source: draft-ietf-httpbis/latest/p1-messaging.xml @ 2555

Last change on this file since 2555 was 2555, checked in by julian.reschke@…, 9 years ago

introduce 'WWW' abbrev early on (see #531)

  • Property svn:eol-style set to native
  • Property svn:mime-type set to text/xml
File size: 237.0 KB
1<?xml version="1.0" encoding="utf-8"?>
2<?xml-stylesheet type='text/xsl' href='../myxml2rfc.xslt'?>
3<!DOCTYPE rfc [
4  <!ENTITY MAY "<bcp14 xmlns=''>MAY</bcp14>">
5  <!ENTITY MUST "<bcp14 xmlns=''>MUST</bcp14>">
6  <!ENTITY MUST-NOT "<bcp14 xmlns=''>MUST NOT</bcp14>">
7  <!ENTITY OPTIONAL "<bcp14 xmlns=''>OPTIONAL</bcp14>">
8  <!ENTITY RECOMMENDED "<bcp14 xmlns=''>RECOMMENDED</bcp14>">
9  <!ENTITY REQUIRED "<bcp14 xmlns=''>REQUIRED</bcp14>">
10  <!ENTITY SHALL "<bcp14 xmlns=''>SHALL</bcp14>">
11  <!ENTITY SHALL-NOT "<bcp14 xmlns=''>SHALL NOT</bcp14>">
12  <!ENTITY SHOULD "<bcp14 xmlns=''>SHOULD</bcp14>">
13  <!ENTITY SHOULD-NOT "<bcp14 xmlns=''>SHOULD NOT</bcp14>">
14  <!ENTITY ID-VERSION "latest">
15  <!ENTITY ID-MONTH "January">
16  <!ENTITY ID-YEAR "2014">
17  <!ENTITY mdash "&#8212;">
18  <!ENTITY Note "<x:h xmlns:x=''>Note:</x:h>">
19  <!ENTITY caching-overview       "<xref target='Part6' x:rel='#caching.overview' xmlns:x=''/>">
20  <!ENTITY cache-incomplete       "<xref target='Part6' x:rel='#response.cacheability' xmlns:x=''/>">
21  <!ENTITY payload                "<xref target='Part2' x:rel='#payload' xmlns:x=''/>">
22  <!ENTITY media-type            "<xref target='Part2' x:rel='#media.type' xmlns:x=''/>">
23  <!ENTITY content-codings        "<xref target='Part2' x:rel='#content.codings' xmlns:x=''/>">
24  <!ENTITY CONNECT                "<xref target='Part2' x:rel='#CONNECT' xmlns:x=''/>">
25  <!ENTITY content.negotiation    "<xref target='Part2' x:rel='#content.negotiation' xmlns:x=''/>">
26  <!ENTITY diff-mime              "<xref target='Part2' x:rel='#differences.between.http.and.mime' xmlns:x=''/>">
27  <!ENTITY representation         "<xref target='Part2' x:rel='#representations' xmlns:x=''/>">
28  <!ENTITY HEAD                   "<xref target='Part2' x:rel='#HEAD' xmlns:x=''/>">
29  <!ENTITY header-allow           "<xref target='Part2' x:rel='#header.allow' xmlns:x=''/>">
30  <!ENTITY header-cache-control   "<xref target='Part6' x:rel='#header.cache-control' xmlns:x=''/>">
31  <!ENTITY header-content-encoding    "<xref target='Part2' x:rel='#header.content-encoding' xmlns:x=''/>">
32  <!ENTITY header-content-location    "<xref target='Part2' x:rel='#header.content-location' xmlns:x=''/>">
33  <!ENTITY header-content-range   "<xref target='Part5' x:rel='#header.content-range' xmlns:x=''/>">
34  <!ENTITY header-content-type    "<xref target='Part2' x:rel='#header.content-type' xmlns:x=''/>">
35  <!ENTITY header-date            "<xref target='Part2' x:rel='' xmlns:x=''/>">
36  <!ENTITY header-etag            "<xref target='Part4' x:rel='#header.etag' xmlns:x=''/>">
37  <!ENTITY header-expect          "<xref target='Part2' x:rel='#header.expect' xmlns:x=''/>">
38  <!ENTITY header-expires         "<xref target='Part6' x:rel='#header.expires' xmlns:x=''/>">
39  <!ENTITY header-last-modified   "<xref target='Part4' x:rel='#header.last-modified' xmlns:x=''/>">
40  <!ENTITY header-mime-version    "<xref target='Part2' x:rel='#mime-version' xmlns:x=''/>">
41  <!ENTITY header-pragma          "<xref target='Part6' x:rel='#header.pragma' xmlns:x=''/>">
42  <!ENTITY header-proxy-authenticate  "<xref target='Part7' x:rel='#header.proxy-authenticate' xmlns:x=''/>">
43  <!ENTITY header-proxy-authorization "<xref target='Part7' x:rel='#header.proxy-authorization' xmlns:x=''/>">
44  <!ENTITY header-server          "<xref target='Part2' x:rel='#header.server' xmlns:x=''/>">
45  <!ENTITY header-warning         "<xref target='Part6' x:rel='#header.warning' xmlns:x=''/>">
46  <!ENTITY idempotent-methods     "<xref target='Part2' x:rel='#idempotent.methods' xmlns:x=''/>">
47  <!ENTITY safe-methods           "<xref target='Part2' x:rel='#safe.methods' xmlns:x=''/>">
48  <!ENTITY methods                "<xref target='Part2' x:rel='#methods' xmlns:x=''/>">
49  <!ENTITY OPTIONS                "<xref target='Part2' x:rel='#OPTIONS' xmlns:x=''/>">
50  <!ENTITY qvalue                 "<xref target='Part2' x:rel='#quality.values' xmlns:x=''/>">
51  <!ENTITY resource               "<xref target='Part2' x:rel='#resources' xmlns:x=''/>">
52  <!ENTITY status-codes           "<xref target='Part2' x:rel='' xmlns:x=''/>">
53  <!ENTITY status-1xx             "<xref target='Part2' x:rel='#status.1xx' xmlns:x=''/>">
54  <!ENTITY status-203             "<xref target='Part2' x:rel='#status.203' xmlns:x=''/>">
55  <!ENTITY status-3xx             "<xref target='Part2' x:rel='#status.3xx' xmlns:x=''/>">
56  <!ENTITY status-304             "<xref target='Part4' x:rel='#status.304' xmlns:x=''/>">
57  <!ENTITY status-4xx             "<xref target='Part2' x:rel='#status.4xx' xmlns:x=''/>">
58  <!ENTITY status-414             "<xref target='Part2' x:rel='#status.414' xmlns:x=''/>">
59  <!ENTITY iana-header-registry   "<xref target='Part2' x:rel='#header.field.registry' xmlns:x=''/>">
61<?rfc toc="yes" ?>
62<?rfc symrefs="yes" ?>
63<?rfc sortrefs="yes" ?>
64<?rfc compact="yes"?>
65<?rfc subcompact="no" ?>
66<?rfc linkmailto="no" ?>
67<?rfc editing="no" ?>
68<?rfc comments="yes"?>
69<?rfc inline="yes"?>
70<?rfc rfcedstyle="yes"?>
71<?rfc-ext allow-markup-in-artwork="yes" ?>
72<?rfc-ext include-references-in-index="yes" ?>
73<rfc obsoletes="2145,2616" updates="2817,2818" category="std" x:maturity-level="proposed"
74     ipr="pre5378Trust200902" docName="draft-ietf-httpbis-p1-messaging-&ID-VERSION;"
75     xmlns:x=''>
76<x:link rel="next" basename="p2-semantics"/>
77<x:feedback template="{docname},%20%22{section}%22&amp;body=&lt;{ref}&gt;:"/>
80  <title abbrev="HTTP/1.1 Message Syntax and Routing">Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing</title>
82  <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
83    <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
84    <address>
85      <postal>
86        <street>345 Park Ave</street>
87        <city>San Jose</city>
88        <region>CA</region>
89        <code>95110</code>
90        <country>USA</country>
91      </postal>
92      <email></email>
93      <uri></uri>
94    </address>
95  </author>
97  <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
98    <organization abbrev="greenbytes">greenbytes GmbH</organization>
99    <address>
100      <postal>
101        <street>Hafenweg 16</street>
102        <city>Muenster</city><region>NW</region><code>48155</code>
103        <country>Germany</country>
104      </postal>
105      <email></email>
106      <uri></uri>
107    </address>
108  </author>
110  <date month="&ID-MONTH;" year="&ID-YEAR;"/>
111  <workgroup>HTTPbis Working Group</workgroup>
115   The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for
116   distributed, collaborative, hypertext information systems. HTTP has been in
117   use by the World Wide Web global information initiative since 1990.
118   This document provides an overview of HTTP architecture and its associated
119   terminology, defines the "http" and "https" Uniform Resource Identifier
120   (URI) schemes, defines the HTTP/1.1 message syntax and parsing requirements,
121   and describes general security concerns for implementations.
125<note title="Editorial Note (To be removed by RFC Editor)">
126  <t>
127    Discussion of this draft takes place on the HTTPBIS working group
128    mailing list (, which is archived at
129    <eref target=""/>.
130  </t>
131  <t>
132    The current issues list is at
133    <eref target=""/> and related
134    documents (including fancy diffs) can be found at
135    <eref target=""/>.
136  </t>
137  <t>
138    The changes in this draft are summarized in <xref target="changes.since.25"/>.
139  </t>
143<section title="Introduction" anchor="introduction">
145   The Hypertext Transfer Protocol (HTTP) is a stateless application-level
146   request/response protocol that uses extensible semantics and self-descriptive
147   message payloads for flexible interaction with network-based hypertext
148   information systems. This document is the first in a series of documents
149   that collectively form the HTTP/1.1 specification:
150   <list style="empty">
151    <t>RFC xxx1: Message Syntax and Routing</t>
152    <t><xref target="Part2" x:fmt="none">RFC xxx2</xref>: Semantics and Content</t>
153    <t><xref target="Part4" x:fmt="none">RFC xxx3</xref>: Conditional Requests</t>
154    <t><xref target="Part5" x:fmt="none">RFC xxx4</xref>: Range Requests</t>
155    <t><xref target="Part6" x:fmt="none">RFC xxx5</xref>: Caching</t>
156    <t><xref target="Part7" x:fmt="none">RFC xxx6</xref>: Authentication</t>
157   </list>
160   This HTTP/1.1 specification obsoletes
161   <xref target="RFC2616" x:fmt="none">RFC 2616</xref> and
162   <xref target="RFC2145" x:fmt="none">RFC 2145</xref> (on HTTP versioning).
163   This specification also updates the use of CONNECT to establish a tunnel,
164   previously defined in <xref target="RFC2817" x:fmt="none">RFC 2817</xref>,
165   and defines the "https" URI scheme that was described informally in
166   <xref target="RFC2818" x:fmt="none">RFC 2818</xref>.
169   HTTP is a generic interface protocol for information systems. It is
170   designed to hide the details of how a service is implemented by presenting
171   a uniform interface to clients that is independent of the types of
172   resources provided. Likewise, servers do not need to be aware of each
173   client's purpose: an HTTP request can be considered in isolation rather
174   than being associated with a specific type of client or a predetermined
175   sequence of application steps. The result is a protocol that can be used
176   effectively in many different contexts and for which implementations can
177   evolve independently over time.
180   HTTP is also designed for use as an intermediation protocol for translating
181   communication to and from non-HTTP information systems.
182   HTTP proxies and gateways can provide access to alternative information
183   services by translating their diverse protocols into a hypertext
184   format that can be viewed and manipulated by clients in the same way
185   as HTTP services.
188   One consequence of this flexibility is that the protocol cannot be
189   defined in terms of what occurs behind the interface. Instead, we
190   are limited to defining the syntax of communication, the intent
191   of received communication, and the expected behavior of recipients.
192   If the communication is considered in isolation, then successful
193   actions ought to be reflected in corresponding changes to the
194   observable interface provided by servers. However, since multiple
195   clients might act in parallel and perhaps at cross-purposes, we
196   cannot require that such changes be observable beyond the scope
197   of a single response.
200   This document describes the architectural elements that are used or
201   referred to in HTTP, defines the "http" and "https" URI schemes,
202   describes overall network operation and connection management,
203   and defines HTTP message framing and forwarding requirements.
204   Our goal is to define all of the mechanisms necessary for HTTP message
205   handling that are independent of message semantics, thereby defining the
206   complete set of requirements for message parsers and
207   message-forwarding intermediaries.
211<section title="Requirement Notation" anchor="intro.requirements">
213   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
214   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
215   document are to be interpreted as described in <xref target="RFC2119"/>.
218   Conformance criteria and considerations regarding error handling
219   are defined in <xref target="conformance"/>.
223<section title="Syntax Notation" anchor="notation">
224<iref primary="true" item="Grammar" subitem="ALPHA"/>
225<iref primary="true" item="Grammar" subitem="CR"/>
226<iref primary="true" item="Grammar" subitem="CRLF"/>
227<iref primary="true" item="Grammar" subitem="CTL"/>
228<iref primary="true" item="Grammar" subitem="DIGIT"/>
229<iref primary="true" item="Grammar" subitem="DQUOTE"/>
230<iref primary="true" item="Grammar" subitem="HEXDIG"/>
231<iref primary="true" item="Grammar" subitem="HTAB"/>
232<iref primary="true" item="Grammar" subitem="LF"/>
233<iref primary="true" item="Grammar" subitem="OCTET"/>
234<iref primary="true" item="Grammar" subitem="SP"/>
235<iref primary="true" item="Grammar" subitem="VCHAR"/>
237   This specification uses the Augmented Backus-Naur Form (ABNF) notation of
238   <xref target="RFC5234"/> with a list extension, defined in
239   <xref target="abnf.extension"/>, that allows for compact definition of
240   comma-separated lists using a '#' operator (similar to how the '*' operator
241   indicates repetition).
242   <xref target="collected.abnf"/> shows the collected grammar with all list
243   operators expanded to standard ABNF notation.
245<t anchor="core.rules">
246  <x:anchor-alias value="ALPHA"/>
247  <x:anchor-alias value="CTL"/>
248  <x:anchor-alias value="CR"/>
249  <x:anchor-alias value="CRLF"/>
250  <x:anchor-alias value="DIGIT"/>
251  <x:anchor-alias value="DQUOTE"/>
252  <x:anchor-alias value="HEXDIG"/>
253  <x:anchor-alias value="HTAB"/>
254  <x:anchor-alias value="LF"/>
255  <x:anchor-alias value="OCTET"/>
256  <x:anchor-alias value="SP"/>
257  <x:anchor-alias value="VCHAR"/>
258   The following core rules are included by
259   reference, as defined in <xref target="RFC5234" x:fmt="," x:sec="B.1"/>:
260   ALPHA (letters), CR (carriage return), CRLF (CR LF), CTL (controls),
261   DIGIT (decimal 0-9), DQUOTE (double quote),
262   HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF (line feed),
263   OCTET (any 8-bit sequence of data), SP (space), and
264   VCHAR (any visible <xref target="USASCII"/> character).
267   As a convention, ABNF rule names prefixed with "obs-" denote
268   "obsolete" grammar rules that appear for historical reasons.
273<section title="Architecture" anchor="architecture">
275   HTTP was created for the World Wide Web architecture
276   and has evolved over time to support the scalability needs of a worldwide
277   hypertext system. Much of that architecture is reflected in the terminology
278   and syntax productions used to define HTTP.
281<section title="Client/Server Messaging" anchor="operation">
282<iref primary="true" item="client"/>
283<iref primary="true" item="server"/>
284<iref primary="true" item="connection"/>
286   HTTP is a stateless request/response protocol that operates by exchanging
287   <x:dfn>messages</x:dfn> (<xref target="http.message"/>) across a reliable
288   transport or session-layer
289   "<x:dfn>connection</x:dfn>" (<xref target=""/>).
290   An HTTP "<x:dfn>client</x:dfn>" is a program that establishes a connection
291   to a server for the purpose of sending one or more HTTP requests.
292   An HTTP "<x:dfn>server</x:dfn>" is a program that accepts connections
293   in order to service HTTP requests by sending HTTP responses.
295<iref primary="true" item="user agent"/>
296<iref primary="true" item="origin server"/>
297<iref primary="true" item="browser"/>
298<iref primary="true" item="spider"/>
299<iref primary="true" item="sender"/>
300<iref primary="true" item="recipient"/>
302   The terms client and server refer only to the roles that
303   these programs perform for a particular connection.  The same program
304   might act as a client on some connections and a server on others.
305   We use the term "<x:dfn>user agent</x:dfn>" to refer to any of the various
306   client programs that initiate a request, including (but not limited to)
307   browsers, spiders (web-based robots), command-line tools, native
308   applications, and mobile apps.  The term "<x:dfn>origin server</x:dfn>" is
309   used to refer to the program that can originate authoritative responses to
310   a request. For general requirements, we use the terms
311   "<x:dfn>sender</x:dfn>" and "<x:dfn>recipient</x:dfn>" to refer to any
312   component that sends or receives, respectively, a given message.
315   HTTP relies upon the Uniform Resource Identifier (URI)
316   standard <xref target="RFC3986"/> to indicate the target resource
317   (<xref target="target-resource"/>) and relationships between resources.
318   Messages are passed in a format similar to that used by Internet mail
319   <xref target="RFC5322"/> and the Multipurpose Internet Mail Extensions
320   (MIME) <xref target="RFC2045"/> (see &diff-mime; for the differences
321   between HTTP and MIME messages).
324   Most HTTP communication consists of a retrieval request (GET) for
325   a representation of some resource identified by a URI.  In the
326   simplest case, this might be accomplished via a single bidirectional
327   connection (===) between the user agent (UA) and the origin server (O).
329<figure><artwork type="drawing">
330         request   &gt;
331    <x:highlight>UA</x:highlight> ======================================= <x:highlight>O</x:highlight>
332                                &lt;   response
334<iref primary="true" item="message"/>
335<iref primary="true" item="request"/>
336<iref primary="true" item="response"/>
338   A client sends an HTTP request to a server in the form of a <x:dfn>request</x:dfn>
339   message, beginning with a request-line that includes a method, URI, and
340   protocol version (<xref target="request.line"/>),
341   followed by header fields containing
342   request modifiers, client information, and representation metadata
343   (<xref target="header.fields"/>),
344   an empty line to indicate the end of the header section, and finally
345   a message body containing the payload body (if any,
346   <xref target="message.body"/>).
349   A server responds to a client's request by sending one or more HTTP
350   <x:dfn>response</x:dfn>
351   messages, each beginning with a status line that
352   includes the protocol version, a success or error code, and textual
353   reason phrase (<xref target="status.line"/>),
354   possibly followed by header fields containing server
355   information, resource metadata, and representation metadata
356   (<xref target="header.fields"/>),
357   an empty line to indicate the end of the header section, and finally
358   a message body containing the payload body (if any,
359   <xref target="message.body"/>).
362   A connection might be used for multiple request/response exchanges,
363   as defined in <xref target="persistent.connections"/>.
366   The following example illustrates a typical message exchange for a
367   GET request on the URI "":
370Client request:
371</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
372GET /hello.txt HTTP/1.1
373User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3
375Accept-Language: en, mi
379Server response:
380</preamble><artwork type="message/http; msgtype=&#34;response&#34;" x:indent-with="  ">
381HTTP/1.1 200 OK
382Date: Mon, 27 Jul 2009 12:28:53 GMT
383Server: Apache
384Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
385ETag: "34aa387-d-1568eb00"
386Accept-Ranges: bytes
387Content-Length: <x:length-of target="exbody"/>
388Vary: Accept-Encoding
389Content-Type: text/plain
391<x:span anchor="exbody">Hello World! My payload includes a trailing CRLF.
396<section title="Implementation Diversity" anchor="implementation-diversity">
398   When considering the design of HTTP, it is easy to fall into a trap of
399   thinking that all user agents are general-purpose browsers and all origin
400   servers are large public websites. That is not the case in practice.
401   Common HTTP user agents include household appliances, stereos, scales,
402   firmware update scripts, command-line programs, mobile apps,
403   and communication devices in a multitude of shapes and sizes.  Likewise,
404   common HTTP origin servers include home automation units, configurable
405   networking components, office machines, autonomous robots, news feeds,
406   traffic cameras, ad selectors, and video delivery platforms.
409   The term "user agent" does not imply that there is a human user directly
410   interacting with the software agent at the time of a request. In many
411   cases, a user agent is installed or configured to run in the background
412   and save its results for later inspection (or save only a subset of those
413   results that might be interesting or erroneous). Spiders, for example, are
414   typically given a start URI and configured to follow certain behavior while
415   crawling the Web as a hypertext graph.
418   The implementation diversity of HTTP means that we cannot assume the
419   user agent can make interactive suggestions to a user or provide adequate
420   warning for security or privacy options.  In the few cases where this
421   specification requires reporting of errors to the user, it is acceptable
422   for such reporting to only be observable in an error console or log file.
423   Likewise, requirements that an automated action be confirmed by the user
424   before proceeding might be met via advance configuration choices,
425   run-time options, or simple avoidance of the unsafe action; confirmation
426   does not imply any specific user interface or interruption of normal
427   processing if the user has already made that choice.
431<section title="Intermediaries" anchor="intermediaries">
432<iref primary="true" item="intermediary"/>
434   HTTP enables the use of intermediaries to satisfy requests through
435   a chain of connections.  There are three common forms of HTTP
436   <x:dfn>intermediary</x:dfn>: proxy, gateway, and tunnel.  In some cases,
437   a single intermediary might act as an origin server, proxy, gateway,
438   or tunnel, switching behavior based on the nature of each request.
440<figure><artwork type="drawing">
441         &gt;             &gt;             &gt;             &gt;
442    <x:highlight>UA</x:highlight> =========== <x:highlight>A</x:highlight> =========== <x:highlight>B</x:highlight> =========== <x:highlight>C</x:highlight> =========== <x:highlight>O</x:highlight>
443               &lt;             &lt;             &lt;             &lt;
446   The figure above shows three intermediaries (A, B, and C) between the
447   user agent and origin server. A request or response message that
448   travels the whole chain will pass through four separate connections.
449   Some HTTP communication options
450   might apply only to the connection with the nearest, non-tunnel
451   neighbor, only to the end-points of the chain, or to all connections
452   along the chain. Although the diagram is linear, each participant might
453   be engaged in multiple, simultaneous communications. For example, B
454   might be receiving requests from many clients other than A, and/or
455   forwarding requests to servers other than C, at the same time that it
456   is handling A's request. Likewise, later requests might be sent through a
457   different path of connections, often based on dynamic configuration for
458   load balancing.   
461<iref primary="true" item="upstream"/><iref primary="true" item="downstream"/>
462<iref primary="true" item="inbound"/><iref primary="true" item="outbound"/>
463   We use the terms "<x:dfn>upstream</x:dfn>" and "<x:dfn>downstream</x:dfn>"
464   to describe various requirements in relation to the directional flow of a
465   message: all messages flow from upstream to downstream.
466   Likewise, we use the terms inbound and outbound to refer to
467   directions in relation to the request path:
468   "<x:dfn>inbound</x:dfn>" means toward the origin server and
469   "<x:dfn>outbound</x:dfn>" means toward the user agent.
471<t><iref primary="true" item="proxy"/>
472   A "<x:dfn>proxy</x:dfn>" is a message forwarding agent that is selected by the
473   client, usually via local configuration rules, to receive requests
474   for some type(s) of absolute URI and attempt to satisfy those
475   requests via translation through the HTTP interface.  Some translations
476   are minimal, such as for proxy requests for "http" URIs, whereas
477   other requests might require translation to and from entirely different
478   application-level protocols. Proxies are often used to group an
479   organization's HTTP requests through a common intermediary for the
480   sake of security, annotation services, or shared caching.
483<iref primary="true" item="transforming proxy"/>
484<iref primary="true" item="non-transforming proxy"/>
485   An HTTP-to-HTTP proxy is called a "<x:dfn>transforming proxy</x:dfn>" if it is designed
486   or configured to modify request or response messages in a semantically
487   meaningful way (i.e., modifications, beyond those required by normal
488   HTTP processing, that change the message in a way that would be
489   significant to the original sender or potentially significant to
490   downstream recipients).  For example, a transforming proxy might be
491   acting as a shared annotation server (modifying responses to include
492   references to a local annotation database), a malware filter, a
493   format transcoder, or an intranet-to-Internet privacy filter.  Such
494   transformations are presumed to be desired by the client (or client
495   organization) that selected the proxy and are beyond the scope of
496   this specification.  However, when a proxy is not intended to transform
497   a given message, we use the term "<x:dfn>non-transforming proxy</x:dfn>" to target
498   requirements that preserve HTTP message semantics. See &status-203; and
499   &header-warning; for status and warning codes related to transformations.
501<t><iref primary="true" item="gateway"/><iref primary="true" item="reverse proxy"/>
502<iref primary="true" item="accelerator"/>
503   A "<x:dfn>gateway</x:dfn>" (a.k.a., "<x:dfn>reverse proxy</x:dfn>") is an
504   intermediary that acts as an origin server for the outbound connection, but
505   translates received requests and forwards them inbound to another server or
506   servers. Gateways are often used to encapsulate legacy or untrusted
507   information services, to improve server performance through
508   "<x:dfn>accelerator</x:dfn>" caching, and to enable partitioning or load
509   balancing of HTTP services across multiple machines.
512   All HTTP requirements applicable to an origin server
513   also apply to the outbound communication of a gateway.
514   A gateway communicates with inbound servers using any protocol that
515   it desires, including private extensions to HTTP that are outside
516   the scope of this specification.  However, an HTTP-to-HTTP gateway
517   that wishes to interoperate with third-party HTTP servers ought to conform
518   to user agent requirements on the gateway's inbound connection.
520<t><iref primary="true" item="tunnel"/>
521   A "<x:dfn>tunnel</x:dfn>" acts as a blind relay between two connections
522   without changing the messages. Once active, a tunnel is not
523   considered a party to the HTTP communication, though the tunnel might
524   have been initiated by an HTTP request. A tunnel ceases to exist when
525   both ends of the relayed connection are closed. Tunnels are used to
526   extend a virtual connection through an intermediary, such as when
527   Transport Layer Security (TLS, <xref target="RFC5246"/>) is used to
528   establish confidential communication through a shared firewall proxy.
