Session-based Security Model for SNMPv3 (SNMPv3/SBSM)

David T. Perkins
Wes Hardaker
NMRG Meeting – October 19, 2003
SNMPv3 Background

The following topics were left out due to time considerations:

• SNMPv3 message format
• SNMPv3 security and general security terminology
• The operational problems with using SNMPv3 with USM
SBSM Characteristics

- Uses existing security infrastructures for identity authentication (supports many)
- Both ends of message exchange are authenticated, and may use different mechanisms (including “anonymous” identity)
- When session establishment is initiated by a manager, the agent reveals its identity and authenticates before the manager (note that identities are encrypted)
- Has limited life time keys for message authentication and encryption
Characteristics (continued)

• Separates security mechanisms used for identity authentication from those used for message authentication and encryption
• Has no reprocessing of messages that are duplicated or replayed (reduces cost of packet loss – processing and latency)
• Operates over connection oriented and connectionless transports
• Can use unmodified VACM, or with slight modifications
Consequences of Characteristics

- No (or low) cost to create new identities, change their authentication credentials, or delete, since provided by existing security infrastructure
- Saved encrypted messages can not be decrypted after compromised identity key
Most Important Characteristic and Consequence

• Session establishment based on SIGMA protocol, which has had extensive review
• SIGMA is “simple and efficient”, (it minimizes messages and computation)
• SIGMA protects identity of the session initiator
 • Current draft of IKEv2 is draft-ietf-ipsec-ikev2-11.txt
SNMPv3 Message Format

msgVersion | msgGlobalData | msgSecurityParms | msgData

msgID | msgMaxSize | msgFlags | msgSecurityModel

New format for SBSM

New value for SBSM

Present legal values are:
'100'b - a noAuthNoEncr request
'000'b - a noAuthNoEncr response or unacknowledged notification
'101'b - an authNoEncr request
'001'b - an authNoEncr response or unacknowledged notification
'111'b - an authEncr request
'011'b - an authEncr response or unacknowledged notification
SB SM Overview

- Security based on sessions
- Three phases of a session, which are:
 - Establishment: SNMP entity identity authentication, and creation of session authentication and encryption keys
 - Running: SNMP operations
 - Termination: graceful close of session
SBSM Session Establishment

Initiator

SNMP GET message

SBSMInit1

SBSMInit3

Responder

SNMP REPORT message

SBSMInit2

SBSMRunning

May iterate to support various mechanisms for identity authentication

… Session established …

Note: for SNMPv3 messages containing SBSMInit[1,2,or 3] messages, the value for field msgFlags indicates noAuthNoEncr security level
Session Operation

Note: SNMPv3 messages containing SBSMRunning messages are always authenticated, and are possibly encrypted using the session auth and encr keys. Thus, the value for field msgFlags never indicates noAuthNoEncr security level.
Session Graceful Termination

... Details later ...
Use With VACM

- VACM has abstract function `isAccessAllowed`, which has the following input parameters:
 - `security model ID`: the message level security model
 - `security name`: the identity for the operation
 - `security level`: one of noAuthNoEncr, authNoEncr, or authEncr
 - `operation type`: one of read, write, or notify
 - `context ID`: the context which contains the instance of management information
 - `instance ID`: the ID of the instance of management information for the operation
VACM Modification

- Abstract function $isAccessAllowed$ has input $securityName$ and $securityModelID$, which maps to a group name via table $vacmSecurityToGroupTable$.

- Clarification:
 - SBSM is really a higher level security model that supports many combinations of endpoint identity authentication. The security model ID for VACM is the identity security model, which is called the security sub-model.

- Issue:
 - The “to group” table contains security names, which means that it must be updated for each new security identity, and if a system is compromised, then provides a list to help attacker.
 - Need more study to determine if another or additional mechanisms are needed to get group ID.
Details on SBSM security parms

- In an SNMPv3 message, field “security parms” is an octet string, which is the BER serialization of a security model dependent ASN.1 value
- For SBSM, the ASN.1 definition of a value is:

  ```
  SBSMSecurityParameters ::= CHOICE {
    sbsm-establishment1[0]        SBSMInit1,
    sbsm-establishment2[1]        SBSMInit2,
    sbsm-establishment3[2]        SBSMInit3,
    sbsm-running[3]              SBSMRunning
    -- other values for termination and errors
  }
  ```
SBSM Session Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>local-identifier</td>
<td>Unsigned32</td>
</tr>
<tr>
<td>remote-identifier</td>
<td>Unsigned32</td>
</tr>
<tr>
<td>session-status</td>
<td>INTEGER { init1(1), init2(2), up(3) }</td>
</tr>
<tr>
<td>diffieHelmanExponent</td>
<td>OCTET STRING</td>
</tr>
<tr>
<td>outgoingSequenceNumber</td>
<td>Unsigned32</td>
</tr>
<tr>
<td>incomingMinSequenceNumber</td>
<td>Unsigned32</td>
</tr>
<tr>
<td>security-sub-model</td>
<td>Unsigned32</td>
</tr>
<tr>
<td>securityName</td>
<td>OCTET STRING</td>
</tr>
<tr>
<td>authenticationType</td>
<td>OBJECT IDENTIFIER</td>
</tr>
<tr>
<td>incomingAuthenticationKey</td>
<td>OBJECT STRING</td>
</tr>
<tr>
<td>outgoingAuthenticationKey</td>
<td>OBJECT STRING</td>
</tr>
</tbody>
</table>
Session Attributes (continued)

encryptionType OBJECT IDENTIFIER,
incomingEncryptionParameters OCTET STRING,
outgoingEncryptionParameters OCTET STRING,
incomingEncryptionKey OBJECT STRING,
outgoingEncryptionKey OBJECT STRING,
window-size INTEGER (1..255),
startTime Unsigned32,
legalSessionLength Unsigned32, -- seconds
remoteEngineID OCTET STRING (0|5..32)
 -- data cache array for replaying responses
lastIncomingInit OCTET STRING,
messageCacheList SEQUENCE (SIZE(0..255))
 OF SBSMMMessageCache
SBSMInit1 Generation Results

• SBSMInit1 is used to start establishment of a session
• Causes creation of a session instance
• Generator fills in:
 – init-identifier
 – session-status
 – diffieHelmanExponent
 – outgoingEncryptionParameters
SBSMInit1 Reception Results

• Reception results in creation of a session instance with field values:
 – local-identifier
 – remote-identifier
 – authenticationType and encryptionType
 – incomingEncryptionParameters
 – outgoingEncryptionParameters
 – Incoming/outgoing Auth/Encr Key
 – startTime and legalSessionLength
 – lastIncomingInit, messageCacheList[0].message
SBSMInit2 Reception Results

- Reception results in update of the following:
 - Incoming/outgoing Auth/Encr Key
 - authenticationType and encryptionType
 - remoteEngineID
 - window-size
 - outgoingSequenceNumber and incomingMinSequenceNumber
 - session-status
 - securityName
 - startTime and legalSessionLength
SBSMInit3 Reception Results

• Reception results in update of the following:
 – window-size
 – session-status
 – securityName
 – startTime and legalSessionLength
 – remoteEngineID
What’s Next?

• Further update of I-D to polish terminology, and fill in small missing pieces
• Complete the error handling descriptions
• Work through notification generation using the model and MIB from RFC 3414 (SNMP Applications) (was RFC
• Choose a couple of Identity Authentication types, document well, and write code
Questions