
SPDY Status

mbelshe IETF80 http-bis

What is SPDY?
Goal: Reduce Web Page Load time.
Multiplexing

Get the data off the client
Compression

HTTP headers are excessive
Uplink bandwidth is limited

Prioritization
Today the browser holds back
Priorities enable multiplexing

Encrypted & Authenticated
Eavesdropping at the Cafe must be stopped

Server Push
Websites do some of this today with data URLs

Deployment Status @ Google

On by default since Chrome 6
Currently at 90%; 10% holdback is for A/B testing.

On for all Google SSL traffic
SPDY HTTP->SPDY proxy used externally some
SPDY Proxy

In other words, yes, you can really use it now.

But SPDY is:
experimental
research
not standardized (yet)
going to change (and you can help guide it!)

Results

Less is More - Conns, Bytes, Packets

Latency
Overall very good!

avg > 7.5%
No SPDY specific
optimizations
This is Google's
optimized content, SSL
only.
Unknown diff between
mac and win so
far. User bias?

Not Too Shabby WebSocket

docs.google.com has a "hanging get" for every doc open
how to scale beyond 6 connections per domain?

docs[1-N].google.com
but, gets expensive and is horribly inefficient
switched to spdy and much happier
Header compression mitigates the inefficiency of a hanging
get

Next steps

1. Make SSL Faster

TLS - False Start

Snap Start

0-RTT SSL
We built it.

Don't like it.
Doesn't do perfect forward secrecy
Changes too complex when retrofitted atop existing SSL
http://tools.ietf.org/html/draft-agl-tls-snapstart-00

2. Make the Transport Faster

Transport inefficiencies

Single connection throttle
Data in the syn packet
Protocol layering of security atop transport doesn't work well
Inability for kernels to change will push transports into user
space, even if it is just TCP atop UDP.

Standardization

Be a squeaky wheel...

Everything is open now
We welcome help
Others are already implementing and testing
More people asking for SPDY standardization will motivate
me.