530<t><iref primary="true" item="interception proxy"/>
531<iref primary="true" item="transparent proxy"/>
532<iref primary="true" item="captive portal"/>
533   The above categories for intermediary only consider those acting as
534   participants in the HTTP communication.  There are also intermediaries
535   that can act on lower layers of the network protocol stack, filtering or
536   redirecting HTTP traffic without the knowledge or permission of message
537   senders. Network intermediaries often introduce security flaws or
538   interoperability problems by violating HTTP semantics.  For example, an
539   "<x:dfn>interception proxy</x:dfn>" <xref target="RFC3040"/> (also commonly
540   known as a "<x:dfn>transparent proxy</x:dfn>" <xref target="RFC1919"/> or
541   "<x:dfn>captive portal</x:dfn>")
542   differs from an HTTP proxy because it is not selected by the client.
543   Instead, an interception proxy filters or redirects outgoing TCP port 80
544   packets (and occasionally other common port traffic).
545   Interception proxies are commonly found on public network access points,
546   as a means of enforcing account subscription prior to allowing use of
547   non-local Internet services, and within corporate firewalls to enforce
548   network usage policies.
549   They are indistinguishable from a man-in-the-middle attack.
552   HTTP is defined as a stateless protocol, meaning that each request message
553   can be understood in isolation.  Many implementations depend on HTTP's
554   stateless design in order to reuse proxied connections or dynamically
555   load-balance requests across multiple servers.  Hence, a server &MUST-NOT;
556   assume that two requests on the same connection are from the same user
557   agent unless the connection is secured and specific to that agent.
558   Some non-standard HTTP extensions (e.g., <xref target="RFC4559"/>) have
559   been known to violate this requirement, resulting in security and
560   interoperability problems.
564<section title="Caches" anchor="caches">
565<iref primary="true" item="cache"/>
567   A "<x:dfn>cache</x:dfn>" is a local store of previous response messages and the
568   subsystem that controls its message storage, retrieval, and deletion.
569   A cache stores cacheable responses in order to reduce the response
570   time and network bandwidth consumption on future, equivalent
571   requests. Any client or server &MAY; employ a cache, though a cache
572   cannot be used by a server while it is acting as a tunnel.
575   The effect of a cache is that the request/response chain is shortened
576   if one of the participants along the chain has a cached response
577   applicable to that request. The following illustrates the resulting
578   chain if B has a cached copy of an earlier response from O (via C)
579   for a request that has not been cached by UA or A.
581<figure><artwork type="drawing">
582            &gt;             &gt;
583       <x:highlight>UA</x:highlight> =========== <x:highlight>A</x:highlight> =========== <x:highlight>B</x:highlight> - - - - - - <x:highlight>C</x:highlight> - - - - - - <x:highlight>O</x:highlight>
584                  &lt;             &lt;
586<t><iref primary="true" item="cacheable"/>
587   A response is "<x:dfn>cacheable</x:dfn>" if a cache is allowed to store a copy of
588   the response message for use in answering subsequent requests.
589   Even when a response is cacheable, there might be additional
590   constraints placed by the client or by the origin server on when
591   that cached response can be used for a particular request. HTTP
592   requirements for cache behavior and cacheable responses are
593   defined in &caching-overview;. 
596   There are a wide variety of architectures and configurations
597   of caches deployed across the World Wide Web and
598   inside large organizations. These include national hierarchies
599   of proxy caches to save transoceanic bandwidth, collaborative systems that
600   broadcast or multicast cache entries, archives of pre-fetched cache
601   entries for use in off-line or high-latency environments, and so on.
605<section title="Conformance and Error Handling" anchor="conformance">
607   This specification targets conformance criteria according to the role of
608   a participant in HTTP communication.  Hence, HTTP requirements are placed
609   on senders, recipients, clients, servers, user agents, intermediaries,
610   origin servers, proxies, gateways, or caches, depending on what behavior
611   is being constrained by the requirement. Additional (social) requirements
612   are placed on implementations, resource owners, and protocol element
613   registrations when they apply beyond the scope of a single communication.
616   The verb "generate" is used instead of "send" where a requirement
617   differentiates between creating a protocol element and merely forwarding a
618   received element downstream.
621   An implementation is considered conformant if it complies with all of the
622   requirements associated with the roles it partakes in HTTP.
625   Conformance includes both the syntax and semantics of protocol
626   elements. A sender &MUST-NOT; generate protocol elements that convey a
627   meaning that is known by that sender to be false. A sender &MUST-NOT;
628   generate protocol elements that do not match the grammar defined by the
629   corresponding ABNF rules. Within a given message, a sender &MUST-NOT;
630   generate protocol elements or syntax alternatives that are only allowed to
631   be generated by participants in other roles (i.e., a role that the sender
632   does not have for that message).
635   When a received protocol element is parsed, the recipient &MUST; be able to
636   parse any value of reasonable length that is applicable to the recipient's
637   role and matches the grammar defined by the corresponding ABNF rules.
638   Note, however, that some received protocol elements might not be parsed.
639   For example, an intermediary forwarding a message might parse a
640   header-field into generic field-name and field-value components, but then
641   forward the header field without further parsing inside the field-value.
644   HTTP does not have specific length limitations for many of its protocol
645   elements because the lengths that might be appropriate will vary widely,
646   depending on the deployment context and purpose of the implementation.
647   Hence, interoperability between senders and recipients depends on shared
648   expectations regarding what is a reasonable length for each protocol
649   element. Furthermore, what is commonly understood to be a reasonable length
650   for some protocol elements has changed over the course of the past two
651   decades of HTTP use, and is expected to continue changing in the future.
654   At a minimum, a recipient &MUST; be able to parse and process protocol
655   element lengths that are at least as long as the values that it generates
656   for those same protocol elements in other messages. For example, an origin
657   server that publishes very long URI references to its own resources needs
658   to be able to parse and process those same references when received as a
659   request target.
662   A recipient &MUST; interpret a received protocol element according to the
663   semantics defined for it by this specification, including extensions to
664   this specification, unless the recipient has determined (through experience
665   or configuration) that the sender incorrectly implements what is implied by
666   those semantics.
667   For example, an origin server might disregard the contents of a received
668   <x:ref>Accept-Encoding</x:ref> header field if inspection of the
669   <x:ref>User-Agent</x:ref> header field indicates a specific implementation
670   version that is known to fail on receipt of certain content codings.
673   Unless noted otherwise, a recipient &MAY; attempt to recover a usable
674   protocol element from an invalid construct.  HTTP does not define
675   specific error handling mechanisms except when they have a direct impact
676   on security, since different applications of the protocol require
677   different error handling strategies.  For example, a Web browser might
678   wish to transparently recover from a response where the
679   <x:ref>Location</x:ref> header field doesn't parse according to the ABNF,
680   whereas a systems control client might consider any form of error recovery
681   to be dangerous.
685<section title="Protocol Versioning" anchor="http.version">
686  <x:anchor-alias value="HTTP-version"/>
687  <x:anchor-alias value="HTTP-name"/>
689   HTTP uses a "&lt;major&gt;.&lt;minor&gt;" numbering scheme to indicate
690   versions of the protocol. This specification defines version "1.1".
691   The protocol version as a whole indicates the sender's conformance
692   with the set of requirements laid out in that version's corresponding
693   specification of HTTP.
696   The version of an HTTP message is indicated by an HTTP-version field
697   in the first line of the message. HTTP-version is case-sensitive.
699<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="HTTP-version"/><iref primary="true" item="Grammar" subitem="HTTP-name"/>
700  <x:ref>HTTP-version</x:ref>  = <x:ref>HTTP-name</x:ref> "/" <x:ref>DIGIT</x:ref> "." <x:ref>DIGIT</x:ref>
701  <x:ref>HTTP-name</x:ref>     = <x:abnf-char-sequence>"HTTP"</x:abnf-char-sequence> ; "HTTP", case-sensitive
704   The HTTP version number consists of two decimal digits separated by a "."
705   (period or decimal point).  The first digit ("major version") indicates the
706   HTTP messaging syntax, whereas the second digit ("minor version") indicates
707   the highest minor version within that major version to which the sender is
708   conformant and able to understand for future communication.  The minor
709   version advertises the sender's communication capabilities even when the
710   sender is only using a backwards-compatible subset of the protocol,
711   thereby letting the recipient know that more advanced features can
712   be used in response (by servers) or in future requests (by clients).
715   When an HTTP/1.1 message is sent to an HTTP/1.0 recipient
716   <xref target="RFC1945"/> or a recipient whose version is unknown,
717   the HTTP/1.1 message is constructed such that it can be interpreted
718   as a valid HTTP/1.0 message if all of the newer features are ignored.
719   This specification places recipient-version requirements on some
720   new features so that a conformant sender will only use compatible
721   features until it has determined, through configuration or the
722   receipt of a message, that the recipient supports HTTP/1.1.
725   The interpretation of a header field does not change between minor
726   versions of the same major HTTP version, though the default
727   behavior of a recipient in the absence of such a field can change.
728   Unless specified otherwise, header fields defined in HTTP/1.1 are
729   defined for all versions of HTTP/1.x.  In particular, the <x:ref>Host</x:ref>
730   and <x:ref>Connection</x:ref> header fields ought to be implemented by all
731   HTTP/1.x implementations whether or not they advertise conformance with
732   HTTP/1.1.
735   New header fields can be introduced without changing the protocol version
736   if their defined semantics allow them to be safely ignored by recipients
737   that do not recognize them. Header field extensibility is discussed in
738   <xref target="field.extensibility"/>.
741   Intermediaries that process HTTP messages (i.e., all intermediaries
742   other than those acting as tunnels) &MUST; send their own HTTP-version
743   in forwarded messages.  In other words, they are not allowed to blindly
744   forward the first line of an HTTP message without ensuring that the
745   protocol version in that message matches a version to which that
746   intermediary is conformant for both the receiving and
747   sending of messages.  Forwarding an HTTP message without rewriting
748   the HTTP-version might result in communication errors when downstream
749   recipients use the message sender's version to determine what features
750   are safe to use for later communication with that sender.
753   A client &SHOULD; send a request version equal to the highest
754   version to which the client is conformant and
755   whose major version is no higher than the highest version supported
756   by the server, if this is known.  A client &MUST-NOT; send a
757   version to which it is not conformant.
760   A client &MAY; send a lower request version if it is known that
761   the server incorrectly implements the HTTP specification, but only
762   after the client has attempted at least one normal request and determined
763   from the response status code or header fields (e.g., <x:ref>Server</x:ref>) that
764   the server improperly handles higher request versions.
767   A server &SHOULD; send a response version equal to the highest version to
768   which the server is conformant that has a major version less than or equal
769   to the one received in the request.
770   A server &MUST-NOT; send a version to which it is not conformant.
771   A server can send a <x:ref>505 (HTTP Version Not Supported)</x:ref>
772   response if it wishes, for any reason, to refuse service of the client's
773   major protocol version.
776   A server &MAY; send an HTTP/1.0 response to a request
777   if it is known or suspected that the client incorrectly implements the
778   HTTP specification and is incapable of correctly processing later
779   version responses, such as when a client fails to parse the version
780   number correctly or when an intermediary is known to blindly forward
781   the HTTP-version even when it doesn't conform to the given minor
782   version of the protocol. Such protocol downgrades &SHOULD-NOT; be
783   performed unless triggered by specific client attributes, such as when
784   one or more of the request header fields (e.g., <x:ref>User-Agent</x:ref>)
785   uniquely match the values sent by a client known to be in error.
788   The intention of HTTP's versioning design is that the major number
789   will only be incremented if an incompatible message syntax is
790   introduced, and that the minor number will only be incremented when
791   changes made to the protocol have the effect of adding to the message
792   semantics or implying additional capabilities of the sender.  However,
793   the minor version was not incremented for the changes introduced between
794   <xref target="RFC2068"/> and <xref target="RFC2616"/>, and this revision
795   has specifically avoided any such changes to the protocol.
798   When an HTTP message is received with a major version number that the
799   recipient implements, but a higher minor version number than what the
800   recipient implements, the recipient &SHOULD; process the message as if it
801   were in the highest minor version within that major version to which the
802   recipient is conformant. A recipient can assume that a message with a
803   higher minor version, when sent to a recipient that has not yet indicated
804   support for that higher version, is sufficiently backwards-compatible to be
805   safely processed by any implementation of the same major version.
809<section title="Uniform Resource Identifiers" anchor="uri">
810<iref primary="true" item="resource"/>
812   Uniform Resource Identifiers (URIs) <xref target="RFC3986"/> are used
813   throughout HTTP as the means for identifying resources (&resource;).
814   URI references are used to target requests, indicate redirects, and define
815   relationships.
817  <x:anchor-alias value="URI-reference"/>
818  <x:anchor-alias value="absolute-URI"/>
819  <x:anchor-alias value="relative-part"/>
820  <x:anchor-alias value="authority"/>
821  <x:anchor-alias value="uri-host"/>
822  <x:anchor-alias value="port"/>
823  <x:anchor-alias value="path-abempty"/>
824  <x:anchor-alias value="segment"/>
825  <x:anchor-alias value="query"/>
826  <x:anchor-alias value="fragment"/>
827  <x:anchor-alias value="absolute-path"/>
828  <x:anchor-alias value="partial-URI"/>
830   This specification adopts the definitions of "URI-reference",
831   "absolute-URI", "relative-part", "authority", "port", "host",
832   "path-abempty", "segment", "query", and "fragment" from the
833   URI generic syntax.
834   In addition, we define an "absolute-path" rule (that differs from
835   RFC 3986's "path-absolute" in that it allows a leading "//")
836   and a "partial-URI" rule for protocol elements
837   that allow a relative URI but not a fragment.
839<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="URI-reference"><!--exported production--></iref><iref primary="true" item="Grammar" subitem="absolute-URI"/><iref primary="true" item="Grammar" subitem="authority"/><iref primary="true" item="Grammar" subitem="absolute-path"/><iref primary="true" item="Grammar" subitem="port"/><iref primary="true" item="Grammar" subitem="query"/><iref primary="true" item="Grammar" subitem="fragment"/><iref primary="true" item="Grammar" subitem="segment"/><iref primary="true" item="Grammar" subitem="uri-host"/><iref primary="true" item="Grammar" subitem="partial-URI"><!--exported production--></iref>
840  <x:ref>URI-reference</x:ref> = &lt;URI-reference, defined in <xref target="RFC3986" x:fmt="," x:sec="4.1"/>&gt;
841  <x:ref>absolute-URI</x:ref>  = &lt;absolute-URI, defined in <xref target="RFC3986" x:fmt="," x:sec="4.3"/>&gt;
842  <x:ref>relative-part</x:ref> = &lt;relative-part, defined in <xref target="RFC3986" x:fmt="," x:sec="4.2"/>&gt;
843  <x:ref>authority</x:ref>     = &lt;authority, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2"/>&gt;
844  <x:ref>uri-host</x:ref>      = &lt;host, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2.2"/>&gt;
845  <x:ref>port</x:ref>          = &lt;port, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2.3"/>&gt;
846  <x:ref>path-abempty</x:ref>  = &lt;path-abempty, defined in <xref target="RFC3986" x:fmt="," x:sec="3.3"/>&gt;
847  <x:ref>segment</x:ref>       = &lt;segment, defined in <xref target="RFC3986" x:fmt="," x:sec="3.3"/>&gt;
848  <x:ref>query</x:ref>         = &lt;query, defined in <xref target="RFC3986" x:fmt="," x:sec="3.4"/>&gt;
849  <x:ref>fragment</x:ref>      = &lt;fragment, defined in <xref target="RFC3986" x:fmt="," x:sec="3.5"/>&gt;
851  <x:ref>absolute-path</x:ref> = 1*( "/" segment )
852  <x:ref>partial-URI</x:ref>   = relative-part [ "?" query ]
855   Each protocol element in HTTP that allows a URI reference will indicate
856   in its ABNF production whether the element allows any form of reference
857   (URI-reference), only a URI in absolute form (absolute-URI), only the
858   path and optional query components, or some combination of the above.
859   Unless otherwise indicated, URI references are parsed
860   relative to the effective request URI
861   (<xref target="effective.request.uri"/>).
864<section title="http URI scheme" anchor="http.uri">
865  <x:anchor-alias value="http-URI"/>
866  <iref item="http URI scheme" primary="true"/>
867  <iref item="URI scheme" subitem="http" primary="true"/>
869   The "http" URI scheme is hereby defined for the purpose of minting
870   identifiers according to their association with the hierarchical
871   namespace governed by a potential HTTP origin server listening for
872   TCP (<xref target="RFC0793"/>) connections on a given port.
874<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="http-URI"><!--terminal production--></iref>
875  <x:ref>http-URI</x:ref> = "http:" "//" <x:ref>authority</x:ref> <x:ref>path-abempty</x:ref> [ "?" <x:ref>query</x:ref> ]
876             [ "#" <x:ref>fragment</x:ref> ]
879   The HTTP origin server is identified by the generic syntax's
880   <x:ref>authority</x:ref> component, which includes a host identifier
881   and optional TCP port (<xref target="RFC3986" x:fmt="," x:sec="3.2.2"/>).
882   The remainder of the URI, consisting of both the hierarchical path
883   component and optional query component, serves as an identifier for
884   a potential resource within that origin server's name space.
887   A sender &MUST-NOT; generate an "http" URI with an empty host identifier.
888   A recipient that processes such a URI reference &MUST; reject it as invalid.
891   If the host identifier is provided as an IP address,
892   then the origin server is any listener on the indicated TCP port at
893   that IP address. If host is a registered name, then that name is
894   considered an indirect identifier and the recipient might use a name
895   resolution service, such as DNS, to find the address of a listener
896   for that host.
897   If the port subcomponent is empty or not given, then TCP port 80 is
898   assumed (the default reserved port for WWW services).
901   Regardless of the form of host identifier, access to that host is not
902   implied by the mere presence of its name or address. The host might or might
903   not exist and, even when it does exist, might or might not be running an
904   HTTP server or listening to the indicated port. The "http" URI scheme
905   makes use of the delegated nature of Internet names and addresses to
906   establish a naming authority (whatever entity has the ability to place
907   an HTTP server at that Internet name or address) and allows that
908   authority to determine which names are valid and how they might be used.
911   When an "http" URI is used within a context that calls for access to the
912   indicated resource, a client &MAY; attempt access by resolving
913   the host to an IP address, establishing a TCP connection to that address
914   on the indicated port, and sending an HTTP request message
915   (<xref target="http.message"/>) containing the URI's identifying data
916   (<xref target="message.routing"/>) to the server.
917   If the server responds to that request with a non-interim HTTP response
918   message, as described in &status-codes;, then that response
919   is considered an authoritative answer to the client's request.
922   Although HTTP is independent of the transport protocol, the "http"
923   scheme is specific to TCP-based services because the name delegation
924   process depends on TCP for establishing authority.
925   An HTTP service based on some other underlying connection protocol
926   would presumably be identified using a different URI scheme, just as
927   the "https" scheme (below) is used for resources that require an
928   end-to-end secured connection. Other protocols might also be used to
929   provide access to "http" identified resources &mdash; it is only the
930   authoritative interface that is specific to TCP.
933   The URI generic syntax for authority also includes a deprecated
934   userinfo subcomponent (<xref target="RFC3986" x:fmt="," x:sec="3.2.1"/>)
935   for including user authentication information in the URI.  Some
936   implementations make use of the userinfo component for internal
937   configuration of authentication information, such as within command
938   invocation options, configuration files, or bookmark lists, even
939   though such usage might expose a user identifier or password.
940   A sender &MUST-NOT; generate the userinfo subcomponent (and its "@"
941   delimiter) when an "http" URI reference is generated within a message as a
942   request target or header field value.
943   Before making use of an "http" URI reference received from an untrusted
944   source, a recipient ought to parse for userinfo and treat its presence as
945   an error; it is likely being used to obscure the authority for the sake of
946   phishing attacks.
950<section title="https URI scheme" anchor="https.uri">
951   <x:anchor-alias value="https-URI"/>
952   <iref item="https URI scheme"/>
953   <iref item="URI scheme" subitem="https"/>
955   The "https" URI scheme is hereby defined for the purpose of minting
956   identifiers according to their association with the hierarchical
957   namespace governed by a potential HTTP origin server listening to a
958   given TCP port for TLS-secured connections
959   (<xref target="RFC0793"/>, <xref target="RFC5246"/>).
962   All of the requirements listed above for the "http" scheme are also
963   requirements for the "https" scheme, except that a default TCP port
964   of 443 is assumed if the port subcomponent is empty or not given,
965   and the user agent &MUST; ensure that its connection to the origin
966   server is secured through the use of strong encryption, end-to-end,
967   prior to sending the first HTTP request.
969<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="https-URI"><!--terminal production--></iref>
970  <x:ref>https-URI</x:ref> = "https:" "//" <x:ref>authority</x:ref> <x:ref>path-abempty</x:ref> [ "?" <x:ref>query</x:ref> ]
971              [ "#" <x:ref>fragment</x:ref> ]
974   Note that the "https" URI scheme depends on both TLS and TCP for
975   establishing authority.
976   Resources made available via the "https" scheme have no shared
977   identity with the "http" scheme even if their resource identifiers
978   indicate the same authority (the same host listening to the same
979   TCP port).  They are distinct name spaces and are considered to be
980   distinct origin servers.  However, an extension to HTTP that is
981   defined to apply to entire host domains, such as the Cookie protocol
982   <xref target="RFC6265"/>, can allow information
983   set by one service to impact communication with other services
984   within a matching group of host domains.
987   The process for authoritative access to an "https" identified
988   resource is defined in <xref target="RFC2818"/>.
992<section title="http and https URI Normalization and Comparison" anchor="uri.comparison">
994   Since the "http" and "https" schemes conform to the URI generic syntax,
995   such URIs are normalized and compared according to the algorithm defined
996   in <xref target="RFC3986" x:fmt="of" x:sec="6"/>, using the defaults
997   described above for each scheme.
1000   If the port is equal to the default port for a scheme, the normal form is
1001   to omit the port subcomponent. When not being used in absolute form as the
1002   request target of an OPTIONS request, an empty path component is equivalent
1003   to an absolute path of "/", so the normal form is to provide a path of "/"
1004   instead. The scheme and host are case-insensitive and normally provided in
1005   lowercase; all other components are compared in a case-sensitive manner.
1006   Characters other than those in the "reserved" set are equivalent to their
1007   percent-encoded octets: the normal form is to not encode them
1008   (see Sections <xref target="RFC3986" x:fmt="number" x:sec="2.1"/> and
1009   <xref target="RFC3986" x:fmt="number" x:sec="2.2"/> of
1010   <xref target="RFC3986"/>).
1013   For example, the following three URIs are equivalent:
1015<figure><artwork type="example">
1024<section title="Message Format" anchor="http.message">
1025<x:anchor-alias value="generic-message"/>
1026<x:anchor-alias value="message.types"/>
1027<x:anchor-alias value="HTTP-message"/>
1028<x:anchor-alias value="start-line"/>
1029<iref item="header section"/>
1030<iref item="headers"/>
1031<iref item="header field"/>
1033   All HTTP/1.1 messages consist of a start-line followed by a sequence of
1034   octets in a format similar to the Internet Message Format
1035   <xref target="RFC5322"/>: zero or more header fields (collectively
1036   referred to as the "headers" or the "header section"), an empty line
1037   indicating the end of the header section, and an optional message body.
1039<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="HTTP-message"><!--terminal production--></iref>
1040  <x:ref>HTTP-message</x:ref>   = <x:ref>start-line</x:ref>
1041                   *( <x:ref>header-field</x:ref> <x:ref>CRLF</x:ref> )
1042                   <x:ref>CRLF</x:ref>
1043                   [ <x:ref>message-body</x:ref> ]
1046   The normal procedure for parsing an HTTP message is to read the
1047   start-line into a structure, read each header field into a hash
1048   table by field name until the empty line, and then use the parsed
1049   data to determine if a message body is expected.  If a message body
1050   has been indicated, then it is read as a stream until an amount
1051   of octets equal to the message body length is read or the connection
1052   is closed.
1055   A recipient &MUST; parse an HTTP message as a sequence of octets in an
1056   encoding that is a superset of US-ASCII <xref target="USASCII"/>.
1057   Parsing an HTTP message as a stream of Unicode characters, without regard
1058   for the specific encoding, creates security vulnerabilities due to the
1059   varying ways that string processing libraries handle invalid multibyte
1060   character sequences that contain the octet LF (%x0A).  String-based
1061   parsers can only be safely used within protocol elements after the element
1062   has been extracted from the message, such as within a header field-value
1063   after message parsing has delineated the individual fields.
1066   An HTTP message can be parsed as a stream for incremental processing or
1067   forwarding downstream.  However, recipients cannot rely on incremental
1068   delivery of partial messages, since some implementations will buffer or
1069   delay message forwarding for the sake of network efficiency, security
1070   checks, or payload transformations.
1073   A sender &MUST-NOT; send whitespace between the start-line and
1074   the first header field.
1075   A recipient that receives whitespace between the start-line and
1076   the first header field &MUST; either reject the message as invalid or
1077   consume each whitespace-preceded line without further processing of it
1078   (i.e., ignore the entire line, along with any subsequent lines preceded
1079   by whitespace, until a properly formed header field is received or the
1080   header section is terminated).
1083   The presence of such whitespace in a request
1084   might be an attempt to trick a server into ignoring that field or
1085   processing the line after it as a new request, either of which might
1086   result in a security vulnerability if other implementations within
1087   the request chain interpret the same message differently.
1088   Likewise, the presence of such whitespace in a response might be
1089   ignored by some clients or cause others to cease parsing.
1092<section title="Start Line" anchor="start.line">
1093  <x:anchor-alias value="Start-Line"/>
1095   An HTTP message can either be a request from client to server or a
1096   response from server to client.  Syntactically, the two types of message
1097   differ only in the start-line, which is either a request-line (for requests)
1098   or a status-line (for responses), and in the algorithm for determining
1099   the length of the message body (<xref target="message.body"/>).
1102   In theory, a client could receive requests and a server could receive
1103   responses, distinguishing them by their different start-line formats,
1104   but in practice servers are implemented to only expect a request
1105   (a response is interpreted as an unknown or invalid request method)
1106   and clients are implemented to only expect a response.
1108<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="start-line"/>
1109  <x:ref>start-line</x:ref>     = <x:ref>request-line</x:ref> / <x:ref>status-line</x:ref>
1112<section title="Request Line" anchor="request.line">
1113  <x:anchor-alias value="Request"/>
1114  <x:anchor-alias value="request-line"/>
1116   A request-line begins with a method token, followed by a single
1117   space (SP), the request-target, another single space (SP), the
1118   protocol version, and ending with CRLF.
1120<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="request-line"/>
1121  <x:ref>request-line</x:ref>   = <x:ref>method</x:ref> <x:ref>SP</x:ref> <x:ref>request-target</x:ref> <x:ref>SP</x:ref> <x:ref>HTTP-version</x:ref> <x:ref>CRLF</x:ref>
1123<iref primary="true" item="method"/>
1124<t anchor="method">
1125   The method token indicates the request method to be performed on the
1126   target resource. The request method is case-sensitive.
