flow identification:
 - RTP detection if feasible, or
 - import of Media Flow Descriptors
- Optional:
 - SIP metric measurement
 - Media metric measurement
Mediator/Collector Extensions

Processing of SIP related data, for example:

- Calculation of metrics deriving from different probes (e.g. timestamps for OWD)
- Correlation of Media Flows and Media Flow Descriptors by "sipDialogId"
- Forwarding of uncorrelatable data to next Mediator
- Creation of "call records"
- Real-time display of current calls (Collector frontend)
Use Of Existing IPFIX Extensions

- **Bidirectional Flows**
 - Directional information of SIP Flows can be kept
 - Normal counters refer to SIP requests
 - Reverse counters refer to SIP responses

- **Common Properties**
 - "sipDialogId" can be represented by a commonPropertiesId with the template `<commonPropertiesId | sipFrom, sipTo, sipCallerId>`
 - Often exported status updates can be "attached" to SIP Flows
 - Performance metrics can be "attached" to Media Flows
 - Several possible codecs "attached" to a Media Flow Descriptor
Use Case Examples I

- Seperate SIP and Media Flows
 - Mediator correlates Media and SIP by Media Flow Descriptors

- Asymmetric Routing
 - Mediator correlates SIP requests and responses by "sipDialogID"

- Security Inspections
 - Spoofed Media Sender
 - Detection of multiple Media Flows fitting to one Media Flow Descriptor
 - Stateful Cross-Protocol IDS
 - SIP Flows contain multi-layer information
 - DoS Detection and Prevention
 - Detection close to source
 - DDoS can be detected by flow aggregates

- Realtime Status Display
Use Case Examples II

Quality-of-Service Monitoring

- SIP probe
 - rtpPayloadType, sipMediaEncoding
 - mediaDelayFromTerminal
 - digestHashValue, observationTimeMilliseconds
 - mediaDelayMGW
 - mediaPacketLoss

- ingress media gw

- egress media gw

- codec
 - OWD
 - MOS
Summary

 ➤ Key ideas of SIPFIX:
 ➤ Probes inspect and export application layer info
 ➤ Media description (SDP) is exported as Media Flow Descriptors
 ➤ "sipDialogId" ties SIP Flows and Media Flow Descriptors
 ➤ Media Flow Descriptors tie SIP Flows and Media Flows
 ➤ Correlation and processing by distributed Mediators

 ➤ Many open detail questions, like:
 ➤ What data types for which IEs? (string, integers...)
 ➤ Use of Option Templates for Media Flow Descriptors?
Summary

- Key ideas of SIPFIX:
 - Probes inspect and export application layer info
 - Media description (SDP) is exported as Media Flow Descriptors
 - "sipDialogId" ties SIP Flows and Media Flow Descriptors
 - Media Flow Descriptors tie SIP Flows and Media Flows
 - Correlation and processing by distributed Mediators

- Many open detail questions, like:
 - What data types for which IEs? (string, integers...)
 - Use of Option Templates for Media Flow Descriptors

Thank you!

Sven Anderson
<anderson@cs.uni-goettingen.de>
University of Göttingen / NEC Labs