Rate control with packet corruption

Lachlan Andrew, Caltech
with David Hayes
Outline

- Problem: What rate is “fair” on lossy links?
- Kelly’s Optimisation framework
- Special case: TCP
- Detecting corruption
- Redundancy
What rate is fair on lossy links?

- ICCRG mailing list discussion on DCCP
 - How should we respond to corrupt packets?
 - TCP reduces rate; should DCCP?

- Suggestions
 - Ignore loss
 - Slow down anyway
 - Increase redundancy

- What if there is value in corrupted packets?
Aggressiveness with very high loss

Low Speed Testing (10Mbps) with different loss rate RTT: 50ms

- max
- FAST

B. Wydrowski
S. Hegde
Caltech, April 2005
Why slow down?

- Lost packets cause congestion before being lost
- If 99% of our packets are lost, we should send very little for network to get high overall throughput
Increase redundancy

- If application can use corrupt data
 - More corruption \Rightarrow Stronger error correcting code
- Should DCCP’s rate refer to
 - Payload, before coding?
 - Raw rate, after coding?
- Corruption could *increase* raw rate
 - Desirable?
Kelly’s utility maximisation

- Best framework for fairness is economics
 - (See Bob Briscoe’s talk)
- Standard theory:
 - Users get utility from instantaneous rate
 - Want maximise sum of everyone’s utility

![Utility vs Rate Graph](image-url)
Kelly’s utility maximisation

- Kelly/Low algorithm
 - Links measure their congestion
 - Price p
 - Network sums prices of links on a user’s path
 - Loss, ECN, delay, explicit
 - Sources set their rates to maximise their “net benefit” as if they were charged p per byte

- Distributed

- Fairness governed by choice of utility function
Special case: Lossy links

- Assumptions:
 - Corrupt packets still congest all links
 - e.g., WLAN download
 - Sources can detect “corruption loss” vs other loss
 - Utility is $U(x, \varepsilon) = U(x(1 - \varepsilon), 0)$
 - $x =$ total rate, including corruption
 - $\varepsilon =$ proportion corruption
 - “Benefit comes from the packets we receive correctly”
Results

- $D(q)$ is the “response function”
 - What rate do I transmit at for congestion level q?
- Going through the algebra gives
 - Leading $1/(1-\varepsilon)$:
 - Don’t count retransmission as part of the rate
 - Inner factor of $1-\varepsilon$:
 - Each congestion loss must count for more
Special case, including TCP

- Common to use $D(q) = q^{-1/\alpha}$
 - “Alpha fairness”
 - TCP: $\alpha = 2$ Proportional fairness: $\alpha = 1$
 - Max-Min $\alpha \rightarrow \infty$ Max-throughput $\alpha \rightarrow 0$

- In this case, $D(q, \varepsilon) = \left(1 - \varepsilon\right)^{(1/\alpha)-1} D(q)$
 - Normal rate control mechanism (e.g., AIMD)
 - Effective window just multiple of what the mechanism calculates
Special cases

\[D(q, \varepsilon) = (1 - \varepsilon)^{(1/\alpha) - 1} D(q) \]

- **Max throughput:** \(\alpha \rightarrow 0
 \square \) Most lossy links get vanishing throughput

- **Proportional fairness:** \(\alpha = 1
 \square \) No change in window – ignore loss!

- **Max-Min:** \(\alpha \rightarrow \infty
 \square \) Retransmit free: window governs new packets

- **“TCP-friendly”:** \(\alpha = 2
 \square \) Slight *increase* in transmit rate for higher \(\varepsilon \)
Network response

- Setting $D(q; \varepsilon) = (1 - \varepsilon)D(q)$ doesn’t reduce throughput by $(1-\varepsilon)$

- Smaller window \Rightarrow less traffic \Rightarrow smaller q

- Network always reduces price to create bottleneck links
Detecting corruption

- Ideally: packet header sent with a flag

Possible alternatives:

- Successful packet says “I lost a burst of …”
 - How to distinguish different streams?
- Don’t need to know *which* lost packets corrupted
 - Explicit signalling of *mean* corruption rate
- Assume all loss is corruption
 - If main congestion signal not loss (delay, ECN)
Redundancy

- What help can FEC be?
- Capacity of an erasure channel is $1 - \varepsilon$
 - Same result as asking for retransmissions
 - Application-level decision

- What if packet not entirely erased?
 - Utility function can include some value for packets marked as corrupt
 - Burst errors mean corrupt packets usually lost
Conclusion

- Choose flow-level properties
 - Find mechanisms to implement them

- Corruption loss *should* affect rate

- For TCP-like response functions, just scales the window
 - Up, in some cases!
 - If that’s not desired, need new fairness measures