1128<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="method"/>
1129  <x:ref>method</x:ref>         = <x:ref>token</x:ref>
1132   The request methods defined by this specification can be found in
1133   &methods;, along with information regarding the HTTP method registry
1134   and considerations for defining new methods.
1136<iref item="request-target"/>
1138   The request-target identifies the target resource upon which to apply
1139   the request, as defined in <xref target="request-target"/>.
1142   Recipients typically parse the request-line into its component parts by
1143   splitting on whitespace (see <xref target="message.robustness"/>), since
1144   no whitespace is allowed in the three components.
1145   Unfortunately, some user agents fail to properly encode or exclude
1146   whitespace found in hypertext references, resulting in those disallowed
1147   characters being sent in a request-target.
1150   Recipients of an invalid request-line &SHOULD; respond with either a
1151   <x:ref>400 (Bad Request)</x:ref> error or a <x:ref>301 (Moved Permanently)</x:ref>
1152   redirect with the request-target properly encoded.  A recipient &SHOULD-NOT;
1153   attempt to autocorrect and then process the request without a redirect,
1154   since the invalid request-line might be deliberately crafted to bypass
1155   security filters along the request chain.
1158   HTTP does not place a pre-defined limit on the length of a request-line.
1159   A server that receives a method longer than any that it implements
1160   &SHOULD; respond with a <x:ref>501 (Not Implemented)</x:ref> status code.
1161   A server ought to be prepared to receive URIs of unbounded length, as
1162   described in <xref target="conformance"/>, and &MUST; respond with a
1163   <x:ref>414 (URI Too Long)</x:ref> status code if the received
1164   request-target is longer than the server wishes to parse (see &status-414;).
1167   Various ad-hoc limitations on request-line length are found in practice.
1168   It is &RECOMMENDED; that all HTTP senders and recipients support, at a
1169   minimum, request-line lengths of 8000 octets.
1173<section title="Status Line" anchor="status.line">
1174  <x:anchor-alias value="response"/>
1175  <x:anchor-alias value="status-line"/>
1176  <x:anchor-alias value="status-code"/>
1177  <x:anchor-alias value="reason-phrase"/>
1179   The first line of a response message is the status-line, consisting
1180   of the protocol version, a space (SP), the status code, another space,
1181   a possibly-empty textual phrase describing the status code, and
1182   ending with CRLF.
1184<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="status-line"/>
1185  <x:ref>status-line</x:ref> = <x:ref>HTTP-version</x:ref> <x:ref>SP</x:ref> <x:ref>status-code</x:ref> <x:ref>SP</x:ref> <x:ref>reason-phrase</x:ref> <x:ref>CRLF</x:ref>
1188   The status-code element is a 3-digit integer code describing the
1189   result of the server's attempt to understand and satisfy the client's
1190   corresponding request. The rest of the response message is to be
1191   interpreted in light of the semantics defined for that status code.
1192   See &status-codes; for information about the semantics of status codes,
1193   including the classes of status code (indicated by the first digit),
1194   the status codes defined by this specification, considerations for the
1195   definition of new status codes, and the IANA registry.
1197<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="status-code"/>
1198  <x:ref>status-code</x:ref>    = 3<x:ref>DIGIT</x:ref>
1201   The reason-phrase element exists for the sole purpose of providing a
1202   textual description associated with the numeric status code, mostly
1203   out of deference to earlier Internet application protocols that were more
1204   frequently used with interactive text clients. A client &SHOULD; ignore
1205   the reason-phrase content.
1207<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="reason-phrase"/>
1208  <x:ref>reason-phrase</x:ref>  = *( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1213<section title="Header Fields" anchor="header.fields">
1214  <x:anchor-alias value="header-field"/>
1215  <x:anchor-alias value="field-content"/>
1216  <x:anchor-alias value="field-name"/>
1217  <x:anchor-alias value="field-value"/>
1218  <x:anchor-alias value="obs-fold"/>
1220   Each header field consists of a case-insensitive field name
1221   followed by a colon (":"), optional leading whitespace, the field value,
1222   and optional trailing whitespace.
1224<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="header-field"/><iref primary="true" item="Grammar" subitem="field-name"/><iref primary="true" item="Grammar" subitem="field-value"/><iref primary="true" item="Grammar" subitem="field-content"/><iref primary="true" item="Grammar" subitem="obs-fold"/>
1225  <x:ref>header-field</x:ref>   = <x:ref>field-name</x:ref> ":" <x:ref>OWS</x:ref> <x:ref>field-value</x:ref> <x:ref>OWS</x:ref>
1226  <x:ref>field-name</x:ref>     = <x:ref>token</x:ref>
1227  <x:ref>field-value</x:ref>    = *( <x:ref>field-content</x:ref> / <x:ref>obs-fold</x:ref> )
1228  <x:ref>field-content</x:ref>  = *( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1229  <x:ref>obs-fold</x:ref>       = <x:ref>CRLF</x:ref> ( <x:ref>SP</x:ref> / <x:ref>HTAB</x:ref> )
1230                 ; obsolete line folding
1231                 ; see <xref target="field.parsing"/>
1234   The field-name token labels the corresponding field-value as having the
1235   semantics defined by that header field.  For example, the <x:ref>Date</x:ref>
1236   header field is defined in &header-date; as containing the origination
1237   timestamp for the message in which it appears.
1240<section title="Field Extensibility" anchor="field.extensibility">
1242   Header fields are fully extensible: there is no limit on the
1243   introduction of new field names, each presumably defining new semantics,
1244   nor on the number of header fields used in a given message.  Existing
1245   fields are defined in each part of this specification and in many other
1246   specifications outside the core standard.
1249   New header fields can be defined such that, when they are understood by a
1250   recipient, they might override or enhance the interpretation of previously
1251   defined header fields, define preconditions on request evaluation, or
1252   refine the meaning of responses.
1255   A proxy &MUST; forward unrecognized header fields unless the
1256   field-name is listed in the <x:ref>Connection</x:ref> header field
1257   (<xref target="header.connection"/>) or the proxy is specifically
1258   configured to block, or otherwise transform, such fields.
1259   Other recipients &SHOULD; ignore unrecognized header fields.
1260   These requirements allow HTTP's functionality to be enhanced without
1261   requiring prior update of deployed intermediaries.
1264   All defined header fields ought to be registered with IANA in the
1265   Message Header Field Registry, as described in &iana-header-registry;.
1269<section title="Field Order" anchor="field.order">
1271   The order in which header fields with differing field names are
1272   received is not significant. However, it is "good practice" to send
1273   header fields that contain control data first, such as <x:ref>Host</x:ref>
1274   on requests and <x:ref>Date</x:ref> on responses, so that implementations
1275   can decide when not to handle a message as early as possible.  A server
1276   &MUST; wait until the entire header section is received before interpreting
1277   a request message, since later header fields might include conditionals,
1278   authentication credentials, or deliberately misleading duplicate
1279   header fields that would impact request processing.
1282   A sender &MUST-NOT; generate multiple header fields with the same field
1283   name in a message unless either the entire field value for that
1284   header field is defined as a comma-separated list [i.e., #(values)]
1285   or the header field is a well-known exception (as noted below).
1288   A recipient &MAY; combine multiple header fields with the same field name
1289   into one "field-name: field-value" pair, without changing the semantics of
1290   the message, by appending each subsequent field value to the combined
1291   field value in order, separated by a comma. The order in which
1292   header fields with the same field name are received is therefore
1293   significant to the interpretation of the combined field value;
1294   a proxy &MUST-NOT; change the order of these field values when
1295   forwarding a message.
1298  <t>
1299   &Note; In practice, the "Set-Cookie" header field (<xref target="RFC6265"/>)
1300   often appears multiple times in a response message and does not use the
1301   list syntax, violating the above requirements on multiple header fields
1302   with the same name. Since it cannot be combined into a single field-value,
1303   recipients ought to handle "Set-Cookie" as a special case while processing
1304   header fields. (See Appendix A.2.3 of <xref target="Kri2001"/> for details.)
1305  </t>
1309<section title="Whitespace" anchor="whitespace">
1310<t anchor="rule.LWS">
1311   This specification uses three rules to denote the use of linear
1312   whitespace: OWS (optional whitespace), RWS (required whitespace), and
1313   BWS ("bad" whitespace).
1315<t anchor="rule.OWS">
1316   The OWS rule is used where zero or more linear whitespace octets might
1317   appear. For protocol elements where optional whitespace is preferred to
1318   improve readability, a sender &SHOULD; generate the optional whitespace
1319   as a single SP; otherwise, a sender &SHOULD-NOT; generate optional
1320   whitespace except as needed to white-out invalid or unwanted protocol
1321   elements during in-place message filtering.
1323<t anchor="rule.RWS">
1324   The RWS rule is used when at least one linear whitespace octet is required
1325   to separate field tokens. A sender &SHOULD; generate RWS as a single SP.
1327<t anchor="rule.BWS">
1328   The BWS rule is used where the grammar allows optional whitespace only for
1329   historical reasons. A sender &MUST-NOT; generate BWS in messages.
1330   A recipient &MUST; parse for such bad whitespace and remove it before
1331   interpreting the protocol element.
1333<t anchor="rule.whitespace">
1334  <x:anchor-alias value="BWS"/>
1335  <x:anchor-alias value="OWS"/>
1336  <x:anchor-alias value="RWS"/>
1338<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="OWS"/><iref primary="true" item="Grammar" subitem="RWS"/><iref primary="true" item="Grammar" subitem="BWS"/>
1339  <x:ref>OWS</x:ref>            = *( <x:ref>SP</x:ref> / <x:ref>HTAB</x:ref> )
1340                 ; optional whitespace
1341  <x:ref>RWS</x:ref>            = 1*( <x:ref>SP</x:ref> / <x:ref>HTAB</x:ref> )
1342                 ; required whitespace
1343  <x:ref>BWS</x:ref>            = <x:ref>OWS</x:ref>
1344                 ; "bad" whitespace
1348<section title="Field Parsing" anchor="field.parsing">
1350   Messages are parsed using a generic algorithm, independent of the
1351   individual header field names. The contents within a given field value are
1352   not parsed until a later stage of message interpretation (usually after the
1353   message's entire header section has been processed).
1354   Consequently, this specification does not use ABNF rules to define each
1355   "Field-Name: Field Value" pair, as was done in previous editions.
1356   Instead, this specification uses ABNF rules which are named according to
1357   each registered field name, wherein the rule defines the valid grammar for
1358   that field's corresponding field values (i.e., after the field-value
1359   has been extracted from the header section by a generic field parser).
1362   No whitespace is allowed between the header field-name and colon.
1363   In the past, differences in the handling of such whitespace have led to
1364   security vulnerabilities in request routing and response handling.
1365   A server &MUST; reject any received request message that contains
1366   whitespace between a header field-name and colon with a response code of
1367   <x:ref>400 (Bad Request)</x:ref>. A proxy &MUST; remove any such whitespace
1368   from a response message before forwarding the message downstream.
1371   A field value is preceded by optional whitespace (OWS); a single SP is
1372   preferred. The field value does not include any leading or trailing white
1373   space: OWS occurring before the first non-whitespace octet of the field
1374   value or after the last non-whitespace octet of the field value ought to be
1375   excluded by parsers when extracting the field value from a header field.
1378   A recipient of field-content containing multiple sequential octets of
1379   optional (OWS) or required (RWS) whitespace &SHOULD; either replace the
1380   sequence with a single SP or transform any non-SP octets in the sequence to
1381   SP octets before interpreting the field value or forwarding the message
1382   downstream.
1385   Historically, HTTP header field values could be extended over multiple
1386   lines by preceding each extra line with at least one space or horizontal
1387   tab (obs-fold). This specification deprecates such line folding except
1388   within the message/http media type
1389   (<xref target=""/>).
1390   A sender &MUST-NOT; generate a message that includes line folding
1391   (i.e., that has any field-value that contains a match to the
1392   <x:ref>obs-fold</x:ref> rule) unless the message is intended for packaging
1393   within the message/http media type.
1396   A server that receives an <x:ref>obs-fold</x:ref> in a request message that
1397   is not within a message/http container &MUST; either reject the message by
1398   sending a <x:ref>400 (Bad Request)</x:ref>, preferably with a
1399   representation explaining that obsolete line folding is unacceptable, or
1400   replace each received <x:ref>obs-fold</x:ref> with one or more
1401   <x:ref>SP</x:ref> octets prior to interpreting the field value or
1402   forwarding the message downstream.
1405   A proxy or gateway that receives an <x:ref>obs-fold</x:ref> in a response
1406   message that is not within a message/http container &MUST; either discard
1407   the message and replace it with a <x:ref>502 (Bad Gateway)</x:ref>
1408   response, preferably with a representation explaining that unacceptable
1409   line folding was received, or replace each received <x:ref>obs-fold</x:ref>
1410   with one or more <x:ref>SP</x:ref> octets prior to interpreting the field
1411   value or forwarding the message downstream.
1414   A user agent that receives an <x:ref>obs-fold</x:ref> in a response message
1415   that is not within a message/http container &MUST; replace each received
1416   <x:ref>obs-fold</x:ref> with one or more <x:ref>SP</x:ref> octets prior to
1417   interpreting the field value.
1420   Historically, HTTP has allowed field content with text in the ISO-8859-1
1421   <xref target="ISO-8859-1"/> charset, supporting other charsets only
1422   through use of <xref target="RFC2047"/> encoding.
1423   In practice, most HTTP header field values use only a subset of the
1424   US-ASCII charset <xref target="USASCII"/>. Newly defined
1425   header fields &SHOULD; limit their field values to US-ASCII octets.
1426   A recipient &SHOULD; treat other octets in field content (obs-text) as
1427   opaque data.
1431<section title="Field Limits" anchor="field.limits">
1433   HTTP does not place a pre-defined limit on the length of each header field
1434   or on the length of the header section as a whole, as described in
1435   <xref target="conformance"/>. Various ad-hoc limitations on individual
1436   header field length are found in practice, often depending on the specific
1437   field semantics.
1440   A server ought to be prepared to receive request header fields of unbounded
1441   length and &MUST; respond with an appropriate
1442   <x:ref>4xx (Client Error)</x:ref> status code if the received header
1443   field(s) are larger than the server wishes to process.
1446   A client ought to be prepared to receive response header fields of
1447   unbounded length.
1448   A client &MAY; discard or truncate received header fields that are larger
1449   than the client wishes to process if the field semantics are such that the
1450   dropped value(s) can be safely ignored without changing the
1451   message framing or response semantics.
1455<section title="Field value components" anchor="field.components">
1456<t anchor="rule.token.separators">
1457  <x:anchor-alias value="tchar"/>
1458  <x:anchor-alias value="token"/>
1459  <iref item="Delimiters"/>
1460   Most HTTP header field values are defined using common syntax components
1461   (token, quoted-string, and comment) separated by whitespace or specific
1462   delimiting characters. Delimiters are chosen from the set of US-ASCII
1463   visual characters not allowed in a <x:ref>token</x:ref>
1464   (DQUOTE and "(),/:;&lt;=>?@[\]{}").
1466<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="token"/><iref primary="true" item="Grammar" subitem="tchar"/>
1467  <x:ref>token</x:ref>          = 1*<x:ref>tchar</x:ref>
1469  NOTE: the definition of tchar and the prose above about special characters need to match!
1470 -->
1471  <x:ref>tchar</x:ref>          = "!" / "#" / "$" / "%" / "&amp;" / "'" / "*"
1472                 / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"
1473                 / <x:ref>DIGIT</x:ref> / <x:ref>ALPHA</x:ref>
1474                 ; any <x:ref>VCHAR</x:ref>, except delimiters
1476<t anchor="rule.quoted-string">
1477  <x:anchor-alias value="quoted-string"/>
1478  <x:anchor-alias value="qdtext"/>
1479  <x:anchor-alias value="obs-text"/>
1480   A string of text is parsed as a single value if it is quoted using
1481   double-quote marks.
1483<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-string"/><iref primary="true" item="Grammar" subitem="qdtext"/><iref primary="true" item="Grammar" subitem="obs-text"/>
1484  <x:ref>quoted-string</x:ref>  = <x:ref>DQUOTE</x:ref> *( <x:ref>qdtext</x:ref> / <x:ref>quoted-pair</x:ref> ) <x:ref>DQUOTE</x:ref>
1485  <x:ref>qdtext</x:ref>         = <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> /%x21 / %x23-5B / %x5D-7E / <x:ref>obs-text</x:ref>
1486  <x:ref>obs-text</x:ref>       = %x80-FF
1488<t anchor="rule.comment">
1489  <x:anchor-alias value="comment"/>
1490  <x:anchor-alias value="ctext"/>
1491   Comments can be included in some HTTP header fields by surrounding
1492   the comment text with parentheses. Comments are only allowed in
1493   fields containing "comment" as part of their field value definition.
1495<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="comment"/><iref primary="true" item="Grammar" subitem="ctext"/>
1496  <x:ref>comment</x:ref>        = "(" *( <x:ref>ctext</x:ref> / <x:ref>quoted-pair</x:ref> / <x:ref>comment</x:ref> ) ")"
1497  <x:ref>ctext</x:ref>          = <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / %x21-27 / %x2A-5B / %x5D-7E / <x:ref>obs-text</x:ref>
1499<t anchor="rule.quoted-pair">
1500  <x:anchor-alias value="quoted-pair"/>
1501   The backslash octet ("\") can be used as a single-octet
1502   quoting mechanism within quoted-string and comment constructs.
1503   Recipients that process the value of a quoted-string &MUST; handle a
1504   quoted-pair as if it were replaced by the octet following the backslash.
1506<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-pair"/>
1507  <x:ref>quoted-pair</x:ref>    = "\" ( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1510   A sender &SHOULD-NOT; generate a quoted-pair in a quoted-string except
1511   where necessary to quote DQUOTE and backslash octets occurring within that
1512   string.
1513   A sender &SHOULD-NOT; generate a quoted-pair in a comment except
1514   where necessary to quote parentheses ["(" and ")"] and backslash octets
1515   occurring within that comment.
1521<section title="Message Body" anchor="message.body">
1522  <x:anchor-alias value="message-body"/>
1524   The message body (if any) of an HTTP message is used to carry the
1525   payload body of that request or response.  The message body is
1526   identical to the payload body unless a transfer coding has been
1527   applied, as described in <xref target="header.transfer-encoding"/>.
1529<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="message-body"/>
1530  <x:ref>message-body</x:ref> = *OCTET
1533   The rules for when a message body is allowed in a message differ for
1534   requests and responses.
1537   The presence of a message body in a request is signaled by a
1538   <x:ref>Content-Length</x:ref> or <x:ref>Transfer-Encoding</x:ref> header
1539   field. Request message framing is independent of method semantics,
1540   even if the method does not define any use for a message body.
1543   The presence of a message body in a response depends on both
1544   the request method to which it is responding and the response
1545   status code (<xref target="status.line"/>).
1546   Responses to the HEAD request method never include a message body
1547   because the associated response header fields (e.g.,
1548   <x:ref>Transfer-Encoding</x:ref>, <x:ref>Content-Length</x:ref>, etc.),
1549   if present, indicate only what their values would have been if the request
1550   method had been GET (&HEAD;).
1551   <x:ref>2xx (Successful)</x:ref> responses to CONNECT switch to tunnel
1552   mode instead of having a message body (&CONNECT;).
1553   All <x:ref>1xx (Informational)</x:ref>, <x:ref>204 (No Content)</x:ref>, and
1554   <x:ref>304 (Not Modified)</x:ref> responses do not include a message body.
1555   All other responses do include a message body, although the body
1556   might be of zero length.
1559<section title="Transfer-Encoding" anchor="header.transfer-encoding">
1560  <iref primary="true" item="Transfer-Encoding header field" x:for-anchor=""/>
1561  <iref item="chunked (Coding Format)"/>
1562  <x:anchor-alias value="Transfer-Encoding"/>
1564   The Transfer-Encoding header field lists the transfer coding names
1565   corresponding to the sequence of transfer codings that have been
1566   (or will be) applied to the payload body in order to form the message body.
1567   Transfer codings are defined in <xref target="transfer.codings"/>.
1569<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Transfer-Encoding"/>
1570  <x:ref>Transfer-Encoding</x:ref> = 1#<x:ref>transfer-coding</x:ref>
1573   Transfer-Encoding is analogous to the Content-Transfer-Encoding field of
1574   MIME, which was designed to enable safe transport of binary data over a
1575   7-bit transport service (<xref target="RFC2045" x:fmt="," x:sec="6"/>).
1576   However, safe transport has a different focus for an 8bit-clean transfer
1577   protocol. In HTTP's case, Transfer-Encoding is primarily intended to
1578   accurately delimit a dynamically generated payload and to distinguish
1579   payload encodings that are only applied for transport efficiency or
1580   security from those that are characteristics of the selected resource.
1583   A recipient &MUST; be able to parse the chunked transfer coding
1584   (<xref target="chunked.encoding"/>) because it plays a crucial role in
1585   framing messages when the payload body size is not known in advance.
1586   A sender &MUST-NOT; apply chunked more than once to a message body
1587   (i.e., chunking an already chunked message is not allowed).
1588   If any transfer coding other than chunked is applied to a request payload
1589   body, the sender &MUST; apply chunked as the final transfer coding to
1590   ensure that the message is properly framed.
1591   If any transfer coding other than chunked is applied to a response payload
1592   body, the sender &MUST; either apply chunked as the final transfer coding
1593   or terminate the message by closing the connection.
1596   For example,
1597</preamble><artwork type="example">
1598  Transfer-Encoding: gzip, chunked
1600   indicates that the payload body has been compressed using the gzip
1601   coding and then chunked using the chunked coding while forming the
1602   message body.
1605   Unlike <x:ref>Content-Encoding</x:ref> (&content-codings;),
1606   Transfer-Encoding is a property of the message, not of the representation, and
1607   any recipient along the request/response chain &MAY; decode the received
1608   transfer coding(s) or apply additional transfer coding(s) to the message
1609   body, assuming that corresponding changes are made to the Transfer-Encoding
1610   field-value. Additional information about the encoding parameters &MAY; be
1611   provided by other header fields not defined by this specification.
1614   Transfer-Encoding &MAY; be sent in a response to a HEAD request or in a
1615   <x:ref>304 (Not Modified)</x:ref> response (&status-304;) to a GET request,
1616   neither of which includes a message body,
1617   to indicate that the origin server would have applied a transfer coding
1618   to the message body if the request had been an unconditional GET.
1619   This indication is not required, however, because any recipient on
1620   the response chain (including the origin server) can remove transfer
1621   codings when they are not needed.
1624   A server &MUST-NOT; send a Transfer-Encoding header field in any response
1625   with a status code of
1626   <x:ref>1xx (Informational)</x:ref> or <x:ref>204 (No Content)</x:ref>.
1627   A server &MUST-NOT; send a Transfer-Encoding header field in any
1628   <x:ref>2xx (Successful)</x:ref> response to a CONNECT request (&CONNECT;).
1631   Transfer-Encoding was added in HTTP/1.1.  It is generally assumed that
1632   implementations advertising only HTTP/1.0 support will not understand
1633   how to process a transfer-encoded payload.
1634   A client &MUST-NOT; send a request containing Transfer-Encoding unless it
1635   knows the server will handle HTTP/1.1 (or later) requests; such knowledge
1636   might be in the form of specific user configuration or by remembering the
1637   version of a prior received response.
1638   A server &MUST-NOT; send a response containing Transfer-Encoding unless
1639   the corresponding request indicates HTTP/1.1 (or later).
1642   A server that receives a request message with a transfer coding it does
1643   not understand &SHOULD; respond with <x:ref>501 (Not Implemented)</x:ref>.
1647<section title="Content-Length" anchor="header.content-length">
1648  <iref primary="true" item="Content-Length header field" x:for-anchor=""/>
1649  <x:anchor-alias value="Content-Length"/>
1651   When a message does not have a <x:ref>Transfer-Encoding</x:ref> header
1652   field, a Content-Length header field can provide the anticipated size,
1653   as a decimal number of octets, for a potential payload body.
1654   For messages that do include a payload body, the Content-Length field-value
1655   provides the framing information necessary for determining where the body
1656   (and message) ends.  For messages that do not include a payload body, the
1657   Content-Length indicates the size of the selected representation
1658   (&representation;).
1660<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Content-Length"/>
1661  <x:ref>Content-Length</x:ref> = 1*<x:ref>DIGIT</x:ref>
1664   An example is
1666<figure><artwork type="example">
1667  Content-Length: 3495
1670   A sender &MUST-NOT; send a Content-Length header field in any message that
1671   contains a <x:ref>Transfer-Encoding</x:ref> header field.
1674   A user agent &SHOULD; send a Content-Length in a request message when no
1675   <x:ref>Transfer-Encoding</x:ref> is sent and the request method defines
1676   a meaning for an enclosed payload body. For example, a Content-Length
1677   header field is normally sent in a POST request even when the value is
1678   0 (indicating an empty payload body).  A user agent &SHOULD-NOT; send a
1679   Content-Length header field when the request message does not contain a
1680   payload body and the method semantics do not anticipate such a body.
1683   A server &MAY; send a Content-Length header field in a response to a HEAD
1684   request (&HEAD;); a server &MUST-NOT; send Content-Length in such a
1685   response unless its field-value equals the decimal number of octets that
1686   would have been sent in the payload body of a response if the same
1687   request had used the GET method.
1690   A server &MAY; send a Content-Length header field in a
1691   <x:ref>304 (Not Modified)</x:ref> response to a conditional GET request
1692   (&status-304;); a server &MUST-NOT; send Content-Length in such a
1693   response unless its field-value equals the decimal number of octets that
1694   would have been sent in the payload body of a <x:ref>200 (OK)</x:ref>
1695   response to the same request.
1698   A server &MUST-NOT; send a Content-Length header field in any response
1699   with a status code of
1700   <x:ref>1xx (Informational)</x:ref> or <x:ref>204 (No Content)</x:ref>.
1701   A server &MUST-NOT; send a Content-Length header field in any
1702   <x:ref>2xx (Successful)</x:ref> response to a CONNECT request (&CONNECT;).
1705   Aside from the cases defined above, in the absence of Transfer-Encoding,
1706   an origin server &SHOULD; send a Content-Length header field when the
1707   payload body size is known prior to sending the complete header section.
1708   This will allow downstream recipients to measure transfer progress,
1709   know when a received message is complete, and potentially reuse the
1710   connection for additional requests.
1713   Any Content-Length field value greater than or equal to zero is valid.
1714   Since there is no predefined limit to the length of a payload, a
1715   recipient &MUST; anticipate potentially large decimal numerals and
1716   prevent parsing errors due to integer conversion overflows
1717   (<xref target="attack.protocol.element.size.overflows"/>).
1720   If a message is received that has multiple Content-Length header fields
1721   with field-values consisting of the same decimal value, or a single
1722   Content-Length header field with a field value containing a list of
1723   identical decimal values (e.g., "Content-Length: 42, 42"), indicating that
1724   duplicate Content-Length header fields have been generated or combined by an
1725   upstream message processor, then the recipient &MUST; either reject the
1726   message as invalid or replace the duplicated field-values with a single
1727   valid Content-Length field containing that decimal value prior to
1728   determining the message body length or forwarding the message.
1731  <t>
1732   &Note; HTTP's use of Content-Length for message framing differs
1733   significantly from the same field's use in MIME, where it is an optional
1734   field used only within the "message/external-body" media-type.
1735  </t>
1739<section title="Message Body Length" anchor="message.body.length">
1740  <iref item="chunked (Coding Format)"/>
1742   The length of a message body is determined by one of the following
1743   (in order of precedence):
1746  <list style="numbers">
1747    <x:lt><t>
1748     Any response to a HEAD request and any response with a
1749     <x:ref>1xx (Informational)</x:ref>, <x:ref>204 (No Content)</x:ref>, or
1750     <x:ref>304 (Not Modified)</x:ref> status code is always
1751     terminated by the first empty line after the header fields, regardless of
1752     the header fields present in the message, and thus cannot contain a
1753     message body.
1754    </t></x:lt>
1755    <x:lt><t>
1756     Any <x:ref>2xx (Successful)</x:ref> response to a CONNECT request implies that the
1757     connection will become a tunnel immediately after the empty line that
1758     concludes the header fields.  A client &MUST; ignore any
1759     <x:ref>Content-Length</x:ref> or <x:ref>Transfer-Encoding</x:ref> header
1760     fields received in such a message.
1761    </t></x:lt>
1762    <x:lt><t>
1763     If a <x:ref>Transfer-Encoding</x:ref> header field is present
1764     and the chunked transfer coding (<xref target="chunked.encoding"/>)
1765     is the final encoding, the message body length is determined by reading
1766     and decoding the chunked data until the transfer coding indicates the
1767     data is complete.
1768    </t>
1769    <t>
1770     If a <x:ref>Transfer-Encoding</x:ref> header field is present in a
1771     response and the chunked transfer coding is not the final encoding, the
1772     message body length is determined by reading the connection until it is
1773     closed by the server.
1774     If a <x:ref>Transfer-Encoding</x:ref> header field is present in a request and the
1775     chunked transfer coding is not the final encoding, the message body
1776     length cannot be determined reliably; the server &MUST; respond with
1777     the <x:ref>400 (Bad Request)</x:ref> status code and then close the connection.
1778    </t>
1779    <t>
1780     If a message is received with both a <x:ref>Transfer-Encoding</x:ref>
1781     and a <x:ref>Content-Length</x:ref> header field, the Transfer-Encoding
1782     overrides the Content-Length. Such a message might indicate an attempt
1783     to perform request or response smuggling (bypass of security-related
1784     checks on message routing or content) and thus ought to be handled as
1785     an error.  A sender &MUST; remove the received Content-Length field
1786     prior to forwarding such a message downstream.
1787    </t></x:lt>
1788    <x:lt><t>
1789     If a message is received without <x:ref>Transfer-Encoding</x:ref> and with
1790     either multiple <x:ref>Content-Length</x:ref> header fields having
1791     differing field-values or a single Content-Length header field having an
1792     invalid value, then the message framing is invalid and
1793     the recipient &MUST; treat it as an unrecoverable error to prevent
1794     request or response smuggling.
1795     If this is a request message, the server &MUST; respond with
1796     a <x:ref>400 (Bad Request)</x:ref> status code and then close the connection.
1797     If this is a response message received by a proxy,
1798     the proxy &MUST; close the connection to the server, discard the received
1799     response, and send a <x:ref>502 (Bad Gateway)</x:ref> response to the
1800     client.
1801     If this is a response message received by a user agent,
1802     the user agent &MUST; close the connection to the server and discard the
1803     received response.
1804    </t></x:lt>
1805    <x:lt><t>
1806     If a valid <x:ref>Content-Length</x:ref> header field is present without
1807     <x:ref>Transfer-Encoding</x:ref>, its decimal value defines the
1808     expected message body length in octets.
1809     If the sender closes the connection or the recipient times out before the
1810     indicated number of octets are received, the recipient &MUST; consider
1811     the message to be incomplete and close the connection.
1812    </t></x:lt>
1813    <x:lt><t>
1814     If this is a request message and none of the above are true, then the
1815     message body length is zero (no message body is present).
1816    </t></x:lt>
1817    <x:lt><t>
1818     Otherwise, this is a response message without a declared message body
1819     length, so the message body length is determined by the number of octets
1820     received prior to the server closing the connection.
1821    </t></x:lt>
1822  </list>
1825   Since there is no way to distinguish a successfully completed,
1826   close-delimited message from a partially-received message interrupted
1827   by network failure, a server &SHOULD; generate encoding or
1828   length-delimited messages whenever possible.  The close-delimiting
1829   feature exists primarily for backwards compatibility with HTTP/1.0.
1832   A server &MAY; reject a request that contains a message body but
1833   not a <x:ref>Content-Length</x:ref> by responding with
1834   <x:ref>411 (Length Required)</x:ref>.
1837   Unless a transfer coding other than chunked has been applied,
1838   a client that sends a request containing a message body &SHOULD;
1839   use a valid <x:ref>Content-Length</x:ref> header field if the message body
1840   length is known in advance, rather than the chunked transfer coding, since some
1841   existing services respond to chunked with a <x:ref>411 (Length Required)</x:ref>
1842   status code even though they understand the chunked transfer coding.  This
1843   is typically because such services are implemented via a gateway that
1844   requires a content-length in advance of being called and the server
1845   is unable or unwilling to buffer the entire request before processing.
1848   A user agent that sends a request containing a message body &MUST; send a
1849   valid <x:ref>Content-Length</x:ref> header field if it does not know the
1850   server will handle HTTP/1.1 (or later) requests; such knowledge can be in
1851   the form of specific user configuration or by remembering the version of a
1852   prior received response.
1855   If the final response to the last request on a connection has been
1856   completely received and there remains additional data to read, a user agent
1857   &MAY; discard the remaining data or attempt to determine if that data
1858   belongs as part of the prior response body, which might be the case if the
1859   prior message's Content-Length value is incorrect. A client &MUST-NOT;
1860   process, cache, or forward such extra data as a separate response, since
1861   such behavior would be vulnerable to cache poisoning.
1866<section anchor="incomplete.messages" title="Handling Incomplete Messages">
1868   A server that receives an incomplete request message, usually due to a
1869   canceled request or a triggered time-out exception, &MAY; send an error
1870   response prior to closing the connection.
1873   A client that receives an incomplete response message, which can occur
1874   when a connection is closed prematurely or when decoding a supposedly
1875   chunked transfer coding fails, &MUST; record the message as incomplete.
1876   Cache requirements for incomplete responses are defined in
1877   &cache-incomplete;.
1880   If a response terminates in the middle of the header section (before the
1881   empty line is received) and the status code might rely on header fields to
1882   convey the full meaning of the response, then the client cannot assume
1883   that meaning has been conveyed; the client might need to repeat the
1884   request in order to determine what action to take next.
1887   A message body that uses the chunked transfer coding is
1888   incomplete if the zero-sized chunk that terminates the encoding has not
1889   been received.  A message that uses a valid <x:ref>Content-Length</x:ref> is
1890   incomplete if the size of the message body received (in octets) is less than
1891   the value given by Content-Length.  A response that has neither chunked
1892   transfer coding nor Content-Length is terminated by closure of the
1893   connection, and thus is considered complete regardless of the number of
1894   message body octets received, provided that the header section was received
1895   intact.
1899<section title="Message Parsing Robustness" anchor="message.robustness">
1901   Older HTTP/1.0 user agent implementations might send an extra CRLF
1902   after a POST request as a workaround for some early server
1903   applications that failed to read message body content that was
1904   not terminated by a line-ending. An HTTP/1.1 user agent &MUST-NOT;
1905   preface or follow a request with an extra CRLF.  If terminating
1906   the request message body with a line-ending is desired, then the
1907   user agent &MUST; count the terminating CRLF octets as part of the
1908   message body length.
1911   In the interest of robustness, a server that is expecting to receive and
1912   parse a request-line &SHOULD; ignore at least one empty line (CRLF)
1913   received prior to the request-line.
1916   Although the line terminator for the start-line and header
1917   fields is the sequence CRLF, a recipient &MAY; recognize a
1918   single LF as a line terminator and ignore any preceding CR.
1921   Although the request-line and status-line grammar rules require that each
1922   of the component elements be separated by a single SP octet, recipients
1923   &MAY; instead parse on whitespace-delimited word boundaries and, aside
1924   from the CRLF terminator, treat any form of whitespace as the SP separator
1925   while ignoring preceding or trailing whitespace;
1926   such whitespace includes one or more of the following octets:
1927   SP, HTAB, VT (%x0B), FF (%x0C), or bare CR.
1930   When a server listening only for HTTP request messages, or processing
1931   what appears from the start-line to be an HTTP request message,
1932   receives a sequence of octets that does not match the HTTP-message
1933   grammar aside from the robustness exceptions listed above, the
1934   server &SHOULD; respond with a <x:ref>400 (Bad Request)</x:ref> response. 
1939<section title="Transfer Codings" anchor="transfer.codings">
1940  <x:anchor-alias value="transfer-coding"/>
1941  <x:anchor-alias value="transfer-extension"/>
1943   Transfer coding names are used to indicate an encoding
1944   transformation that has been, can be, or might need to be applied to a
1945   payload body in order to ensure "safe transport" through the network.
1946   This differs from a content coding in that the transfer coding is a
1947   property of the message rather than a property of the representation
1948   that is being transferred.
1950<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="transfer-coding"/><iref primary="true" item="Grammar" subitem="transfer-extension"/>
1951  <x:ref>transfer-coding</x:ref>    = "chunked" ; <xref target="chunked.encoding"/>
1952                     / "compress" ; <xref target="compress.coding"/>
1953                     / "deflate" ; <xref target="deflate.coding"/>
1954                     / "gzip" ; <xref target="gzip.coding"/>
1955                     / <x:ref>transfer-extension</x:ref>
1956  <x:ref>transfer-extension</x:ref> = <x:ref>token</x:ref> *( <x:ref>OWS</x:ref> ";" <x:ref>OWS</x:ref> <x:ref>transfer-parameter</x:ref> )
1958<t anchor="rule.parameter">
1959  <x:anchor-alias value="transfer-parameter"/>
1960   Parameters are in the form of a name or name=value pair.
1962<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="transfer-parameter"/>
1963  <x:ref>transfer-parameter</x:ref> = <x:ref>token</x:ref> <x:ref>BWS</x:ref> "=" <x:ref>BWS</x:ref> ( <x:ref>token</x:ref> / <x:ref>quoted-string</x:ref> )
1966   All transfer-coding names are case-insensitive and ought to be registered
1967   within the HTTP Transfer Coding registry, as defined in
1968   <xref target="transfer.coding.registry"/>.
1969   They are used in the <x:ref>TE</x:ref> (<xref target="header.te"/>) and
1970   <x:ref>Transfer-Encoding</x:ref> (<xref target="header.transfer-encoding"/>)
1971   header fields.
1974<section title="Chunked Transfer Coding" anchor="chunked.encoding">
1975  <iref primary="true" item="chunked (Coding Format)"/>
1976  <x:anchor-alias value="chunk"/>
1977  <x:anchor-alias value="chunked-body"/>
1978  <x:anchor-alias value="chunk-data"/>
1979  <x:anchor-alias value="chunk-size"/>
1980  <x:anchor-alias value="last-chunk"/>
1982   The chunked transfer coding wraps the payload body in order to transfer it
1983   as a series of chunks, each with its own size indicator, followed by an
1984   &OPTIONAL; trailer containing header fields. Chunked enables content
1985   streams of unknown size to be transferred as a sequence of length-delimited
1986   buffers, which enables the sender to retain connection persistence and the
1987   recipient to know when it has received the entire message.
1989<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="chunked-body"><!--terminal production--></iref><iref primary="true" item="Grammar" subitem="chunk"/><iref primary="true" item="Grammar" subitem="chunk-size"/><iref primary="true" item="Grammar" subitem="last-chunk"/><iref primary="true" item="Grammar" subitem="chunk-ext"/><iref primary="true" item="Grammar" subitem="chunk-ext-name"/><iref primary="true" item="Grammar" subitem="chunk-ext-val"/><iref primary="true" item="Grammar" subitem="chunk-data"/><iref primary="false" item="Grammar" subitem="trailer-part"/>
1990  <x:ref>chunked-body</x:ref>   = *<x:ref>chunk</x:ref>
1991                   <x:ref>last-chunk</x:ref>
1992                   <x:ref>trailer-part</x:ref>
1993                   <x:ref>CRLF</x:ref>
1995  <x:ref>chunk</x:ref>          = <x:ref>chunk-size</x:ref> [ <x:ref>chunk-ext</x:ref> ] <x:ref>CRLF</x:ref>
1996                   <x:ref>chunk-data</x:ref> <x:ref>CRLF</x:ref>
1997  <x:ref>chunk-size</x:ref>     = 1*<x:ref>HEXDIG</x:ref>
1998  <x:ref>last-chunk</x:ref>     = 1*("0") [ <x:ref>chunk-ext</x:ref> ] <x:ref>CRLF</x:ref>
2000  <x:ref>chunk-data</x:ref>     = 1*<x:ref>OCTET</x:ref> ; a sequence of chunk-size octets
2003   The chunk-size field is a string of hex digits indicating the size of
2004   the chunk-data in octets. The chunked transfer coding is complete when a
2005   chunk with a chunk-size of zero is received, possibly followed by a
2006   trailer, and finally terminated by an empty line.
2009   A recipient &MUST; be able to parse and decode the chunked transfer coding.
2012<section title="Chunk Extensions" anchor="chunked.extension">
2013  <x:anchor-alias value="chunk-ext"/>
2014  <x:anchor-alias value="chunk-ext-name"/>
2015  <x:anchor-alias value="chunk-ext-val"/>
2017   The chunked encoding allows each chunk to include zero or more chunk
2018   extensions, immediately following the <x:ref>chunk-size</x:ref>, for the
2019   sake of supplying per-chunk metadata (such as a signature or hash),
2020   mid-message control information, or randomization of message body size.
2022<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="chunked-body"><!--terminal production--></iref><iref primary="true" item="Grammar" subitem="chunk"/><iref primary="true" item="Grammar" subitem="chunk-size"/><iref primary="true" item="Grammar" subitem="last-chunk"/><iref primary="true" item="Grammar" subitem="chunk-ext"/><iref primary="true" item="Grammar" subitem="chunk-ext-name"/><iref primary="true" item="Grammar" subitem="chunk-ext-val"/><iref primary="true" item="Grammar" subitem="chunk-data"/><iref primary="false" item="Grammar" subitem="trailer-part"/><iref primary="true" item="Grammar" subitem="quoted-str-nf"/><iref primary="true" item="Grammar" subitem="qdtext-nf"/>
2023  <x:ref>chunk-ext</x:ref>      = *( ";" <x:ref>chunk-ext-name</x:ref> [ "=" <x:ref>chunk-ext-val</x:ref> ] )
2025  <x:ref>chunk-ext-name</x:ref> = <x:ref>token</x:ref>
2026  <x:ref>chunk-ext-val</x:ref>  = <x:ref>token</x:ref> / <x:ref>quoted-string</x:ref>
2029   The chunked encoding is specific to each connection and is likely to be
2030   removed or recoded by each recipient (including intermediaries) before any
2031   higher-level application would have a chance to inspect the extensions.
2032   Hence, use of chunk extensions is generally limited to specialized HTTP
2033   services such as "long polling" (where client and server can have shared
2034   expectations regarding the use of chunk extensions) or for padding within
2035   an end-to-end secured connection.
2038   A recipient &MUST; ignore unrecognized chunk extensions.
2039   A server ought to limit the total length of chunk extensions received in a
2040   request to an amount reasonable for the services provided, in the same way
2041   that it applies length limitations and timeouts for other parts of a
2042   message, and generate an appropriate <x:ref>4xx (Client Error)</x:ref>
2043   response if that amount is exceeded.
2047<section title="Chunked Trailer Part" anchor="chunked.trailer.part">
2048  <x:anchor-alias value="trailer-part"/>
2050   A trailer allows the sender to include additional fields at the end of a
2051   chunked message in order to supply metadata that might be dynamically
2052   generated while the message body is sent, such as a message integrity
2053   check, digital signature, or post-processing status. The trailer fields are
2054   identical to header fields, except they are sent in a chunked trailer
2055   instead of the message's header section.
2057<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="trailer-part"/>
2058  <x:ref>trailer-part</x:ref>   = *( <x:ref>header-field</x:ref> <x:ref>CRLF</x:ref> )
2061   A sender &MUST-NOT; generate a trailer that contains a field which needs to
2062   be known by the recipient before it can begin processing the message body.
2063   For example, most recipients need to know the values of
2064   <x:ref>Content-Encoding</x:ref> and <x:ref>Content-Type</x:ref> in order to
2065   select a content handler, so placing those fields in a trailer would force
2066   the recipient to buffer the entire body before it could begin, greatly
2067   increasing user-perceived latency and defeating one of the main advantages
2068   of using chunked to send data streams of unknown length.
2069   A sender &MUST-NOT; generate a trailer containing a
2070   <x:ref>Transfer-Encoding</x:ref>,
2071   <x:ref>Content-Length</x:ref>, or
2072   <x:ref>Trailer</x:ref> field.
2075   A server &MUST; generate an empty trailer with the chunked transfer coding
2076   unless at least one of the following is true:
2077  <list style="numbers">
2078    <t>the request included a <x:ref>TE</x:ref> header field that indicates
2079    "trailers" is acceptable in the transfer coding of the response, as
2080    described in <xref target="header.te"/>; or,</t>
2082    <t>the trailer fields consist entirely of optional metadata and the
2083    recipient could use the message (in a manner acceptable to the generating
2084    server) without receiving that metadata. In other words, the generating
2085    server is willing to accept the possibility that the trailer fields might
2086    be silently discarded along the path to the client.</t>
2087  </list>
2090   The above requirement prevents the need for an infinite buffer when a
2091   message is being received by an HTTP/1.1 (or later) proxy and forwarded to
2092   an HTTP/1.0 recipient.
2096<section title="Decoding Chunked" anchor="decoding.chunked">
2098   A process for decoding the chunked transfer coding
2099   can be represented in pseudo-code as:
2101<figure><artwork type="code">
2102  length := 0
2103  read chunk-size, chunk-ext (if any), and CRLF
2104  while (chunk-size &gt; 0) {
2105     read chunk-data and CRLF
2106     append chunk-data to decoded-body
2107     length := length + chunk-size
2108     read chunk-size, chunk-ext (if any), and CRLF
2109  }
2110  read header-field
2111  while (header-field not empty) {
2112     append header-field to existing header fields
2113     read header-field
2114  }
2115  Content-Length := length
2116  Remove "chunked" from Transfer-Encoding
2117  Remove Trailer from existing header fields
2122<section title="Compression Codings" anchor="compression.codings">
2124   The codings defined below can be used to compress the payload of a
2125   message.
2128<section title="Compress Coding" anchor="compress.coding">
2129<iref item="compress (Coding Format)"/>
2131   The "compress" coding is an adaptive Lempel-Ziv-Welch (LZW) coding
2132   <xref target="Welch"/> that is commonly produced by the UNIX file
2133   compression program "compress".
2134   A recipient &SHOULD; consider "x-compress" to be equivalent to "compress".
2138<section title="Deflate Coding" anchor="deflate.coding">
2139<iref item="deflate (Coding Format)"/>
2141   The "deflate" coding is a "zlib" data format <xref target="RFC1950"/>
2142   containing a "deflate" compressed data stream <xref target="RFC1951"/>
2143   that uses a combination of the Lempel-Ziv (LZ77) compression algorithm and
2144   Huffman coding.
2147  <t>
2148    &Note; Some incorrect implementations send the "deflate"
2149    compressed data without the zlib wrapper.
2150   </t>
2154<section title="Gzip Coding" anchor="gzip.coding">
2155<iref item="gzip (Coding Format)"/>
2157   The "gzip" coding is an LZ77 coding with a 32 bit CRC that is commonly
2158   produced by the gzip file compression program <xref target="RFC1952"/>.
2159   A recipient &SHOULD; consider "x-gzip" to be equivalent to "gzip".
2165<section title="TE" anchor="header.te">
2166  <iref primary="true" item="TE header field" x:for-anchor=""/>
2167  <x:anchor-alias value="TE"/>
2168  <x:anchor-alias value="t-codings"/>
2169  <x:anchor-alias value="t-ranking"/>
2170  <x:anchor-alias value="rank"/>
2172   The "TE" header field in a request indicates what transfer codings,
2173   besides chunked, the client is willing to accept in response, and
2174   whether or not the client is willing to accept trailer fields in a
2175   chunked transfer coding.
2178   The TE field-value consists of a comma-separated list of transfer coding
2179   names, each allowing for optional parameters (as described in
2180   <xref target="transfer.codings"/>), and/or the keyword "trailers".
2181   A client &MUST-NOT; send the chunked transfer coding name in TE;
2182   chunked is always acceptable for HTTP/1.1 recipients.
2184<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="TE"/><iref primary="true" item="Grammar" subitem="t-codings"/><iref primary="true" item="Grammar" subitem="t-ranking"/><iref primary="true" item="Grammar" subitem="rank"/>
2185  <x:ref>TE</x:ref>        = #<x:ref>t-codings</x:ref>
2186  <x:ref>t-codings</x:ref> = "trailers" / ( <x:ref>transfer-coding</x:ref> [ <x:ref>t-ranking</x:ref> ] )
2187  <x:ref>t-ranking</x:ref> = <x:ref>OWS</x:ref> ";" <x:ref>OWS</x:ref> "q=" <x:ref>rank</x:ref>
2188  <x:ref>rank</x:ref>      = ( "0" [ "." 0*3<x:ref>DIGIT</x:ref> ] )
2189             / ( "1" [ "." 0*3("0") ] )
2192   Three examples of TE use are below.
2194<figure><artwork type="example">
2195  TE: deflate
2196  TE:
2197  TE: trailers, deflate;q=0.5
2200   The presence of the keyword "trailers" indicates that the client is willing
2201   to accept trailer fields in a chunked transfer coding, as defined in
2202   <xref target="chunked.trailer.part"/>, on behalf of itself and any downstream
2203   clients. For requests from an intermediary, this implies that either:
2204   (a) all downstream clients are willing to accept trailer fields in the
2205   forwarded response; or,
2206   (b) the intermediary will attempt to buffer the response on behalf of
2207   downstream recipients.
2208   Note that HTTP/1.1 does not define any means to limit the size of a
2209   chunked response such that an intermediary can be assured of buffering the
2210   entire response.
2213   When multiple transfer codings are acceptable, the client &MAY; rank the
2214   codings by preference using a case-insensitive "q" parameter (similar to
2215   the qvalues used in content negotiation fields, &qvalue;). The rank value
2216   is a real number in the range 0 through 1, where 0.001 is the least
2217   preferred and 1 is the most preferred; a value of 0 means "not acceptable".
2220   If the TE field-value is empty or if no TE field is present, the only
2221   acceptable transfer coding is chunked. A message with no transfer coding
2222   is always acceptable.
2225   Since the TE header field only applies to the immediate connection,
2226   a sender of TE &MUST; also send a "TE" connection option within the
2227   <x:ref>Connection</x:ref> header field (<xref target="header.connection"/>)
2228   in order to prevent the TE field from being forwarded by intermediaries
2229   that do not support its semantics.
2233<section title="Trailer" anchor="header.trailer">
2234  <iref primary="true" item="Trailer header field" x:for-anchor=""/>
2235  <x:anchor-alias value="Trailer"/>
2237   When a message includes a message body encoded with the chunked
2238   transfer coding and the sender desires to send metadata in the form of
2239   trailer fields at the end of the message, the sender &SHOULD; generate a
2240   <x:ref>Trailer</x:ref> header field before the message body to indicate
2241   which fields will be present in the trailers. This allows the recipient
2242   to prepare for receipt of that metadata before it starts processing the body,
2243   which is useful if the message is being streamed and the recipient wishes
2244   to confirm an integrity check on the fly.
2246<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Trailer"/>
2247  <x:ref>Trailer</x:ref> = 1#<x:ref>field-name</x:ref>
2252<section title="Message Routing" anchor="message.routing">
2254   HTTP request message routing is determined by each client based on the
2255   target resource, the client's proxy configuration, and
2256   establishment or reuse of an inbound connection.  The corresponding
2257   response routing follows the same connection chain back to the client.
2260<section title="Identifying a Target Resource" anchor="target-resource">
2261  <iref primary="true" item="target resource"/>
2262  <iref primary="true" item="target URI"/>
2263  <x:anchor-alias value="target resource"/>
2264  <x:anchor-alias value="target URI"/>
2266   HTTP is used in a wide variety of applications, ranging from
2267   general-purpose computers to home appliances.  In some cases,
2268   communication options are hard-coded in a client's configuration.
2269   However, most HTTP clients rely on the same resource identification
2270   mechanism and configuration techniques as general-purpose Web browsers.
2273   HTTP communication is initiated by a user agent for some purpose.
2274   The purpose is a combination of request semantics, which are defined in
2275   <xref target="Part2"/>, and a target resource upon which to apply those
2276   semantics.  A URI reference (<xref target="uri"/>) is typically used as
2277   an identifier for the "<x:dfn>target resource</x:dfn>", which a user agent
2278   would resolve to its absolute form in order to obtain the
2279   "<x:dfn>target URI</x:dfn>".  The target URI
2280   excludes the reference's fragment component, if any,
2281   since fragment identifiers are reserved for client-side processing
2282   (<xref target="RFC3986" x:fmt="," x:sec="3.5"/>).
2286<section title="Connecting Inbound" anchor="connecting.inbound">
2288   Once the target URI is determined, a client needs to decide whether
2289   a network request is necessary to accomplish the desired semantics and,
2290   if so, where that request is to be directed.
2293   If the client has a cache <xref target="Part6"/> and the request can be
2294   satisfied by it, then the request is
2295   usually directed there first.
2298   If the request is not satisfied by a cache, then a typical client will
2299   check its configuration to determine whether a proxy is to be used to
2300   satisfy the request.  Proxy configuration is implementation-dependent,
2301   but is often based on URI prefix matching, selective authority matching,
2302   or both, and the proxy itself is usually identified by an "http" or
2303   "https" URI.  If a proxy is applicable, the client connects inbound by
2304   establishing (or reusing) a connection to that proxy.
2307   If no proxy is applicable, a typical client will invoke a handler routine,
2308   usually specific to the target URI's scheme, to connect directly
2309   to an authority for the target resource.  How that is accomplished is
2310   dependent on the target URI scheme and defined by its associated
2311   specification, similar to how this specification defines origin server
2312   access for resolution of the "http" (<xref target="http.uri"/>) and
2313   "https" (<xref target="https.uri"/>) schemes.
2316   HTTP requirements regarding connection management are defined in
2317   <xref target=""/>.
2321<section title="Request Target" anchor="request-target">
2323   Once an inbound connection is obtained,
2324   the client sends an HTTP request message (<xref target="http.message"/>)
2325   with a request-target derived from the target URI.
2326   There are four distinct formats for the request-target, depending on both
2327   the method being requested and whether the request is to a proxy.
2329<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="request-target"/><iref primary="true" item="Grammar" subitem="origin-form"/><iref primary="true" item="Grammar" subitem="absolute-form"/><iref primary="true" item="Grammar" subitem="authority-form"/><iref primary="true" item="Grammar" subitem="asterisk-form"/>
2330  <x:ref>request-target</x:ref> = <x:ref>origin-form</x:ref>
2331                 / <x:ref>absolute-form</x:ref>
2332                 / <x:ref>authority-form</x:ref>
2333                 / <x:ref>asterisk-form</x:ref>
2335  <x:ref>origin-form</x:ref>    = <x:ref>absolute-path</x:ref> [ "?" <x:ref>query</x:ref> ]
2336  <x:ref>absolute-form</x:ref>  = <x:ref>absolute-URI</x:ref>
2337  <x:ref>authority-form</x:ref> = <x:ref>authority</x:ref>
2338  <x:ref>asterisk-form</x:ref>  = "*"
2340<t anchor="origin-form"><iref item="origin-form (of request-target)"/>
2341  <x:h>origin-form</x:h>
2344   The most common form of request-target is the <x:dfn>origin-form</x:dfn>.
2345   When making a request directly to an origin server, other than a CONNECT
2346   or server-wide OPTIONS request (as detailed below),
2347   a client &MUST; send only the absolute path and query components of
2348   the target URI as the request-target.
2349   If the target URI's path component is empty, then the client &MUST; send
2350   "/" as the path within the origin-form of request-target.
2351   A <x:ref>Host</x:ref> header field is also sent, as defined in
2352   <xref target=""/>.
2355   For example, a client wishing to retrieve a representation of the resource
2356   identified as
2358<figure><artwork x:indent-with="  " type="example">
2362   directly from the origin server would open (or reuse) a TCP connection
2363   to port 80 of the host "" and send the lines:
2365<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2366GET /where?q=now HTTP/1.1
2370   followed by the remainder of the request message.
2372<t anchor="absolute-form"><iref item="absolute-form (of request-target)"/>
2373  <x:h>absolute-form</x:h>
2376   When making a request to a proxy, other than a CONNECT or server-wide
2377   OPTIONS request (as detailed below), a client &MUST; send the target URI
2378   in <x:dfn>absolute-form</x:dfn> as the request-target.
2379   The proxy is requested to either service that request from a valid cache,
2380   if possible, or make the same request on the client's behalf to either
2381   the next inbound proxy server or directly to the origin server indicated
2382   by the request-target.  Requirements on such "forwarding" of messages are
2383   defined in <xref target="message.forwarding"/>.
2386   An example absolute-form of request-line would be:
2388<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2389GET HTTP/1.1
2392   To allow for transition to the absolute-form for all requests in some
2393   future version of HTTP, a server &MUST; accept the absolute-form
2394   in requests, even though HTTP/1.1 clients will only send them in requests
2395   to proxies.
2397<t anchor="authority-form"><iref item="authority-form (of request-target)"/>
2398  <x:h>authority-form</x:h>
2401   The <x:dfn>authority-form</x:dfn> of request-target is only used for
2402   CONNECT requests (&CONNECT;). When making a CONNECT request to establish a
2403   tunnel through one or more proxies, a client &MUST; send only the target
2404   URI's authority component (excluding any userinfo and its "@" delimiter) as
2405   the request-target. For example,
2407<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2410<t anchor="asterisk-form"><iref item="asterisk-form (of request-target)"/>
2411  <x:h>asterisk-form</x:h>
2414   The <x:dfn>asterisk-form</x:dfn> of request-target is only used for a server-wide
2415   OPTIONS request (&OPTIONS;).  When a client wishes to request OPTIONS
2416   for the server as a whole, as opposed to a specific named resource of
2417   that server, the client &MUST; send only "*" (%x2A) as the request-target.
2418   For example,
2420<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2421OPTIONS * HTTP/1.1
2424   If a proxy receives an OPTIONS request with an absolute-form of
2425   request-target in which the URI has an empty path and no query component,
2426   then the last proxy on the request chain &MUST; send a request-target
2427   of "*" when it forwards the request to the indicated origin server.
2430   For example, the request
2431</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2435  would be forwarded by the final proxy as
2436</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2437OPTIONS * HTTP/1.1
2441   after connecting to port 8001 of host "".
2446<section title="Host" anchor="">
2447  <iref primary="true" item="Host header field" x:for-anchor=""/>
2448  <x:anchor-alias value="Host"/>
2450   The "Host" header field in a request provides the host and port
2451   information from the target URI, enabling the origin
2452   server to distinguish among resources while servicing requests
2453   for multiple host names on a single IP address.
2455<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Host"/>
2456  <x:ref>Host</x:ref> = <x:ref>uri-host</x:ref> [ ":" <x:ref>port</x:ref> ] ; <xref target="http.uri"/>
2459   A client &MUST; send a Host header field in all HTTP/1.1 request messages.
2460   If the target URI includes an authority component, then a client &MUST;
2461   send a field-value for Host that is identical to that authority
2462   component, excluding any userinfo subcomponent and its "@" delimiter
2463   (<xref target="http.uri"/>).
2464   If the authority component is missing or undefined for the target URI,
2465   then a client &MUST; send a Host header field with an empty field-value.
2468   Since the Host field-value is critical information for handling a request,
2469   a user agent &SHOULD; generate Host as the first header field following the
2470   request-line.
2473   For example, a GET request to the origin server for
2474   &lt;; would begin with:
2476<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2477GET /pub/WWW/ HTTP/1.1
2481   A client &MUST; send a Host header field in an HTTP/1.1 request even
2482   if the request-target is in the absolute-form, since this
2483   allows the Host information to be forwarded through ancient HTTP/1.0
2484   proxies that might not have implemented Host.
2487   When a proxy receives a request with an absolute-form of
2488   request-target, the proxy &MUST; ignore the received
2489   Host header field (if any) and instead replace it with the host
2490   information of the request-target.  A proxy that forwards such a request
2491   &MUST; generate a new Host field-value based on the received
2492   request-target rather than forward the received Host field-value.
2495   Since the Host header field acts as an application-level routing
2496   mechanism, it is a frequent target for malware seeking to poison
2497   a shared cache or redirect a request to an unintended server.
2498   An interception proxy is particularly vulnerable if it relies on
2499   the Host field-value for redirecting requests to internal
2500   servers, or for use as a cache key in a shared cache, without
2501   first verifying that the intercepted connection is targeting a
2502   valid IP address for that host.
2505   A server &MUST; respond with a <x:ref>400 (Bad Request)</x:ref> status code
2506   to any HTTP/1.1 request message that lacks a Host header field and
2507   to any request message that contains more than one Host header field
2508   or a Host header field with an invalid field-value.
2512<section title="Effective Request URI" anchor="effective.request.uri">
2513  <iref primary="true" item="effective request URI"/>
2514  <x:anchor-alias value="effective request URI"/>
2516   A server that receives an HTTP request message &MUST; reconstruct
2517   the user agent's original target URI, based on the pieces of information
2518   learned from the request-target, <x:ref>Host</x:ref> header field, and
2519   connection context, in order to identify the intended target resource and
2520   properly service the request. The URI derived from this reconstruction
2521   process is referred to as the "<x:dfn>effective request URI</x:dfn>".
2524   For a user agent, the effective request URI is the target URI.
2527   If the request-target is in absolute-form, then the effective request URI
2528   is the same as the request-target.  Otherwise, the effective request URI
2529   is constructed as follows.
2532   If the request is received over a TLS-secured TCP connection,
2533   then the effective request URI's scheme is "https"; otherwise, the
2534   scheme is "http".
2537   If the request-target is in authority-form, then the effective
2538   request URI's authority component is the same as the request-target.
2539   Otherwise, if a <x:ref>Host</x:ref> header field is supplied with a
2540   non-empty field-value, then the authority component is the same as the
2541   Host field-value. Otherwise, the authority component is the concatenation of
2542   the default host name configured for the server, a colon (":"), and the
2543   connection's incoming TCP port number in decimal form.
2546   If the request-target is in authority-form or asterisk-form, then the
2547   effective request URI's combined path and query component is empty.
2548   Otherwise, the combined path and query component is the same as the
2549   request-target.
2552   The components of the effective request URI, once determined as above,
2553   can be combined into absolute-URI form by concatenating the scheme,
2554   "://", authority, and combined path and query component.
2558   Example 1: the following message received over an insecure TCP connection
2560<artwork type="example" x:indent-with="  ">
2561GET /pub/WWW/TheProject.html HTTP/1.1
2567  has an effective request URI of
2569<artwork type="example" x:indent-with="  ">
2575   Example 2: the following message received over a TLS-secured TCP connection
2577<artwork type="example" x:indent-with="  ">
2578OPTIONS * HTTP/1.1
2584  has an effective request URI of
2586<artwork type="example" x:indent-with="  ">
2591   An origin server that does not allow resources to differ by requested
2592   host &MAY; ignore the <x:ref>Host</x:ref> field-value and instead replace it
2593   with a configured server name when constructing the effective request URI.
2596   Recipients of an HTTP/1.0 request that lacks a <x:ref>Host</x:ref> header
2597   field &MAY; attempt to use heuristics (e.g., examination of the URI path for
2598   something unique to a particular host) in order to guess the
2599   effective request URI's authority component.
2603<section title="Associating a Response to a Request" anchor="">
2605   HTTP does not include a request identifier for associating a given
2606   request message with its corresponding one or more response messages.
2607   Hence, it relies on the order of response arrival to correspond exactly
2608   to the order in which requests are made on the same connection.
2609   More than one response message per request only occurs when one or more
2610   informational responses (<x:ref>1xx</x:ref>, see &status-1xx;) precede a
2611   final response to the same request.
2614   A client that has more than one outstanding request on a connection &MUST;
2615   maintain a list of outstanding requests in the order sent and &MUST;
2616   associate each received response message on that connection to the highest
2617   ordered request that has not yet received a final (non-<x:ref>1xx</x:ref>)
2618   response.
2622<section title="Message Forwarding" anchor="message.forwarding">
2624   As described in <xref target="intermediaries"/>, intermediaries can serve
2625   a variety of roles in the processing of HTTP requests and responses.
2626   Some intermediaries are used to improve performance or availability.
2627   Others are used for access control or to filter content.
2628   Since an HTTP stream has characteristics similar to a pipe-and-filter
2629   architecture, there are no inherent limits to the extent an intermediary
2630   can enhance (or interfere) with either direction of the stream.
2633   An intermediary not acting as a tunnel &MUST; implement the
2634   <x:ref>Connection</x:ref> header field, as specified in
2635   <xref target="header.connection"/>, and exclude fields from being forwarded
2636   that are only intended for the incoming connection.
2639   An intermediary &MUST-NOT; forward a message to itself unless it is
2640   protected from an infinite request loop. In general, an intermediary ought
2641   to recognize its own server names, including any aliases, local variations,
2642   or literal IP addresses, and respond to such requests directly.
2645<section title="Via" anchor="header.via">
2646  <iref primary="true" item="Via header field" x:for-anchor=""/>
2647  <x:anchor-alias value="pseudonym"/>
2648  <x:anchor-alias value="received-by"/>
2649  <x:anchor-alias value="received-protocol"/>
2650  <x:anchor-alias value="Via"/>
2652   The "Via" header field indicates the presence of intermediate protocols and
2653   recipients between the user agent and the server (on requests) or between
2654   the origin server and the client (on responses), similar to the
2655   "Received" header field in email
2656   (<xref target="RFC5322" x:fmt="of" x:sec="3.6.7"/>).
2657   Via can be used for tracking message forwards,
2658   avoiding request loops, and identifying the protocol capabilities of
2659   senders along the request/response chain.
2661<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Via"/><iref primary="true" item="Grammar" subitem="received-protocol"/><iref primary="true" item="Grammar" subitem="protocol-name"/><iref primary="true" item="Grammar" subitem="protocol-version"/><iref primary="true" item="Grammar" subitem="received-by"/><iref primary="true" item="Grammar" subitem="pseudonym"/>
2662  <x:ref>Via</x:ref> = 1#( <x:ref>received-protocol</x:ref> <x:ref>RWS</x:ref> <x:ref>received-by</x:ref> [ <x:ref>RWS</x:ref> <x:ref>comment</x:ref> ] )
2664  <x:ref>received-protocol</x:ref> = [ <x:ref>protocol-name</x:ref> "/" ] <x:ref>protocol-version</x:ref>
2665                      ; see <xref target="header.upgrade"/>
2666  <x:ref>received-by</x:ref>       = ( <x:ref>uri-host</x:ref> [ ":" <x:ref>port</x:ref> ] ) / <x:ref>pseudonym</x:ref>
2667  <x:ref>pseudonym</x:ref>         = <x:ref>token</x:ref>
2670   Multiple Via field values represent each proxy or gateway that has
2671   forwarded the message. Each intermediary appends its own information
2672   about how the message was received, such that the end result is ordered
2673   according to the sequence of forwarding recipients.
2676   A proxy &MUST; send an appropriate Via header field, as described below, in
2677   each message that it forwards.
2678   An HTTP-to-HTTP gateway &MUST; send an appropriate Via header field in
2679   each inbound request message and &MAY; send a Via header field in
2680   forwarded response messages.
2683   For each intermediary, the received-protocol indicates the protocol and
2684   protocol version used by the upstream sender of the message. Hence, the
2685   Via field value records the advertised protocol capabilities of the
2686   request/response chain such that they remain visible to downstream
2687   recipients; this can be useful for determining what backwards-incompatible
2688   features might be safe to use in response, or within a later request, as
2689   described in <xref target="http.version"/>. For brevity, the protocol-name
2690   is omitted when the received protocol is HTTP.
2693   The received-by portion of the field value is normally the host and optional
2694   port number of a recipient server or client that subsequently forwarded the
2695   message.
2696   However, if the real host is considered to be sensitive information, a
2697   sender &MAY; replace it with a pseudonym. If a port is not provided,
2698   a recipient &MAY; interpret that as meaning it was received on the default
2699   TCP port, if any, for the received-protocol.
2702   A sender &MAY; generate comments in the Via header field to identify the
2703   software of each recipient, analogous to the <x:ref>User-Agent</x:ref> and
2704   <x:ref>Server</x:ref> header fields. However, all comments in the Via field
2705   are optional and a recipient &MAY; remove them prior to forwarding the
2706   message.
2709   For example, a request message could be sent from an HTTP/1.0 user
2710   agent to an internal proxy code-named "fred", which uses HTTP/1.1 to
2711   forward the request to a public proxy at, which completes
2712   the request by forwarding it to the origin server at
2713   The request received by would then have the following
2714   Via header field:
2716<figure><artwork type="example">
2717  Via: 1.0 fred, 1.1
2720   An intermediary used as a portal through a network firewall
2721   &SHOULD-NOT; forward the names and ports of hosts within the firewall
2722   region unless it is explicitly enabled to do so. If not enabled, such an
2723   intermediary &SHOULD; replace each received-by host of any host behind the
2724   firewall by an appropriate pseudonym for that host.
2727   An intermediary &MAY; combine an ordered subsequence of Via header
2728   field entries into a single such entry if the entries have identical
2729   received-protocol values. For example,
2731<figure><artwork type="example">
2732  Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy
2735  could be collapsed to
2737<figure><artwork type="example">
2738  Via: 1.0 ricky, 1.1 mertz, 1.0 lucy
2741   A sender &SHOULD-NOT; combine multiple entries unless they are all
2742   under the same organizational control and the hosts have already been
2743   replaced by pseudonyms. A sender &MUST-NOT; combine entries that
2744   have different received-protocol values.
2748<section title="Transformations" anchor="message.transformations">
2750   Some intermediaries include features for transforming messages and their
2751   payloads.  A transforming proxy might, for example, convert between image
2752   formats in order to save cache space or to reduce the amount of traffic on
2753   a slow link. However, operational problems might occur when these
2754   transformations are applied to payloads intended for critical applications,
2755   such as medical imaging or scientific data analysis, particularly when
2756   integrity checks or digital signatures are used to ensure that the payload
2757   received is identical to the original.
2760   If a proxy receives a request-target with a host name that is not a
2761   fully qualified domain name, it &MAY; add its own domain to the host name
2762   it received when forwarding the request.  A proxy &MUST-NOT; change the
2763   host name if it is a fully qualified domain name.
2766   A proxy &MUST-NOT; modify the "absolute-path" and "query" parts of the
2767   received request-target when forwarding it to the next inbound server,
2768   except as noted above to replace an empty path with "/" or "*".
2771   A proxy &MUST-NOT; modify header fields that provide information about the
2772   end points of the communication chain, the resource state, or the selected
2773   representation. A proxy &MAY; change the message body through application
2774   or removal of a transfer coding (<xref target="transfer.codings"/>).
2777   A non-transforming proxy &MUST-NOT; modify the message payload (&payload;).
2778   A transforming proxy &MUST-NOT; modify the payload of a message that
2779   contains the no-transform cache-control directive (&header-cache-control;).
2782   A transforming proxy &MAY; transform the payload of a message
2783   that does not contain the no-transform cache-control directive;
2784   if the payload is transformed, the transforming proxy &MUST; add a
2785   Warning header field with the warn-code of 214 ("Transformation Applied")
2786   if one does not already appear in the message (see &header-warning;).
2787   If the payload of a <x:ref>200 (OK)</x:ref> response is transformed, the
2788   transforming proxy can also inform downstream recipients that a
2789   transformation has been applied by changing the response status code to
2790   <x:ref>203 (Non-Authoritative Information)</x:ref> (&status-203;).
2796<section title="Connection Management" anchor="">
2798   HTTP messaging is independent of the underlying transport or
2799   session-layer connection protocol(s).  HTTP only presumes a reliable
2800   transport with in-order delivery of requests and the corresponding
2801   in-order delivery of responses.  The mapping of HTTP request and
2802   response structures onto the data units of an underlying transport
2803   protocol is outside the scope of this specification.
2806   As described in <xref target="connecting.inbound"/>, the specific
2807   connection protocols to be used for an HTTP interaction are determined by
2808   client configuration and the <x:ref>target URI</x:ref>.
2809   For example, the "http" URI scheme
2810   (<xref target="http.uri"/>) indicates a default connection of TCP
2811   over IP, with a default TCP port of 80, but the client might be
2812   configured to use a proxy via some other connection, port, or protocol.
2815   HTTP implementations are expected to engage in connection management,
2816   which includes maintaining the state of current connections,
2817   establishing a new connection or reusing an existing connection,
2818   processing messages received on a connection, detecting connection
2819   failures, and closing each connection.
2820   Most clients maintain multiple connections in parallel, including
2821   more than one connection per server endpoint.
2822   Most servers are designed to maintain thousands of concurrent connections,
2823   while controlling request queues to enable fair use and detect
2824   denial of service attacks.
2827<section title="Connection" anchor="header.connection">
2828  <iref primary="true" item="Connection header field" x:for-anchor=""/>
2829  <iref primary="true" item="close" x:for-anchor=""/>
2830  <x:anchor-alias value="Connection"/>
2831  <x:anchor-alias value="connection-option"/>
2832  <x:anchor-alias value="close"/>
2834   The "Connection" header field allows the sender to indicate desired
2835   control options for the current connection.  In order to avoid confusing
2836   downstream recipients, a proxy or gateway &MUST; remove or replace any
2837   received connection options before forwarding the message.
2840   When a header field aside from Connection is used to supply control
2841   information for or about the current connection, the sender &MUST; list
2842   the corresponding field-name within the "Connection" header field.
2843   A proxy or gateway &MUST; parse a received Connection
2844   header field before a message is forwarded and, for each
2845   connection-option in this field, remove any header field(s) from
2846   the message with the same name as the connection-option, and then
2847   remove the Connection header field itself (or replace it with the
2848   intermediary's own connection options for the forwarded message).
2851   Hence, the Connection header field provides a declarative way of
2852   distinguishing header fields that are only intended for the
2853   immediate recipient ("hop-by-hop") from those fields that are
2854   intended for all recipients on the chain ("end-to-end"), enabling the
2855   message to be self-descriptive and allowing future connection-specific
2856   extensions to be deployed without fear that they will be blindly
2857   forwarded by older intermediaries.
2860   The Connection header field's value has the following grammar:
2862<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Connection"/><iref primary="true" item="Grammar" subitem="connection-option"/>
2863  <x:ref>Connection</x:ref>        = 1#<x:ref>connection-option</x:ref>
2864  <x:ref>connection-option</x:ref> = <x:ref>token</x:ref>
2867   Connection options are case-insensitive.
2870   A sender &MUST-NOT; send a connection option corresponding to a header
2871   field that is intended for all recipients of the payload.
2872   For example, <x:ref>Cache-Control</x:ref> is never appropriate as a
2873   connection option (&header-cache-control;).
2876   The connection options do not always correspond to a header field
2877   present in the message, since a connection-specific header field
2878   might not be needed if there are no parameters associated with a
2879   connection option. In contrast, a connection-specific header field that
2880   is received without a corresponding connection option usually indicates
2881   that the field has been improperly forwarded by an intermediary and
2882   ought to be ignored by the recipient.
2885   When defining new connection options, specification authors ought to survey
2886   existing header field names and ensure that the new connection option does
2887   not share the same name as an already deployed header field.
2888   Defining a new connection option essentially reserves that potential
2889   field-name for carrying additional information related to the
2890   connection option, since it would be unwise for senders to use
2891   that field-name for anything else.
2894   The "<x:dfn>close</x:dfn>" connection option is defined for a
2895   sender to signal that this connection will be closed after completion of
2896   the response. For example,
2898<figure><artwork type="example">
2899  Connection: close
2902   in either the request or the response header fields indicates that the
2903   sender is going to close the connection after the current request/response
2904   is complete (<xref target="persistent.tear-down"/>).
2907   A client that does not support <x:ref>persistent connections</x:ref> &MUST;
2908   send the "close" connection option in every request message.
2911   A server that does not support <x:ref>persistent connections</x:ref> &MUST;
2912   send the "close" connection option in every response message that
2913   does not have a <x:ref>1xx (Informational)</x:ref> status code.
2917<section title="Establishment" anchor="persistent.establishment">
2919   It is beyond the scope of this specification to describe how connections
2920   are established via various transport or session-layer protocols.
2921   Each connection applies to only one transport link.
2925<section title="Persistence" anchor="persistent.connections">
2926   <x:anchor-alias value="persistent connections"/>
2928   HTTP/1.1 defaults to the use of "<x:dfn>persistent connections</x:dfn>",
2929   allowing multiple requests and responses to be carried over a single
2930   connection. The "<x:ref>close</x:ref>" connection-option is used to signal
2931   that a connection will not persist after the current request/response.
2932   HTTP implementations &SHOULD; support persistent connections.
2935   A recipient determines whether a connection is persistent or not based on
2936   the most recently received message's protocol version and
2937   <x:ref>Connection</x:ref> header field (if any):
2938   <list style="symbols">
2939     <t>If the <x:ref>close</x:ref> connection option is present, the
2940        connection will not persist after the current response; else,</t>
2941     <t>If the received protocol is HTTP/1.1 (or later), the connection will
2942        persist after the current response; else,</t>
2943     <t>If the received protocol is HTTP/1.0, the "keep-alive"
2944        connection option is present, the recipient is not a proxy, and
2945        the recipient wishes to honor the HTTP/1.0 "keep-alive" mechanism,
2946        the connection will persist after the current response; otherwise,</t>
2947     <t>The connection will close after the current response.</t>
2948   </list>
2951   A server &MAY; assume that an HTTP/1.1 client intends to maintain a
2952   persistent connection until a <x:ref>close</x:ref> connection option
2953   is received in a request.
2956   A client &MAY; reuse a persistent connection until it sends or receives
2957   a <x:ref>close</x:ref> connection option or receives an HTTP/1.0 response
2958   without a "keep-alive" connection option.
2961   In order to remain persistent, all messages on a connection need to
2962   have a self-defined message length (i.e., one not defined by closure
2963   of the connection), as described in <xref target="message.body"/>.
2964   A server &MUST; read the entire request message body or close
2965   the connection after sending its response, since otherwise the
2966   remaining data on a persistent connection would be misinterpreted
2967   as the next request.  Likewise,
2968   a client &MUST; read the entire response message body if it intends
2969   to reuse the same connection for a subsequent request.
2972   A proxy server &MUST-NOT; maintain a persistent connection with an
2973   HTTP/1.0 client (see <xref x:sec="19.7.1" x:fmt="of" target="RFC2068"/> for
2974   information and discussion of the problems with the Keep-Alive header field
2975   implemented by many HTTP/1.0 clients).
2978   Clients and servers &SHOULD-NOT; assume that a persistent connection is
2979   maintained for HTTP versions less than 1.1 unless it is explicitly
2980   signaled.
2981   See <xref target="compatibility.with.http.1.0.persistent.connections"/>
2982   for more information on backward compatibility with HTTP/1.0 clients.
2985<section title="Retrying Requests" anchor="persistent.retrying.requests">
2987   Connections can be closed at any time, with or without intention.
2988   Implementations ought to anticipate the need to recover
2989   from asynchronous close events.
2992   When an inbound connection is closed prematurely, a client &MAY; open a new
2993   connection and automatically retransmit an aborted sequence of requests if
2994   all of those requests have idempotent methods (&idempotent-methods;).
2995   A proxy &MUST-NOT; automatically retry non-idempotent requests.
2998   A user agent &MUST-NOT; automatically retry a request with a non-idempotent
2999   method unless it has some means to know that the request semantics are
3000   actually idempotent, regardless of the method, or some means to detect that
3001   the original request was never applied. For example, a user agent that
3002   knows (through design or configuration) that a POST request to a given
3003   resource is safe can repeat that request automatically.
3004   Likewise, a user agent designed specifically to operate on a version
3005   control repository might be able to recover from partial failure conditions
3006   by checking the target resource revision(s) after a failed connection,
3007   reverting or fixing any changes that were partially applied, and then
3008   automatically retrying the requests that failed.
3011   A client &SHOULD-NOT; automatically retry a failed automatic retry.
3015<section title="Pipelining" anchor="pipelining">
3016   <x:anchor-alias value="pipeline"/>
3018   A client that supports persistent connections &MAY; "<x:dfn>pipeline</x:dfn>"
3019   its requests (i.e., send multiple requests without waiting for each
3020   response). A server &MAY; process a sequence of pipelined requests in
3021   parallel if they all have safe methods (&safe-methods;), but &MUST; send
3022   the corresponding responses in the same order that the requests were
3023   received.
3026   A client that pipelines requests &SHOULD; retry unanswered requests if the
3027   connection closes before it receives all of the corresponding responses.
3028   When retrying pipelined requests after a failed connection (a connection
3029   not explicitly closed by the server in its last complete response), a
3030   client &MUST-NOT; pipeline immediately after connection establishment,
3031   since the first remaining request in the prior pipeline might have caused
3032   an error response that can be lost again if multiple requests are sent on a
3033   prematurely closed connection (see the TCP reset problem described in
3034   <xref target="persistent.tear-down"/>).
3037   Idempotent methods (&idempotent-methods;) are significant to pipelining
3038   because they can be automatically retried after a connection failure.
3039   A user agent &SHOULD-NOT; pipeline requests after a non-idempotent method,
3040   until the final response status code for that method has been received,
3041   unless the user agent has a means to detect and recover from partial
3042   failure conditions involving the pipelined sequence.
3045   An intermediary that receives pipelined requests &MAY; pipeline those
3046   requests when forwarding them inbound, since it can rely on the outbound
3047   user agent(s) to determine what requests can be safely pipelined. If the
3048   inbound connection fails before receiving a response, the pipelining
3049   intermediary &MAY; attempt to retry a sequence of requests that have yet
3050   to receive a response if the requests all have idempotent methods;
3051   otherwise, the pipelining intermediary &SHOULD; forward any received
3052   responses and then close the corresponding outbound connection(s) so that
3053   the outbound user agent(s) can recover accordingly.
3058<section title="Concurrency" anchor="persistent.concurrency">
3060   A client &SHOULD; limit the number of simultaneous open
3061   connections that it maintains to a given server.
3064   Previous revisions of HTTP gave a specific number of connections as a
3065   ceiling, but this was found to be impractical for many applications. As a
3066   result, this specification does not mandate a particular maximum number of
3067   connections, but instead encourages clients to be conservative when opening
3068   multiple connections.
3071   Multiple connections are typically used to avoid the "head-of-line
3072   blocking" problem, wherein a request that takes significant server-side
3073   processing and/or has a large payload blocks subsequent requests on the
3074   same connection. However, each connection consumes server resources.
3075   Furthermore, using multiple connections can cause undesirable side effects
3076   in congested networks.
3079   Note that servers might reject traffic that they deem abusive, including an
3080   excessive number of connections from a client.
3084<section title="Failures and Time-outs" anchor="persistent.failures">
3086   Servers will usually have some time-out value beyond which they will
3087   no longer maintain an inactive connection. Proxy servers might make
3088   this a higher value since it is likely that the client will be making
3089   more connections through the same proxy server. The use of persistent
3090   connections places no requirements on the length (or existence) of
3091   this time-out for either the client or the server.
3094   A client or server that wishes to time-out &SHOULD; issue a graceful close
3095   on the connection. Implementations &SHOULD; constantly monitor open
3096   connections for a received closure signal and respond to it as appropriate,
3097   since prompt closure of both sides of a connection enables allocated system
3098   resources to be reclaimed.
3101   A client, server, or proxy &MAY; close the transport connection at any
3102   time. For example, a client might have started to send a new request
3103   at the same time that the server has decided to close the "idle"
3104   connection. From the server's point of view, the connection is being
3105   closed while it was idle, but from the client's point of view, a
3106   request is in progress.
3109   A server &SHOULD; sustain persistent connections, when possible, and allow
3110   the underlying
3111   transport's flow control mechanisms to resolve temporary overloads, rather
3112   than terminate connections with the expectation that clients will retry.
3113   The latter technique can exacerbate network congestion.
3116   A client sending a message body &SHOULD; monitor
3117   the network connection for an error response while it is transmitting
3118   the request. If the client sees a response that indicates the server does
3119   not wish to receive the message body and is closing the connection, the
3120   client &SHOULD; immediately cease transmitting the body and close its side
3121   of the connection.
3125<section title="Tear-down" anchor="persistent.tear-down">
3126  <iref primary="false" item="Connection header field" x:for-anchor=""/>
3127  <iref primary="false" item="close" x:for-anchor=""/>
3129   The <x:ref>Connection</x:ref> header field
3130   (<xref target="header.connection"/>) provides a "<x:ref>close</x:ref>"
3131   connection option that a sender &SHOULD; send when it wishes to close
3132   the connection after the current request/response pair.
3135   A client that sends a <x:ref>close</x:ref> connection option &MUST-NOT;
3136   send further requests on that connection (after the one containing
3137   <x:ref>close</x:ref>) and &MUST; close the connection after reading the
3138   final response message corresponding to this request.
3141   A server that receives a <x:ref>close</x:ref> connection option &MUST;
3142   initiate a close of the connection (see below) after it sends the
3143   final response to the request that contained <x:ref>close</x:ref>.
3144   The server &SHOULD; send a <x:ref>close</x:ref> connection option
3145   in its final response on that connection. The server &MUST-NOT; process
3146   any further requests received on that connection.
3149   A server that sends a <x:ref>close</x:ref> connection option &MUST;
3150   initiate a close of the connection (see below) after it sends the
3151   response containing <x:ref>close</x:ref>. The server &MUST-NOT; process
3152   any further requests received on that connection.
3155   A client that receives a <x:ref>close</x:ref> connection option &MUST;
3156   cease sending requests on that connection and close the connection
3157   after reading the response message containing the close; if additional
3158   pipelined requests had been sent on the connection, the client &SHOULD-NOT;
3159   assume that they will be processed by the server.
3162   If a server performs an immediate close of a TCP connection, there is a
3163   significant risk that the client will not be able to read the last HTTP
3164   response.  If the server receives additional data from the client on a
3165   fully-closed connection, such as another request that was sent by the
3166   client before receiving the server's response, the server's TCP stack will
3167   send a reset packet to the client; unfortunately, the reset packet might
3168   erase the client's unacknowledged input buffers before they can be read
3169   and interpreted by the client's HTTP parser.
3172   To avoid the TCP reset problem, servers typically close a connection in
3173   stages. First, the server performs a half-close by closing only the write
3174   side of the read/write connection. The server then continues to read from
3175   the connection until it receives a corresponding close by the client, or
3176   until the server is reasonably certain that its own TCP stack has received
3177   the client's acknowledgement of the packet(s) containing the server's last
3178   response. Finally, the server fully closes the connection.
3181   It is unknown whether the reset problem is exclusive to TCP or might also
3182   be found in other transport connection protocols.
3186<section title="Upgrade" anchor="header.upgrade">
3187  <iref primary="true" item="Upgrade header field" x:for-anchor=""/>
3188  <x:anchor-alias value="Upgrade"/>
3189  <x:anchor-alias value="protocol"/>
3190  <x:anchor-alias value="protocol-name"/>
3191  <x:anchor-alias value="protocol-version"/>
3193   The "Upgrade" header field is intended to provide a simple mechanism
3194   for transitioning from HTTP/1.1 to some other protocol on the same
3195   connection.  A client &MAY; send a list of protocols in the Upgrade
3196   header field of a request to invite the server to switch to one or
3197   more of those protocols, in order of descending preference, before sending
3198   the final response. A server &MAY; ignore a received Upgrade header field
3199   if it wishes to continue using the current protocol on that connection.
3201<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Upgrade"/>
3202  <x:ref>Upgrade</x:ref>          = 1#<x:ref>protocol</x:ref>
3204  <x:ref>protocol</x:ref>         = <x:ref>protocol-name</x:ref> ["/" <x:ref>protocol-version</x:ref>]
3205  <x:ref>protocol-name</x:ref>    = <x:ref>token</x:ref>
3206  <x:ref>protocol-version</x:ref> = <x:ref>token</x:ref>
3209   A server that sends a <x:ref>101 (Switching Protocols)</x:ref> response
3210   &MUST; send an Upgrade header field to indicate the new protocol(s) to
3211   which the connection is being switched; if multiple protocol layers are
3212   being switched, the sender &MUST; list the protocols in layer-ascending
3213   order. A server &MUST-NOT; switch to a protocol that was not indicated by
3214   the client in the corresponding request's Upgrade header field.
3215   A server &MAY; choose to ignore the order of preference indicated by the
3216   client and select the new protocol(s) based on other factors, such as the
3217   nature of the request or the current load on the server.
3220   A server that sends a <x:ref>426 (Upgrade Required)</x:ref> response
3221   &MUST; send an Upgrade header field to indicate the acceptable protocols,
3222   in order of descending preference.
3225   A server &MAY; send an Upgrade header field in any other response to
3226   advertise that it implements support for upgrading to the listed protocols,
3227   in order of descending preference, when appropriate for a future request.
3230   The following is a hypothetical example sent by a client:
3231</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
3232GET /hello.txt HTTP/1.1
3234Connection: upgrade
3235Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11
3239   Upgrade cannot be used to insist on a protocol change; its acceptance and
3240   use by the server is optional. The capabilities and nature of the
3241   application-level communication after the protocol change is entirely
3242   dependent upon the new protocol(s) chosen. However, immediately after
3243   sending the 101 response, the server is expected to continue responding to
3244   the original request as if it had received its equivalent within the new
3245   protocol (i.e., the server still has an outstanding request to satisfy
3246   after the protocol has been changed, and is expected to do so without
3247   requiring the request to be repeated).
3250   For example, if the Upgrade header field is received in a GET request
3251   and the server decides to switch protocols, it first responds
3252   with a <x:ref>101 (Switching Protocols)</x:ref> message in HTTP/1.1 and
3253   then immediately follows that with the new protocol's equivalent of a
3254   response to a GET on the target resource.  This allows a connection to be
3255   upgraded to protocols with the same semantics as HTTP without the
3256   latency cost of an additional round-trip.  A server &MUST-NOT; switch
3257   protocols unless the received message semantics can be honored by the new
3258   protocol; an OPTIONS request can be honored by any protocol.
3261   The following is an example response to the above hypothetical request:
3262</preamble><artwork type="message/http; msgtype=&#34;response&#34;" x:indent-with="  ">
3263HTTP/1.1 101 Switching Protocols
3264Connection: upgrade
3265Upgrade: HTTP/2.0
3267[... data stream switches to HTTP/2.0 with an appropriate response
3268(as defined by new protocol) to the "GET /hello.txt" request ...]
3271   When Upgrade is sent, the sender &MUST; also send a
3272   <x:ref>Connection</x:ref> header field (<xref target="header.connection"/>)
3273   that contains an "upgrade" connection option, in order to prevent Upgrade
3274   from being accidentally forwarded by intermediaries that might not implement
3275   the listed protocols.  A server &MUST; ignore an Upgrade header field that
3276   is received in an HTTP/1.0 request.
3279   A client cannot begin using an upgraded protocol on the connection until
3280   it has completely sent the request message (i.e., the client can't change
3281   the protocol it is sending in the middle of a message).
3282   If a server receives both Upgrade and an <x:ref>Expect</x:ref> header field
3283   with the "100-continue" expectation (&header-expect;), the
3284   server &MUST; send a <x:ref>100 (Continue)</x:ref> response before sending
3285   a <x:ref>101 (Switching Protocols)</x:ref> response.
3288   The Upgrade header field only applies to switching protocols on top of the
3289   existing connection; it cannot be used to switch the underlying connection
3290   (transport) protocol, nor to switch the existing communication to a
3291   different connection. For those purposes, it is more appropriate to use a
3292   <x:ref>3xx (Redirection)</x:ref> response (&status-3xx;).
3295   This specification only defines the protocol name "HTTP" for use by
3296   the family of Hypertext Transfer Protocols, as defined by the HTTP
3297   version rules of <xref target="http.version"/> and future updates to this
3298   specification. Additional tokens ought to be registered with IANA using the
3299   registration procedure defined in <xref target="upgrade.token.registry"/>.
3304<section title="ABNF list extension: #rule" anchor="abnf.extension">
3306  A #rule extension to the ABNF rules of <xref target="RFC5234"/> is used to
3307  improve readability in the definitions of some header field values.
3310  A construct "#" is defined, similar to "*", for defining comma-delimited
3311  lists of elements. The full form is "&lt;n&gt;#&lt;m&gt;element" indicating
3312  at least &lt;n&gt; and at most &lt;m&gt; elements, each separated by a single
3313  comma (",") and optional whitespace (OWS).   
3316  Thus, a sender &MUST; expand the list construct as follows:
3317</preamble><artwork type="example">
3318  1#element =&gt; element *( OWS "," OWS element )
3321  and:
3322</preamble><artwork type="example">
3323  #element =&gt; [ 1#element ]
3326  and for n &gt;= 1 and m &gt; 1:
3327</preamble><artwork type="example">
3328  &lt;n&gt;#&lt;m&gt;element =&gt; element &lt;n-1&gt;*&lt;m-1&gt;( OWS "," OWS element )
3331  For compatibility with legacy list rules, a recipient &MUST; parse and ignore
3332  a reasonable number of empty list elements: enough to handle common mistakes
3333  by senders that merge values, but not so much that they could be used as a
3334  denial of service mechanism. In other words, a recipient &MUST; expand the
3335  list construct as follows:
3337<figure><artwork type="example">
3338  #element =&gt; [ ( "," / element ) *( OWS "," [ OWS element ] ) ]
3340  1#element =&gt; *( "," OWS ) element *( OWS "," [ OWS element ] )
3343  Empty elements do not contribute to the count of elements present.
3344  For example, given these ABNF productions:
3346<figure><artwork type="example">
3347  example-list      = 1#example-list-elmt
3348  example-list-elmt = token ; see <xref target="field.components"/>
3351  Then the following are valid values for example-list (not including the
3352  double quotes, which are present for delimitation only):
3354<figure><artwork type="example">
3355  "foo,bar"
3356  "foo ,bar,"
3357  "foo , ,bar,charlie   "
3360  In contrast, the following values would be invalid, since at least one
3361  non-empty element is required by the example-list production:
3363<figure><artwork type="example">
3364  ""
3365  ","
3366  ",   ,"
3369  <xref target="collected.abnf"/> shows the collected ABNF after the list
3370  constructs have been expanded, as described above, for recipients.
3374<section title="IANA Considerations" anchor="IANA.considerations">
3376<section title="Header Field Registration" anchor="header.field.registration">
3378   HTTP header fields are registered within the Message Header Field Registry
3379   maintained at
3380   <eref target=""/>.
3383   This document defines the following HTTP header fields, so their
3384   associated registry entries shall be updated according to the permanent
3385   registrations below (see <xref target="BCP90"/>):
3387<?BEGININC p1-messaging.iana-headers ?>
3388<!--AUTOGENERATED FROM extract-header-defs.xslt, do not edit manually-->
3389<texttable align="left" suppress-title="true" anchor="iana.header.registration.table">
3390   <ttcol>Header Field Name</ttcol>
3391   <ttcol>Protocol</ttcol>
3392   <ttcol>Status</ttcol>
3393   <ttcol>Reference</ttcol>
3395   <c>Connection</c>
3396   <c>http</c>
3397   <c>standard</c>
3398   <c>
3399      <xref target="header.connection"/>
3400   </c>
3401   <c>Content-Length</c>
3402   <c>http</c>
3403   <c>standard</c>
3404   <c>
3405      <xref target="header.content-length"/>
3406   </c>
3407   <c>Host</c>
3408   <c>http</c>
3409   <c>standard</c>
3410   <c>
3411      <xref target=""/>
3412   </c>
3413   <c>TE</c>
3414   <c>http</c>
3415   <c>standard</c>
3416   <c>
3417      <xref target="header.te"/>
3418   </c>
3419   <c>Trailer</c>
3420   <c>http</c>
3421   <c>standard</c>
3422   <c>
3423      <xref target="header.trailer"/>
3424   </c>
3425   <c>Transfer-Encoding</c>
3426   <c>http</c>
3427   <c>standard</c>
3428   <c>
3429      <xref target="header.transfer-encoding"/>
3430   </c>
3431   <c>Upgrade</c>
3432   <c>http</c>
3433   <c>standard</c>
3434   <c>
3435      <xref target="header.upgrade"/>
3436   </c>
3437   <c>Via</c>
3438   <c>http</c>
3439   <c>standard</c>
3440   <c>
3441      <xref target="header.via"/>
3442   </c>
3445<?ENDINC p1-messaging.iana-headers ?>
3447   Furthermore, the header field-name "Close" shall be registered as
3448   "reserved", since using that name as an HTTP header field might
3449   conflict with the "close" connection option of the "<x:ref>Connection</x:ref>"
3450   header field (<xref target="header.connection"/>).
3452<texttable align="left" suppress-title="true">
3453   <ttcol>Header Field Name</ttcol>
3454   <ttcol>Protocol</ttcol>
3455   <ttcol>Status</ttcol>
3456   <ttcol>Reference</ttcol>
3458   <c>Close</c>
3459   <c>http</c>
3460   <c>reserved</c>
3461   <c>
3462      <xref target="header.field.registration"/>
3463   </c>
3466   The change controller is: "IETF ( - Internet Engineering Task Force".
3470<section title="URI Scheme Registration" anchor="uri.scheme.registration">
3472   IANA maintains the registry of URI Schemes <xref target="BCP115"/> at
3473   <eref target=""/>.
3476   This document defines the following URI schemes, so their
3477   associated registry entries shall be updated according to the permanent
3478   registrations below:
3480<texttable align="left" suppress-title="true">
3481   <ttcol>URI Scheme</ttcol>
3482   <ttcol>Description</ttcol>
3483   <ttcol>Reference</ttcol>
3485   <c>http</c>
3486   <c>Hypertext Transfer Protocol</c>
3487   <c><xref target="http.uri"/></c>
3489   <c>https</c>
3490   <c>Hypertext Transfer Protocol Secure</c>
3491   <c><xref target="https.uri"/></c>
3495<section title="Internet Media Type Registration" anchor="">
3497   IANA maintains the registry of Internet media types <xref target="BCP13"/> at
3498   <eref target=""/>.
3501   This document serves as the specification for the Internet media types
3502   "message/http" and "application/http". The following is to be registered with
3503   IANA.
3505<section title="Internet Media Type message/http" anchor="">
3506<iref item="Media Type" subitem="message/http" primary="true"/>
3507<iref item="message/http Media Type" primary="true"/>
3509   The message/http type can be used to enclose a single HTTP request or
3510   response message, provided that it obeys the MIME restrictions for all
3511   "message" types regarding line length and encodings.
3514  <list style="hanging" x:indent="12em">
3515    <t hangText="Type name:">
3516      message
3517    </t>
3518    <t hangText="Subtype name:">
3519      http
3520    </t>
3521    <t hangText="Required parameters:">
3522      N/A
3523    </t>
3524    <t hangText="Optional parameters:">
3525      version, msgtype
3526      <list style="hanging">
3527        <t hangText="version:">
3528          The HTTP-version number of the enclosed message
3529          (e.g., "1.1"). If not present, the version can be
3530          determined from the first line of the body.
3531        </t>
3532        <t hangText="msgtype:">
3533          The message type &mdash; "request" or "response". If not
3534          present, the type can be determined from the first
3535          line of the body.
3536        </t>
3537      </list>
3538    </t>
3539    <t hangText="Encoding considerations:">
3540      only "7bit", "8bit", or "binary" are permitted
3541    </t>
3542    <t hangText="Security considerations:">
3543      see <xref target="security.considerations"/>
3544    </t>
3545    <t hangText="Interoperability considerations:">
3546      N/A
3547    </t>
3548    <t hangText="Published specification:">
3549      This specification (see <xref target=""/>).
3550    </t>
3551    <t hangText="Applications that use this media type:">
3552      N/A
3553    </t>
3554    <t hangText="Fragment identifier considerations:">
3555      N/A
3556    </t>
3557    <t hangText="Additional information:">
3558      <list style="hanging">
3559        <t hangText="Magic number(s):">N/A</t>
3560        <t hangText="Deprecated alias names for this type:">N/A</t>
3561        <t hangText="File extension(s):">N/A</t>
3562        <t hangText="Macintosh file type code(s):">N/A</t>
3563      </list>
3564    </t>
3565    <t hangText="Person and email address to contact for further information:">
3566      See Authors Section.
3567    </t>
3568    <t hangText="Intended usage:">
3569      COMMON
3570    </t>
3571    <t hangText="Restrictions on usage:">
3572      N/A
3573    </t>
3574    <t hangText="Author:">
3575      See Authors Section.
3576    </t>
3577    <t hangText="Change controller:">
3578      IESG
3579    </t>
3580  </list>
3583<section title="Internet Media Type application/http" anchor="">
3584<iref item="Media Type" subitem="application/http" primary="true"/>
3585<iref item="application/http Media Type" primary="true"/>
3587   The application/http type can be used to enclose a pipeline of one or more
3588   HTTP request or response messages (not intermixed).
3591  <list style="hanging" x:indent="12em">
3592    <t hangText="Type name:">
3593      application
3594    </t>
3595    <t hangText="Subtype name:">
3596      http
3597    </t>
3598    <t hangText="Required parameters:">
3599      N/A
3600    </t>
3601    <t hangText="Optional parameters:">
3602      version, msgtype
3603      <list style="hanging">
3604        <t hangText="version:">
3605          The HTTP-version number of the enclosed messages
3606          (e.g., "1.1"). If not present, the version can be
3607          determined from the first line of the body.
3608        </t>
3609        <t hangText="msgtype:">
3610          The message type &mdash; "request" or "response". If not
3611          present, the type can be determined from the first
3612          line of the body.
3613        </t>
3614      </list>
3615    </t>
3616    <t hangText="Encoding considerations:">
3617      HTTP messages enclosed by this type
3618      are in "binary" format; use of an appropriate
3619      Content-Transfer-Encoding is required when
3620      transmitted via E-mail.
3621    </t>
3622    <t hangText="Security considerations:">
3623      see <xref target="security.considerations"/>
3624    </t>
3625    <t hangText="Interoperability considerations:">
3626      N/A
3627    </t>
3628    <t hangText="Published specification:">
3629      This specification (see <xref target=""/>).
3630    </t>
3631    <t hangText="Applications that use this media type:">
3632      N/A
3633    </t>
3634    <t hangText="Fragment identifier considerations:">
3635      N/A
3636    </t>
3637    <t hangText="Additional information:">
3638      <list style="hanging">
3639        <t hangText="Deprecated alias names for this type:">N/A</t>
3640        <t hangText="Magic number(s):">N/A</t>
3641        <t hangText="File extension(s):">N/A</t>
3642        <t hangText="Macintosh file type code(s):">N/A</t>
3643      </list>
3644    </t>
3645    <t hangText="Person and email address to contact for further information:">
3646      See Authors Section.
3647    </t>
3648    <t hangText="Intended usage:">
3649      COMMON
3650    </t>
3651    <t hangText="Restrictions on usage:">
3652      N/A
3653    </t>
3654    <t hangText="Author:">
3655      See Authors Section.
3656    </t>
3657    <t hangText="Change controller:">
3658      IESG
3659    </t>
3660  </list>
3665<section title="Transfer Coding Registry" anchor="transfer.coding.registry">
3667   The HTTP Transfer Coding Registry defines the name space for transfer
3668   coding names. It is maintained at <eref target=""/>.
3671<section title="Procedure" anchor="transfer.coding.registry.procedure">
3673   Registrations &MUST; include the following fields:
3674   <list style="symbols">
3675     <t>Name</t>
3676     <t>Description</t>
3677     <t>Pointer to specification text</t>
3678   </list>
3681   Names of transfer codings &MUST-NOT; overlap with names of content codings
3682   (&content-codings;) unless the encoding transformation is identical, as
3683   is the case for the compression codings defined in
3684   <xref target="compression.codings"/>.
3687   Values to be added to this name space require IETF Review (see
3688   <xref target="RFC5226" x:fmt="of" x:sec="4.1"/>), and &MUST;
3689   conform to the purpose of transfer coding defined in this specification.
3692   Use of program names for the identification of encoding formats
3693   is not desirable and is discouraged for future encodings.
3697<section title="Registration" anchor="transfer.coding.registration">
3699   The HTTP Transfer Coding Registry shall be updated with the registrations
3700   below:
3702<texttable align="left" suppress-title="true" anchor="iana.transfer.coding.registration.table">
3703   <ttcol>Name</ttcol>
3704   <ttcol>Description</ttcol>
3705   <ttcol>Reference</ttcol>
3706   <c>chunked</c>
3707   <c>Transfer in a series of chunks</c>
3708   <c>
3709      <xref target="chunked.encoding"/>
3710   </c>
3711   <c>compress</c>
3712   <c>UNIX "compress" data format <xref target="Welch"/></c>
3713   <c>
3714      <xref target="compress.coding"/>
3715   </c>
3716   <c>deflate</c>
3717   <c>"deflate" compressed data (<xref target="RFC1951"/>) inside
3718   the "zlib" data format (<xref target="RFC1950"/>)
3719   </c>
3720   <c>
3721      <xref target="deflate.coding"/>
3722   </c>
3723   <c>gzip</c>
3724   <c>GZIP file format <xref target="RFC1952"/></c>
3725   <c>
3726      <xref target="gzip.coding"/>
3727   </c>
3728   <c>x-compress</c>
3729   <c>Deprecated (alias for compress)</c>
3730   <c>
3731      <xref target="compress.coding"/>
3732   </c>
3733   <c>x-gzip</c>
3734   <c>Deprecated (alias for gzip)</c>
3735   <c>
3736      <xref target="gzip.coding"/>
3737   </c>
3742<section title="Content Coding Registration" anchor="content.coding.registration">
3744   IANA maintains the registry of HTTP Content Codings at
3745   <eref target=""/>.
3748   The HTTP Content Codings Registry shall be updated with the registrations
3749   below:
3751<texttable align="left" suppress-title="true" anchor="iana.content.coding.registration.table">
3752   <ttcol>Name</ttcol>
3753   <ttcol>Description</ttcol>
3754   <ttcol>Reference</ttcol>
3755   <c>compress</c>
3756   <c>UNIX "compress" data format <xref target="Welch"/></c>
3757   <c>
3758      <xref target="compress.coding"/>
3759   </c>
3760   <c>deflate</c>
3761   <c>"deflate" compressed data (<xref target="RFC1951"/>) inside
3762   the "zlib" data format (<xref target="RFC1950"/>)</c>
3763   <c>
3764      <xref target="deflate.coding"/>
3765   </c>
3766   <c>gzip</c>
3767   <c>GZIP file format <xref target="RFC1952"/></c>
3768   <c>
3769      <xref target="gzip.coding"/>
3770   </c>
3771   <c>x-compress</c>
3772   <c>Deprecated (alias for compress)</c>
3773   <c>
3774      <xref target="compress.coding"/>
3775   </c>
3776   <c>x-gzip</c>
3777   <c>Deprecated (alias for gzip)</c>
3778   <c>
3779      <xref target="gzip.coding"/>
3780   </c>
3784<section title="Upgrade Token Registry" anchor="upgrade.token.registry">
3786   The HTTP Upgrade Token Registry defines the name space for protocol-name
3787   tokens used to identify protocols in the <x:ref>Upgrade</x:ref> header
3788   field. The registry is maintained at <eref target=""/>.
3791<section title="Procedure" anchor="upgrade.token.registry.procedure">  
3793   Each registered protocol name is associated with contact information
3794   and an optional set of specifications that details how the connection
3795   will be processed after it has been upgraded.
3798   Registrations happen on a "First Come First Served" basis (see
3799   <xref target="RFC5226" x:sec="4.1" x:fmt="of"/>) and are subject to the
3800   following rules:
3801  <list style="numbers">
3802    <t>A protocol-name token, once registered, stays registered forever.</t>
3803    <t>The registration &MUST; name a responsible party for the
3804       registration.</t>
3805    <t>The registration &MUST; name a point of contact.</t>
3806    <t>The registration &MAY; name a set of specifications associated with
3807       that token. Such specifications need not be publicly available.</t>
3808    <t>The registration &SHOULD; name a set of expected "protocol-version"
3809       tokens associated with that token at the time of registration.</t>
3810    <t>The responsible party &MAY; change the registration at any time.
3811       The IANA will keep a record of all such changes, and make them
3812       available upon request.</t>
3813    <t>The IESG &MAY; reassign responsibility for a protocol token.
3814       This will normally only be used in the case when a
3815       responsible party cannot be contacted.</t>
3816  </list>
3819   This registration procedure for HTTP Upgrade Tokens replaces that
3820   previously defined in <xref target="RFC2817" x:fmt="of" x:sec="7.2"/>.
3824<section title="Upgrade Token Registration" anchor="upgrade.token.registration">
3826   The "HTTP" entry in the HTTP Upgrade Token Registry shall be updated with
3827   the registration below:
3829<texttable align="left" suppress-title="true">
3830   <ttcol>Value</ttcol>
3831   <ttcol>Description</ttcol>
3832   <ttcol>Expected Version Tokens</ttcol>
3833   <ttcol>Reference</ttcol>
3835   <c>HTTP</c>
3836   <c>Hypertext Transfer Protocol</c>
3837   <c>any DIGIT.DIGIT (e.g, "2.0")</c>
3838   <c><xref target="http.version"/></c>
3841   The responsible party is: "IETF ( - Internet Engineering Task Force".
3848<section title="Security Considerations" anchor="security.considerations">
3850   This section is meant to inform developers, information providers, and
3851   users of known security concerns relevant to HTTP/1.1 message syntax,
3852   parsing, and routing.
3855   The list of considerations below is not exhaustive &mdash; security
3856   analysis in an ongoing activity. Various organizations, such as the
3857   "Open Web Application Security Project" (OWASP,
3858   <eref target=""/>), provide information about current
3859   research.
3862<section title="DNS-related Attacks" anchor="dns.related.attacks">
3864   HTTP clients rely heavily on the Domain Name Service (DNS), and are thus
3865   generally prone to security attacks based on the deliberate misassociation
3866   of IP addresses and DNS names not protected by DNSSEC. Clients need to be
3867   cautious in assuming the validity of an IP number/DNS name association unless
3868   the response is protected by DNSSEC (<xref target="RFC4033"/>).
3872<section title="Intermediaries and Caching" anchor="attack.intermediaries">
3874   By their very nature, HTTP intermediaries are men-in-the-middle, and
3875   represent an opportunity for man-in-the-middle attacks. Compromise of
3876   the systems on which the intermediaries run can result in serious security
3877   and privacy problems. Intermediaries have access to security-related
3878   information, personal information about individual users and
3879   organizations, and proprietary information belonging to users and
3880   content providers. A compromised intermediary, or an intermediary
3881   implemented or configured without regard to security and privacy
3882   considerations, might be used in the commission of a wide range of
3883   potential attacks.
3886   Intermediaries that contain a shared cache are especially vulnerable
3887   to cache poisoning attacks.
3890   Implementers need to consider the privacy and security
3891   implications of their design and coding decisions, and of the
3892   configuration options they provide to operators (especially the
3893   default configuration).
3896   Users need to be aware that intermediaries are no more trustworthy than
3897   the people who run them; HTTP itself cannot solve this problem.
3901<section title="Buffer Overflows" anchor="attack.protocol.element.size.overflows">
3903   Because HTTP uses mostly textual, character-delimited fields, attackers can
3904   overflow buffers in implementations, and/or perform a Denial of Service
3905   against implementations that accept fields with unlimited lengths.
3908   To promote interoperability, this specification makes specific
3909   recommendations for minimum size limits on request-line
3910   (<xref target="request.line"/>)
3911   and header fields (<xref target="header.fields"/>). These are
3912   minimum recommendations, chosen to be supportable even by implementations
3913   with limited resources; it is expected that most implementations will
3914   choose substantially higher limits.
3917   This specification also provides a way for servers to reject messages that
3918   have request-targets that are too long (&status-414;) or request entities
3919   that are too large (&status-4xx;). Additional status codes related to
3920   capacity limits have been defined by extensions to HTTP
3921   <xref target="RFC6585"/>.
3924   Recipients ought to carefully limit the extent to which they read other
3925   fields, including (but not limited to) request methods, response status
3926   phrases, header field-names, and body chunks, so as to avoid denial of
3927   service attacks without impeding interoperability.
3931<section title="Message Integrity" anchor="message.integrity">
3933   HTTP does not define a specific mechanism for ensuring message integrity,
3934   instead relying on the error-detection ability of underlying transport
3935   protocols and the use of length or chunk-delimited framing to detect
3936   completeness. Additional integrity mechanisms, such as hash functions or
3937   digital signatures applied to the content, can be selectively added to
3938   messages via extensible metadata header fields. Historically, the lack of
3939   a single integrity mechanism has been justified by the informal nature of
3940   most HTTP communication.  However, the prevalence of HTTP as an information
3941   access mechanism has resulted in its increasing use within environments
3942   where verification of message integrity is crucial.
3945   User agents are encouraged to implement configurable means for detecting
3946   and reporting failures of message integrity such that those means can be
3947   enabled within environments for which integrity is necessary. For example,
3948   a browser being used to view medical history or drug interaction
3949   information needs to indicate to the user when such information is detected
3950   by the protocol to be incomplete, expired, or corrupted during transfer.
3951   Such mechanisms might be selectively enabled via user agent extensions or
3952   the presence of message integrity metadata in a response.
3953   At a minimum, user agents ought to provide some indication that allows a
3954   user to distinguish between a complete and incomplete response message
3955   (<xref target="incomplete.messages"/>) when such verification is desired.
3959<section title="Server Log Information" anchor="abuse.of.server.log.information">
3961   A server is in the position to save personal data about a user's requests
3962   over time, which might identify their reading patterns or subjects of
3963   interest.  In particular, log information gathered at an intermediary
3964   often contains a history of user agent interaction, across a multitude
3965   of sites, that can be traced to individual users.
3968   HTTP log information is confidential in nature; its handling is often
3969   constrained by laws and regulations.  Log information needs to be securely
3970   stored and appropriate guidelines followed for its analysis.
3971   Anonymization of personal information within individual entries helps,
3972   but is generally not sufficient to prevent real log traces from being
3973   re-identified based on correlation with other access characteristics.
3974   As such, access traces that are keyed to a specific client are unsafe to
3975   publish even if the key is pseudonymous.
3978   To minimize the risk of theft or accidental publication, log information
3979   ought to be purged of personally identifiable information, including
3980   user identifiers, IP addresses, and user-provided query parameters,
3981   as soon as that information is no longer necessary to support operational
3982   needs for security, auditing, or fraud control.
3987<section title="Acknowledgments" anchor="acks">
3989   This edition of HTTP/1.1 builds on the many contributions that went into
3990   <xref target="RFC1945" format="none">RFC 1945</xref>,
3991   <xref target="RFC2068" format="none">RFC 2068</xref>,
3992   <xref target="RFC2145" format="none">RFC 2145</xref>, and
3993   <xref target="RFC2616" format="none">RFC 2616</xref>, including
3994   substantial contributions made by the previous authors, editors, and
3995   working group chairs: Tim Berners-Lee, Ari Luotonen, Roy T. Fielding,
3996   Henrik Frystyk Nielsen, Jim Gettys, Jeffrey C. Mogul, Larry Masinter,
3997   and Paul J. Leach. Mark Nottingham oversaw this effort as working group chair.
4000   Since 1999, the following contributors have helped improve the HTTP
4001   specification by reporting bugs, asking smart questions, drafting or
4002   reviewing text, and evaluating open issues:
4004<?BEGININC acks ?>
4005<t>Adam Barth,
4006Adam Roach,
4007Addison Phillips,
4008Adrian Chadd,
4009Adrian Cole,
4010Adrien W. de Croy,
4011Alan Ford,
4012Alan Ruttenberg,
4013Albert Lunde,
4014Alek Storm,
4015Alex Rousskov,
4016Alexandre Morgaut,
4017Alexey Melnikov,
4018Alisha Smith,
4019Amichai Rothman,
4020Amit Klein,
4021Amos Jeffries,
4022Andreas Maier,
4023Andreas Petersson,
4024Andrei Popov,
4025Anil Sharma,
4026Anne van Kesteren,
4027Anthony Bryan,
4028Asbjorn Ulsberg,
4029Ashok Kumar,
4030Balachander Krishnamurthy,
4031Barry Leiba,
4032Ben Laurie,
4033Benjamin Carlyle,
4034Benjamin Niven-Jenkins,
4035Benoit Claise,
4036Bil Corry,
4037Bill Burke,
4038Bjoern Hoehrmann,
4039Bob Scheifler,
4040Boris Zbarsky,
4041Brett Slatkin,
4042Brian Kell,
4043Brian McBarron,
4044Brian Pane,
4045Brian Raymor,
4046Brian Smith,
4047Bruce Perens,
4048Bryce Nesbitt,
4049Cameron Heavon-Jones,
4050Carl Kugler,
4051Carsten Bormann,
4052Charles Fry,
4053Chris Burdess,
4054Chris Newman,
4055Christian Huitema,
4056Cyrus Daboo,
4057Dale Robert Anderson,
4058Dan Wing,
4059Dan Winship,
4060Daniel Stenberg,
4061Darrel Miller,
4062Dave Cridland,
4063Dave Crocker,
4064Dave Kristol,
4065Dave Thaler,
4066David Booth,
4067David Singer,
4068David W. Morris,
4069Diwakar Shetty,
4070Dmitry Kurochkin,
4071Drummond Reed,
4072Duane Wessels,
4073Edward Lee,
4074Eitan Adler,
4075Eliot Lear,
4076Emile Stephan,
4077Eran Hammer-Lahav,
4078Eric D. Williams,
4079Eric J. Bowman,
4080Eric Lawrence,
4081Eric Rescorla,
4082Erik Aronesty,
4083EungJun Yi,
4084Evan Prodromou,
4085Felix Geisendoerfer,
4086Florian Weimer,
4087Frank Ellermann,
4088Fred Akalin,
4089Fred Bohle,
4090Frederic Kayser,
4091Gabor Molnar,
4092Gabriel Montenegro,
4093Geoffrey Sneddon,
4094Gervase Markham,
4095Gili Tzabari,
4096Grahame Grieve,
4097Greg Slepak,
4098Greg Wilkins,
4099Grzegorz Calkowski,
4100Harald Tveit Alvestrand,
4101Harry Halpin,
4102Helge Hess,
4103Henrik Nordstrom,
4104Henry S. Thompson,
4105Henry Story,
4106Herbert van de Sompel,
4107Herve Ruellan,
4108Howard Melman,
4109Hugo Haas,
4110Ian Fette,
4111Ian Hickson,
4112Ido Safruti,
4113Ilari Liusvaara,
4114Ilya Grigorik,
4115Ingo Struck,
4116J. Ross Nicoll,
4117James Cloos,
4118James H. Manger,
4119James Lacey,
4120James M. Snell,
4121Jamie Lokier,
4122Jan Algermissen,
4123Jari Arkko,
4124Jeff Hodges (who came up with the term 'effective Request-URI'),
4125Jeff Pinner,
4126Jeff Walden,
4127Jim Luther,
4128Jitu Padhye,
4129Joe D. Williams,
4130Joe Gregorio,
4131Joe Orton,
4132Joel Jaeggli,
4133John C. Klensin,
4134John C. Mallery,
4135John Cowan,
4136John Kemp,
4137John Panzer,
4138John Schneider,
4139John Stracke,
4140John Sullivan,
4141Jonas Sicking,
4142Jonathan A. Rees,
4143Jonathan Billington,
4144Jonathan Moore,
4145Jonathan Silvera,
4146Jordi Ros,
4147Joris Dobbelsteen,
4148Josh Cohen,
4149Julien Pierre,
4150Jungshik Shin,
4151Justin Chapweske,
4152Justin Erenkrantz,
4153Justin James,
4154Kalvinder Singh,
4155Karl Dubost,
4156Kathleen Moriarty,
4157Keith Hoffman,
4158Keith Moore,
4159Ken Murchison,
4160Koen Holtman,
4161Konstantin Voronkov,
4162Kris Zyp,
4163Leif Hedstrom,
4164Lionel Morand,
4165Lisa Dusseault,
4166Maciej Stachowiak,
4167Manu Sporny,
4168Marc Schneider,
4169Marc Slemko,
4170Mark Baker,
4171Mark Pauley,
4172Mark Watson,
4173Markus Isomaki,
4174Markus Lanthaler,
4175Martin J. Duerst,
4176Martin Musatov,
4177Martin Nilsson,
4178Martin Thomson,
4179Matt Lynch,
4180Matthew Cox,
4181Matthew Kerwin,
4182Max Clark,
4183Menachem Dodge,
4184Meral Shirazipour,
4185Michael Burrows,
4186Michael Hausenblas,
4187Michael Scharf,
4188Michael Sweet,
4189Michael Tuexen,
4190Michael Welzl,
4191Mike Amundsen,
4192Mike Belshe,
4193Mike Bishop,
4194Mike Kelly,
4195Mike Schinkel,
4196Miles Sabin,
4197Murray S. Kucherawy,
4198Mykyta Yevstifeyev,
4199Nathan Rixham,
4200Nicholas Shanks,
4201Nico Williams,
4202Nicolas Alvarez,
4203Nicolas Mailhot,
4204Noah Slater,
4205Osama Mazahir,
4206Pablo Castro,
4207Pat Hayes,
4208Patrick R. McManus,
4209Paul E. Jones,
4210Paul Hoffman,
4211Paul Marquess,
4212Pete Resnick,
4213Peter Lepeska,
4214Peter Occil,
4215Peter Saint-Andre,
4216Peter Watkins,
4217Phil Archer,
4218Phil Hunt,
4219Philippe Mougin,
4220Phillip Hallam-Baker,
4221Piotr Dobrogost,
4222Poul-Henning Kamp,
4223Preethi Natarajan,
4224Rajeev Bector,
4225Ray Polk,
4226Reto Bachmann-Gmuer,
4227Richard Barnes,
4228Richard Cyganiak,
4229Rob Trace,
4230Robby Simpson,
4231Robert Brewer,
4232Robert Collins,
4233Robert Mattson,
4234Robert O'Callahan,
4235Robert Olofsson,
4236Robert Sayre,
4237Robert Siemer,
4238Robert de Wilde,
4239Roberto Javier Godoy,
4240Roberto Peon,
4241Roland Zink,
4242Ronny Widjaja,
4243Ryan Hamilton,
4244S. Mike Dierken,
4245Salvatore Loreto,
4246Sam Johnston,
4247Sam Pullara,
4248Sam Ruby,
4249Saurabh Kulkarni,
4250Scott Lawrence (who maintained the original issues list),
4251Sean B. Palmer,
4252Sean Turner,
4253Sebastien Barnoud,
4254Shane McCarron,
4255Shigeki Ohtsu,
4256Simon Yarde,
4257Stefan Eissing,
4258Stefan Tilkov,
4259Stefanos Harhalakis,
4260Stephane Bortzmeyer,
4261Stephen Farrell,
4262Stephen Kent,
4263Stephen Ludin,
4264Stuart Williams,
4265Subbu Allamaraju,
4266Subramanian Moonesamy,
4267Susan Hares,
4268Sylvain Hellegouarch,
4269Tapan Divekar,
4270Tatsuhiro Tsujikawa,
4271Tatsuya Hayashi,
4272Ted Hardie,
4273Ted Lemon,
4274Thomas Broyer,
4275Thomas Fossati,
4276Thomas Maslen,
4277Thomas Nadeau,
4278Thomas Nordin,
4279Thomas Roessler,
4280Tim Bray,
4281Tim Morgan,
4282Tim Olsen,
4283Tom Zhou,
4284Travis Snoozy,
4285Tyler Close,
4286Vincent Murphy,
4287Wenbo Zhu,
4288Werner Baumann,
4289Wilbur Streett,
4290Wilfredo Sanchez Vega,
4291William A. Rowe Jr.,
4292William Chan,
4293Willy Tarreau,
4294Xiaoshu Wang,
4295Yaron Goland,
4296Yngve Nysaeter Pettersen,
4297Yoav Nir,
4298Yogesh Bang,
4299Yuchung Cheng,
4300Yutaka Oiwa,
4301Yves Lafon (long-time member of the editor team),
4302Zed A. Shaw, and
4303Zhong Yu.
4305<?ENDINC acks ?>
4307   See <xref target="RFC2616" x:fmt="of" x:sec="16"/> for additional
4308   acknowledgements from prior revisions.
4315<references title="Normative References">
4317<reference anchor="Part2">
4318  <front>
4319    <title>Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content</title>
4320    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4321      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4322      <address><email></email></address>
4323    </author>
4324    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4325      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4326      <address><email></email></address>
4327    </author>
4328    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4329  </front>
4330  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p2-semantics-&ID-VERSION;"/>
4331  <x:source href="p2-semantics.xml" basename="p2-semantics">
4332    <x:defines>1xx (Informational)</x:defines>
4333    <x:defines>1xx</x:defines>
4334    <x:defines>100 (Continue)</x:defines>
4335    <x:defines>101 (Switching Protocols)</x:defines>
4336    <x:defines>2xx (Successful)</x:defines>
4337    <x:defines>2xx</x:defines>
4338    <x:defines>200 (OK)</x:defines>
4339    <x:defines>203 (Non-Authoritative Information)</x:defines>
4340    <x:defines>204 (No Content)</x:defines>
4341    <x:defines>3xx (Redirection)</x:defines>
4342    <x:defines>3xx</x:defines>
4343    <x:defines>301 (Moved Permanently)</x:defines>
4344    <x:defines>4xx (Client Error)</x:defines>
4345    <x:defines>4xx</x:defines>
4346    <x:defines>400 (Bad Request)</x:defines>
4347    <x:defines>411 (Length Required)</x:defines>
4348    <x:defines>414 (URI Too Long)</x:defines>
4349    <x:defines>417 (Expectation Failed)</x:defines>
4350    <x:defines>426 (Upgrade Required)</x:defines>
4351    <x:defines>501 (Not Implemented)</x:defines>
4352    <x:defines>502 (Bad Gateway)</x:defines>
4353    <x:defines>505 (HTTP Version Not Supported)</x:defines>
4354    <x:defines>Accept-Encoding</x:defines>
4355    <x:defines>Allow</x:defines>
4356    <x:defines>Content-Encoding</x:defines>
4357    <x:defines>Content-Location</x:defines>
4358    <x:defines>Content-Type</x:defines>
4359    <x:defines>Date</x:defines>
4360    <x:defines>Expect</x:defines>
4361    <x:defines>Location</x:defines>
4362    <x:defines>Server</x:defines>
4363    <x:defines>User-Agent</x:defines>
4364  </x:source>
4367<reference anchor="Part4">
4368  <front>
4369    <title>Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests</title>
4370    <author fullname="Roy T. Fielding" initials="R." role="editor" surname="Fielding">
4371      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4372      <address><email></email></address>
4373    </author>
4374    <author fullname="Julian F. Reschke" initials="J. F." role="editor" surname="Reschke">
4375      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4376      <address><email></email></address>
4377    </author>
4378    <date month="&ID-MONTH;" year="&ID-YEAR;" />
4379  </front>
4380  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p4-conditional-&ID-VERSION;" />
4381  <x:source basename="p4-conditional" href="p4-conditional.xml">
4382    <x:defines>304 (Not Modified)</x:defines>
4383    <x:defines>ETag</x:defines>
4384    <x:defines>Last-Modified</x:defines>
4385  </x:source>
4388<reference anchor="Part5">
4389  <front>
4390    <title>Hypertext Transfer Protocol (HTTP/1.1): Range Requests</title>
4391    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4392      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4393      <address><email></email></address>
4394    </author>
4395    <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
4396      <organization abbrev="W3C">World Wide Web Consortium</organization>
4397      <address><email></email></address>
4398    </author>
4399    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4400      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4401      <address><email></email></address>
4402    </author>
4403    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4404  </front>
4405  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p5-range-&ID-VERSION;"/>
4406  <x:source href="p5-range.xml" basename="p5-range">
4407    <x:defines>Content-Range</x:defines>
4408  </x:source>
4411<reference anchor="Part6">
4412  <front>
4413    <title>Hypertext Transfer Protocol (HTTP/1.1): Caching</title>
4414    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4415      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4416      <address><email></email></address>
4417    </author>
4418    <author initials="M." surname="Nottingham" fullname="Mark Nottingham" role="editor">
4419      <organization>Akamai</organization>
4420      <address><email></email></address>
4421    </author>
4422    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4423      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4424      <address><email></email></address>
4425    </author>
4426    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4427  </front>
4428  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p6-cache-&ID-VERSION;"/>
4429  <x:source href="p6-cache.xml" basename="p6-cache">
4430    <x:defines>Cache-Control</x:defines>
4431    <x:defines>Expires</x:defines>
4432  </x:source>
4435<reference anchor="Part7">
4436  <front>
4437    <title>Hypertext Transfer Protocol (HTTP/1.1): Authentication</title>
4438    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4439      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4440      <address><email></email></address>
4441    </author>
4442    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4443      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4444      <address><email></email></address>
4445    </author>
4446    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4447  </front>
4448  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p7-auth-&ID-VERSION;"/>
4449  <x:source href="p7-auth.xml" basename="p7-auth">
4450    <x:defines>Proxy-Authenticate</x:defines>
4451    <x:defines>Proxy-Authorization</x:defines>
4452  </x:source>
4455<reference anchor="RFC5234">
4456  <front>
4457    <title abbrev="ABNF for Syntax Specifications">Augmented BNF for Syntax Specifications: ABNF</title>
4458    <author initials="D." surname="Crocker" fullname="Dave Crocker" role="editor">
4459      <organization>Brandenburg InternetWorking</organization>
4460      <address>
4461        <email></email>
4462      </address> 
4463    </author>
4464    <author initials="P." surname="Overell" fullname="Paul Overell">
4465      <organization>THUS plc.</organization>
4466      <address>
4467        <email></email>
4468      </address>
4469    </author>
4470    <date month="January" year="2008"/>
4471  </front>
4472  <seriesInfo name="STD" value="68"/>
4473  <seriesInfo name="RFC" value="5234"/>
4476<reference anchor="RFC2119">
4477  <front>
4478    <title>Key words for use in RFCs to Indicate Requirement Levels</title>
4479    <author initials="S." surname="Bradner" fullname="Scott Bradner">
4480      <organization>Harvard University</organization>
4481      <address><email></email></address>
4482    </author>
4483    <date month="March" year="1997"/>
4484  </front>
4485  <seriesInfo name="BCP" value="14"/>
4486  <seriesInfo name="RFC" value="2119"/>
4489<reference anchor="RFC3986">
4490 <front>
4491  <title abbrev='URI Generic Syntax'>Uniform Resource Identifier (URI): Generic Syntax</title>
4492  <author initials='T.' surname='Berners-Lee' fullname='Tim Berners-Lee'>
4493    <organization abbrev="W3C/MIT">World Wide Web Consortium</organization>
4494    <address>
4495       <email></email>
4496       <uri></uri>
4497    </address>
4498  </author>
4499  <author initials='R.' surname='Fielding' fullname='Roy T. Fielding'>
4500    <organization abbrev="Day Software">Day Software</organization>
4501    <address>
4502      <email></email>
4503      <uri></uri>
4504    </address>
4505  </author>
4506  <author initials='L.' surname='Masinter' fullname='Larry Masinter'>
4507    <organization abbrev="Adobe Systems">Adobe Systems Incorporated</organization>
4508    <address>
4509      <email></email>
4510      <uri></uri>
4511    </address>
4512  </author>
4513  <date month='January' year='2005'></date>
4514 </front>
4515 <seriesInfo name="STD" value="66"/>
4516 <seriesInfo name="RFC" value="3986"/>
4519<reference anchor="RFC0793">
4520  <front>
4521    <title>Transmission Control Protocol</title>
4522    <author initials='J.' surname='Postel' fullname='Jon Postel'>
4523      <organization>University of Southern California (USC)/Information Sciences Institute</organization>
4524    </author>
4525    <date year='1981' month='September' />
4526  </front>
4527  <seriesInfo name='STD' value='7' />
4528  <seriesInfo name='RFC' value='793' />
4531<reference anchor="USASCII">
4532  <front>
4533    <title>Coded Character Set -- 7-bit American Standard Code for Information Interchange</title>
4534    <author>
4535      <organization>American National Standards Institute</organization>
4536    </author>
4537    <date year="1986"/>
4538  </front>
4539  <seriesInfo name="ANSI" value="X3.4"/>
4542<reference anchor="RFC1950">
4543  <front>
4544    <title>ZLIB Compressed Data Format Specification version 3.3</title>
4545    <author initials="L.P." surname="Deutsch" fullname="L. Peter Deutsch">
4546      <organization>Aladdin Enterprises</organization>
4547      <address><email></email></address>
4548    </author>
4549    <author initials="J-L." surname="Gailly" fullname="Jean-Loup Gailly"/>
4550    <date month="May" year="1996"/>
4551  </front>
4552  <seriesInfo name="RFC" value="1950"/>
4553  <!--<annotation>
4554    RFC 1950 is an Informational RFC, thus it might be less stable than
4555    this specification. On the other hand, this downward reference was
4556    present since the publication of <xref target="RFC2068" x:fmt="none">RFC 2068</xref> in 1997,
4557    therefore it is unlikely to cause problems in practice. See also
4558    <xref target="BCP97"/>.
4559  </annotation>-->
4562<reference anchor="RFC1951">
4563  <front>
4564    <title>DEFLATE Compressed Data Format Specification version 1.3</title>
4565    <author initials="P." surname="Deutsch" fullname="L. Peter Deutsch">
4566      <organization>Aladdin Enterprises</organization>
4567      <address><email></email></address>
4568    </author>
4569    <date month="May" year="1996"/>
4570  </front>
4571  <seriesInfo name="RFC" value="1951"/>
4572  <!--<annotation>
4573    RFC 1951 is an Informational RFC, thus it might be less stable than
4574    this specification. On the other hand, this downward reference was
4575    present since the publication of <xref target="RFC2068" x:fmt="none">RFC 2068</xref> in 1997,
4576    therefore it is unlikely to cause problems in practice. See also
4577    <xref target="BCP97"/>.
4578  </annotation>-->
4581<reference anchor="RFC1952">
4582  <front>
4583    <title>GZIP file format specification version 4.3</title>
4584    <author initials="P." surname="Deutsch" fullname="L. Peter Deutsch">
4585      <organization>Aladdin Enterprises</organization>
4586      <address><email></email></address>
4587    </author>
4588    <author initials="J-L." surname="Gailly" fullname="Jean-Loup Gailly">
4589      <address><email></email></address>
4590    </author>
4591    <author initials="M." surname="Adler" fullname="Mark Adler">
4592      <address><email></email></address>
4593    </author>
4594    <author initials="L.P." surname="Deutsch" fullname="L. Peter Deutsch">
4595      <address><email></email></address>
4596    </author>
4597    <author initials="G." surname="Randers-Pehrson" fullname="Glenn Randers-Pehrson">
4598      <address><email></email></address>
4599    </author>
4600    <date month="May" year="1996"/>
4601  </front>
4602  <seriesInfo name="RFC" value="1952"/>
4603  <!--<annotation>
4604    RFC 1952 is an Informational RFC, thus it might be less stable than
4605    this specification. On the other hand, this downward reference was
4606    present since the publication of <xref target="RFC2068" x:fmt="none">RFC 2068</xref> in 1997,
4607    therefore it is unlikely to cause problems in practice. See also
4608    <xref target="BCP97"/>.
4609  </annotation>-->
4612<reference anchor="Welch">
4613  <front>
4614    <title>A Technique for High Performance Data Compression</title>
4615    <author initials="T.A." surname="Welch" fullname="Terry A. Welch"/>
4616    <date month="June" year="1984"/>
4617  </front>
4618  <seriesInfo name="IEEE Computer" value="17(6)"/>
4623<references title="Informative References">
4625<reference anchor="ISO-8859-1">
4626  <front>
4627    <title>
4628     Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin alphabet No. 1
4629    </title>
4630    <author>
4631      <organization>International Organization for Standardization</organization>
4632    </author>
4633    <date year="1998"/>
4634  </front>
4635  <seriesInfo name="ISO/IEC" value="8859-1:1998"/>
4638<reference anchor='RFC1919'>
4639  <front>
4640    <title>Classical versus Transparent IP Proxies</title>
4641    <author initials='M.' surname='Chatel' fullname='Marc Chatel'>
4642      <address><email></email></address>
4643    </author>
4644    <date year='1996' month='March' />
4645  </front>
4646  <seriesInfo name='RFC' value='1919' />
4649<reference anchor="RFC1945">
4650  <front>
4651    <title abbrev="HTTP/1.0">Hypertext Transfer Protocol -- HTTP/1.0</title>
4652    <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
4653      <organization>MIT, Laboratory for Computer Science</organization>
4654      <address><email></email></address>
4655    </author>
4656    <author initials="R.T." surname="Fielding" fullname="Roy T. Fielding">
4657      <organization>University of California, Irvine, Department of Information and Computer Science</organization>
4658      <address><email></email></address>
4659    </author>
4660    <author initials="H.F." surname="Nielsen" fullname="Henrik Frystyk Nielsen">
4661      <organization>W3 Consortium, MIT Laboratory for Computer Science</organization>
4662      <address><email></email></address>
4663    </author>
4664    <date month="May" year="1996"/>
4665  </front>
4666  <seriesInfo name="RFC" value="1945"/>
4669<reference anchor="RFC2045">
4670  <front>
4671    <title abbrev="Internet Message Bodies">Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies</title>
4672    <author initials="N." surname="Freed" fullname="Ned Freed">
4673      <organization>Innosoft International, Inc.</organization>
4674      <address><email></email></address>
4675    </author>
4676    <author initials="N.S." surname="Borenstein" fullname="Nathaniel S. Borenstein">
4677      <organization>First Virtual Holdings</organization>
4678      <address><email></email></address>
4679    </author>
4680    <date month="November" year="1996"/>
4681  </front>
4682  <seriesInfo name="RFC" value="2045"/>
4685<reference anchor="RFC2047">
4686  <front>
4687    <title abbrev="Message Header Extensions">MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text</title>
4688    <author initials="K." surname="Moore" fullname="Keith Moore">
4689      <organization>University of Tennessee</organization>
4690      <address><email></email></address>
4691    </author>
4692    <date month="November" year="1996"/>
4693  </front>
4694  <seriesInfo name="RFC" value="2047"/>
4697<reference anchor="RFC2068">
4698  <front>
4699    <title>Hypertext Transfer Protocol -- HTTP/1.1</title>
4700    <author initials="R." surname="Fielding" fullname="Roy T. Fielding">
4701      <organization>University of California, Irvine, Department of Information and Computer Science</organization>
4702      <address><email></email></address>
4703    </author>
4704    <author initials="J." surname="Gettys" fullname="Jim Gettys">
4705      <organization>MIT Laboratory for Computer Science</organization>
4706      <address><email></email></address>
4707    </author>
4708    <author initials="J." surname="Mogul" fullname="Jeffrey C. Mogul">
4709      <organization>Digital Equipment Corporation, Western Research Laboratory</organization>
4710      <address><email></email></address>
4711    </author>
4712    <author initials="H." surname="Nielsen" fullname="Henrik Frystyk Nielsen">
4713      <organization>MIT Laboratory for Computer Science</organization>
4714      <address><email></email></address>
4715    </author>
4716    <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
4717      <organization>MIT Laboratory for Computer Science</organization>
4718      <address><email></email></address>
4719    </author>
4720    <date month="January" year="1997"/>
4721  </front>
4722  <seriesInfo name="RFC" value="2068"/>
4725<reference anchor="RFC2145">
4726  <front>
4727    <title abbrev="HTTP Version Numbers">Use and Interpretation of HTTP Version Numbers</title>
4728    <author initials="J.C." surname="Mogul" fullname="Jeffrey C. Mogul">
4729      <organization>Western Research Laboratory</organization>
4730      <address><email></email></address>
4731    </author>
4732    <author initials="R.T." surname="Fielding" fullname="Roy T. Fielding">
4733      <organization>Department of Information and Computer Science</organization>
4734      <address><email></email></address>
4735    </author>
4736    <author initials="J." surname="Gettys" fullname="Jim Gettys">
4737      <organization>MIT Laboratory for Computer Science</organization>
4738      <address><email></email></address>
4739    </author>
4740    <author initials="H.F." surname="Nielsen" fullname="Henrik Frystyk Nielsen">
4741      <organization>W3 Consortium</organization>
4742      <address><email></email></address>
4743    </author>
4744    <date month="May" year="1997"/>
4745  </front>
4746  <seriesInfo name="RFC" value="2145"/>
4749<reference anchor="RFC2616">
4750  <front>
4751    <title>Hypertext Transfer Protocol -- HTTP/1.1</title>
4752    <author initials="R." surname="Fielding" fullname="R. Fielding">
4753      <organization>University of California, Irvine</organization>
4754      <address><email></email></address>
4755    </author>
4756    <author initials="J." surname="Gettys" fullname="J. Gettys">
4757      <organization>W3C</organization>
4758      <address><email></email></address>
4759    </author>
4760    <author initials="J." surname="Mogul" fullname="J. Mogul">
4761      <organization>Compaq Computer Corporation</organization>
4762      <address><email></email></address>
4763    </author>
4764    <author initials="H." surname="Frystyk" fullname="H. Frystyk">
4765      <organization>MIT Laboratory for Computer Science</organization>
4766      <address><email></email></address>
4767    </author>
4768    <author initials="L." surname="Masinter" fullname="L. Masinter">
4769      <organization>Xerox Corporation</organization>
4770      <address><email></email></address>
4771    </author>
4772    <author initials="P." surname="Leach" fullname="P. Leach">
4773      <organization>Microsoft Corporation</organization>
4774      <address><email></email></address>
4775    </author>
4776    <author initials="T." surname="Berners-Lee" fullname="T. Berners-Lee">
4777      <organization>W3C</organization>
4778      <address><email></email></address>
4779    </author>
4780    <date month="June" year="1999"/>
4781  </front>
4782  <seriesInfo name="RFC" value="2616"/>
4785<reference anchor='RFC2817'>
4786  <front>
4787    <title>Upgrading to TLS Within HTTP/1.1</title>
4788    <author initials='R.' surname='Khare' fullname='R. Khare'>
4789      <organization>4K Associates / UC Irvine</organization>
4790      <address><email></email></address>
4791    </author>
4792    <author initials='S.' surname='Lawrence' fullname='S. Lawrence'>
4793      <organization>Agranat Systems, Inc.</organization>
4794      <address><email></email></address>
4795    </author>
4796    <date year='2000' month='May' />
4797  </front>
4798  <seriesInfo name='RFC' value='2817' />
4801<reference anchor='RFC2818'>
4802  <front>
4803    <title>HTTP Over TLS</title>
4804    <author initials='E.' surname='Rescorla' fullname='Eric Rescorla'>
4805      <organization>RTFM, Inc.</organization>
4806      <address><email></email></address>
4807    </author>
4808    <date year='2000' month='May' />
4809  </front>
4810  <seriesInfo name='RFC' value='2818' />
4813<reference anchor='RFC3040'>
4814  <front>
4815    <title>Internet Web Replication and Caching Taxonomy</title>
4816    <author initials='I.' surname='Cooper' fullname='I. Cooper'>
4817      <organization>Equinix, Inc.</organization>
4818    </author>
4819    <author initials='I.' surname='Melve' fullname='I. Melve'>
4820      <organization>UNINETT</organization>
4821    </author>
4822    <author initials='G.' surname='Tomlinson' fullname='G. Tomlinson'>
4823      <organization>CacheFlow Inc.</organization>
4824    </author>
4825    <date year='2001' month='January' />
4826  </front>
4827  <seriesInfo name='RFC' value='3040' />
4830<reference anchor='BCP90'>
4831  <front>
4832    <title>Registration Procedures for Message Header Fields</title>
4833    <author initials='G.' surname='Klyne' fullname='G. Klyne'>
4834      <organization>Nine by Nine</organization>
4835      <address><email></email></address>
4836    </author>
4837    <author initials='M.' surname='Nottingham' fullname='M. Nottingham'>
4838      <organization>BEA Systems</organization>
4839      <address><email></email></address>
4840    </author>
4841    <author initials='J.' surname='Mogul' fullname='J. Mogul'>
4842      <organization>HP Labs</organization>
4843      <address><email></email></address>
4844    </author>
4845    <date year='2004' month='September' />
4846  </front>
4847  <seriesInfo name='BCP' value='90' />
4848  <seriesInfo name='RFC' value='3864' />
4851<reference anchor='RFC4033'>
4852  <front>
4853    <title>DNS Security Introduction and Requirements</title>
4854    <author initials='R.' surname='Arends' fullname='R. Arends'/>
4855    <author initials='R.' surname='Austein' fullname='R. Austein'/>
4856    <author initials='M.' surname='Larson' fullname='M. Larson'/>
4857    <author initials='D.' surname='Massey' fullname='D. Massey'/>
4858    <author initials='S.' surname='Rose' fullname='S. Rose'/>
4859    <date year='2005' month='March' />
4860  </front>
4861  <seriesInfo name='RFC' value='4033' />
4864<reference anchor="BCP13">
4865  <front>
4866    <title>Media Type Specifications and Registration Procedures</title>
4867    <author initials="N." surname="Freed" fullname="Ned Freed">
4868      <organization>Oracle</organization>
4869      <address>
4870        <email></email>
4871      </address>
4872    </author>
4873    <author initials="J." surname="Klensin" fullname="John C. Klensin">
4874      <address>
4875        <email></email>
4876      </address>
4877    </author>
4878    <author initials="T." surname="Hansen" fullname="Tony Hansen">
4879      <organization>AT&amp;T Laboratories</organization>
4880      <address>
4881        <email></email>
4882      </address>
4883    </author>
4884    <date year="2013" month="January"/>
4885  </front>
4886  <seriesInfo name="BCP" value="13"/>
4887  <seriesInfo name="RFC" value="6838"/>
4890<reference anchor='BCP115'>
4891  <front>
4892    <title>Guidelines and Registration Procedures for New URI Schemes</title>
4893    <author initials='T.' surname='Hansen' fullname='T. Hansen'>
4894      <organization>AT&amp;T Laboratories</organization>
4895      <address>
4896        <email></email>
4897      </address>
4898    </author>
4899    <author initials='T.' surname='Hardie' fullname='T. Hardie'>
4900      <organization>Qualcomm, Inc.</organization>
4901      <address>
4902        <email></email>
4903      </address>
4904    </author>
4905    <author initials='L.' surname='Masinter' fullname='L. Masinter'>
4906      <organization>Adobe Systems</organization>
4907      <address>
4908        <email></email>
4909      </address>
4910    </author>
4911    <date year='2006' month='February' />
4912  </front>
4913  <seriesInfo name='BCP' value='115' />
4914  <seriesInfo name='RFC' value='4395' />
4917<reference anchor='RFC4559'>
4918  <front>
4919    <title>SPNEGO-based Kerberos and NTLM HTTP Authentication in Microsoft Windows</title>
4920    <author initials='K.' surname='Jaganathan' fullname='K. Jaganathan'/>
4921    <author initials='L.' surname='Zhu' fullname='L. Zhu'/>
4922    <author initials='J.' surname='Brezak' fullname='J. Brezak'/>
4923    <date year='2006' month='June' />
4924  </front>
4925  <seriesInfo name='RFC' value='4559' />
4928<reference anchor='RFC5226'>
4929  <front>
4930    <title>Guidelines for Writing an IANA Considerations Section in RFCs</title>
4931    <author initials='T.' surname='Narten' fullname='T. Narten'>
4932      <organization>IBM</organization>
4933      <address><email></email></address>
4934    </author>
4935    <author initials='H.' surname='Alvestrand' fullname='H. Alvestrand'>
4936      <organization>Google</organization>
4937      <address><email></email></address>
4938    </author>
4939    <date year='2008' month='May' />
4940  </front>
4941  <seriesInfo name='BCP' value='26' />
4942  <seriesInfo name='RFC' value='5226' />
4945<reference anchor='RFC5246'>
4946   <front>
4947      <title>The Transport Layer Security (TLS) Protocol Version 1.2</title>
4948      <author initials='T.' surname='Dierks' fullname='T. Dierks'>
4949         <organization />
4950      </author>
4951      <author initials='E.' surname='Rescorla' fullname='E. Rescorla'>
4952         <organization>RTFM, Inc.</organization>
4953      </author>
4954      <date year='2008' month='August' />
4955   </front>
4956   <seriesInfo name='RFC' value='5246' />
4959<reference anchor="RFC5322">
4960  <front>
4961    <title>Internet Message Format</title>
4962    <author initials="P." surname="Resnick" fullname="P. Resnick">
4963      <organization>Qualcomm Incorporated</organization>
4964    </author>
4965    <date year="2008" month="October"/>
4966  </front>
4967  <seriesInfo name="RFC" value="5322"/>
4970<reference anchor="RFC6265">
4971  <front>
4972    <title>HTTP State Management Mechanism</title>
4973    <author initials="A." surname="Barth" fullname="Adam Barth">
4974      <organization abbrev="U.C. Berkeley">
4975        University of California, Berkeley
4976      </organization>
4977      <address><email></email></address>
4978    </author>
4979    <date year="2011" month="April" />
4980  </front>
4981  <seriesInfo name="RFC" value="6265"/>
4984<reference anchor='RFC6585'>
4985  <front>
4986    <title>Additional HTTP Status Codes</title>
4987    <author initials='M.' surname='Nottingham' fullname='M. Nottingham'>
4988      <organization>Rackspace</organization>
4989    </author>
4990    <author initials='R.' surname='Fielding' fullname='R. Fielding'>
4991      <organization>Adobe</organization>
4992    </author>
4993    <date year='2012' month='April' />
4994   </front>
4995   <seriesInfo name='RFC' value='6585' />
4998<!--<reference anchor='BCP97'>
4999  <front>
5000    <title>Handling Normative References to Standards-Track Documents</title>
5001    <author initials='J.' surname='Klensin' fullname='J. Klensin'>
5002      <address>
5003        <email></email>
5004      </address>
5005    </author>
5006    <author initials='S.' surname='Hartman' fullname='S. Hartman'>
5007      <organization>MIT</organization>
5008      <address>
5009        <email></email>
5010      </address>
5011    </author>
5012    <date year='2007' month='June' />
5013  </front>
5014  <seriesInfo name='BCP' value='97' />
5015  <seriesInfo name='RFC' value='4897' />
5018<reference anchor="Kri2001" target="">
5019  <front>
5020    <title>HTTP Cookies: Standards, Privacy, and Politics</title>
5021    <author initials="D." surname="Kristol" fullname="David M. Kristol"/>
5022    <date year="2001" month="November"/>
5023  </front>
5024  <seriesInfo name="ACM Transactions on Internet Technology" value="1(2)"/>
5030<section title="HTTP Version History" anchor="compatibility">
5032   HTTP has been in use by the World-Wide Web (WWW) global information initiative
5033   since 1990. The first version of HTTP, later referred to as HTTP/0.9,
5034   was a simple protocol for hypertext data transfer across the Internet
5035   with only a single request method (GET) and no metadata.
5036   HTTP/1.0, as defined by <xref target="RFC1945"/>, added a range of request
5037   methods and MIME-like messaging that could include metadata about the data
5038   transferred and modifiers on the request/response semantics. However,
5039   HTTP/1.0 did not sufficiently take into consideration the effects of
5040   hierarchical proxies, caching, the need for persistent connections, or
5041   name-based virtual hosts. The proliferation of incompletely-implemented
5042   applications calling themselves "HTTP/1.0" further necessitated a
5043   protocol version change in order for two communicating applications
5044   to determine each other's true capabilities.
5047   HTTP/1.1 remains compatible with HTTP/1.0 by including more stringent
5048   requirements that enable reliable implementations, adding only
5049   those new features that will either be safely ignored by an HTTP/1.0
5050   recipient or only sent when communicating with a party advertising
5051   conformance with HTTP/1.1.
5054   It is beyond the scope of a protocol specification to mandate
5055   conformance with previous versions. HTTP/1.1 was deliberately
5056   designed, however, to make supporting previous versions easy.
5057   We would expect a general-purpose HTTP/1.1 server to understand
5058   any valid request in the format of HTTP/1.0 and respond appropriately
5059   with an HTTP/1.1 message that only uses features understood (or
5060   safely ignored) by HTTP/1.0 clients.  Likewise, we would expect
5061   an HTTP/1.1 client to understand any valid HTTP/1.0 response.
5064   Since HTTP/0.9 did not support header fields in a request,
5065   there is no mechanism for it to support name-based virtual
5066   hosts (selection of resource by inspection of the <x:ref>Host</x:ref> header
5067   field).  Any server that implements name-based virtual hosts
5068   ought to disable support for HTTP/0.9.  Most requests that
5069   appear to be HTTP/0.9 are, in fact, badly constructed HTTP/1.x
5070   requests wherein a buggy client failed to properly encode
5071   linear whitespace found in a URI reference and placed in
5072   the request-target.
5075<section title="Changes from HTTP/1.0" anchor="changes.from.1.0">
5077   This section summarizes major differences between versions HTTP/1.0
5078   and HTTP/1.1.
5081<section title="Multi-homed Web Servers" anchor="">
5083   The requirements that clients and servers support the <x:ref>Host</x:ref>
5084   header field (<xref target=""/>), report an error if it is
5085   missing from an HTTP/1.1 request, and accept absolute URIs (<xref target="request-target"/>)
5086   are among the most important changes defined by HTTP/1.1.
5089   Older HTTP/1.0 clients assumed a one-to-one relationship of IP
5090   addresses and servers; there was no other established mechanism for
5091   distinguishing the intended server of a request than the IP address
5092   to which that request was directed. The <x:ref>Host</x:ref> header field was
5093   introduced during the development of HTTP/1.1 and, though it was
5094   quickly implemented by most HTTP/1.0 browsers, additional requirements
5095   were placed on all HTTP/1.1 requests in order to ensure complete
5096   adoption.  At the time of this writing, most HTTP-based services
5097   are dependent upon the Host header field for targeting requests.
5101<section title="Keep-Alive Connections" anchor="compatibility.with.http.1.0.persistent.connections">
5103   In HTTP/1.0, each connection is established by the client prior to the
5104   request and closed by the server after sending the response. However, some
5105   implementations implement the explicitly negotiated ("Keep-Alive") version
5106   of persistent connections described in <xref x:sec="19.7.1" x:fmt="of"
5107   target="RFC2068"/>.
5110   Some clients and servers might wish to be compatible with these previous
5111   approaches to persistent connections, by explicitly negotiating for them
5112   with a "Connection: keep-alive" request header field. However, some
5113   experimental implementations of HTTP/1.0 persistent connections are faulty;
5114   for example, if an HTTP/1.0 proxy server doesn't understand
5115   <x:ref>Connection</x:ref>, it will erroneously forward that header field
5116   to the next inbound server, which would result in a hung connection.
5119   One attempted solution was the introduction of a Proxy-Connection header
5120   field, targeted specifically at proxies. In practice, this was also
5121   unworkable, because proxies are often deployed in multiple layers, bringing
5122   about the same problem discussed above.
5125   As a result, clients are encouraged not to send the Proxy-Connection header
5126   field in any requests.
5129   Clients are also encouraged to consider the use of Connection: keep-alive
5130   in requests carefully; while they can enable persistent connections with
5131   HTTP/1.0 servers, clients using them will need to monitor the
5132   connection for "hung" requests (which indicate that the client ought stop
5133   sending the header field), and this mechanism ought not be used by clients
5134   at all when a proxy is being used.
5138<section title="Introduction of Transfer-Encoding" anchor="introduction.of.transfer-encoding">
5140   HTTP/1.1 introduces the <x:ref>Transfer-Encoding</x:ref> header field
5141   (<xref target="header.transfer-encoding"/>).
5142   Transfer codings need to be decoded prior to forwarding an HTTP message
5143   over a MIME-compliant protocol.
5149<section title="Changes from RFC 2616" anchor="changes.from.rfc.2616">
5151  HTTP's approach to error handling has been explained.
5152  (<xref target="conformance" />)
5155  The HTTP-version ABNF production has been clarified to be case-sensitive.
5156  Additionally, version numbers has been restricted to single digits, due
5157  to the fact that implementations are known to handle multi-digit version
5158  numbers incorrectly.
5159  (<xref target="http.version"/>)
5162  Userinfo (i.e., username and password) are now disallowed in HTTP and
5163  HTTPS URIs, because of security issues related to their transmission on the
5164  wire.
5165  (<xref target="http.uri" />)
5168  The HTTPS URI scheme is now defined by this specification; previously,
5169  it was done in  <xref target="RFC2818" x:fmt="of" x:sec="2.4"/>.
5170  Furthermore, it implies end-to-end security.
5171  (<xref target="https.uri"/>)
5174  HTTP messages can be (and often are) buffered by implementations; despite
5175  it sometimes being available as a stream, HTTP is fundamentally a
5176  message-oriented protocol.
5177  Minimum supported sizes for various protocol elements have been
5178  suggested, to improve interoperability.
5179  (<xref target="http.message" />)
5182  Invalid whitespace around field-names is now required to be rejected,
5183  because accepting it represents a security vulnerability.
5184  The ABNF productions defining header fields now only list the field value.
5185  (<xref target="header.fields"/>)
5188  Rules about implicit linear whitespace between certain grammar productions
5189  have been removed; now whitespace is only allowed where specifically
5190  defined in the ABNF.
5191  (<xref target="whitespace"/>)
5194  Header fields that span multiple lines ("line folding") are deprecated.
5195  (<xref target="field.parsing" />)
5198  The NUL octet is no longer allowed in comment and quoted-string text, and
5199  handling of backslash-escaping in them has been clarified.
5200  The quoted-pair rule no longer allows escaping control characters other than
5201  HTAB.
5202  Non-ASCII content in header fields and the reason phrase has been obsoleted
5203  and made opaque (the TEXT rule was removed).
5204  (<xref target="field.components"/>)
5207  Bogus "<x:ref>Content-Length</x:ref>" header fields are now required to be
5208  handled as errors by recipients.
5209  (<xref target="header.content-length"/>)
5212  The algorithm for determining the message body length has been clarified
5213  to indicate all of the special cases (e.g., driven by methods or status
5214  codes) that affect it, and that new protocol elements cannot define such
5215  special cases.
5216  CONNECT is a new, special case in determining message body length.
5217  "multipart/byteranges" is no longer a way of determining message body length
5218  detection.
5219  (<xref target="message.body.length"/>)
5222  The "identity" transfer coding token has been removed.
5223  (Sections <xref format="counter" target="message.body"/> and
5224  <xref format="counter" target="transfer.codings"/>)
5227  Chunk length does not include the count of the octets in the
5228  chunk header and trailer.
5229  Line folding in chunk extensions is  disallowed.
5230  (<xref target="chunked.encoding"/>)
5233  The meaning of the "deflate" content coding has been clarified.
5234  (<xref target="deflate.coding" />)
5237  The segment + query components of RFC 3986 have been used to define the
5238  request-target, instead of abs_path from RFC 1808.
5239  The asterisk-form of the request-target is only allowed with the OPTIONS
5240  method.
5241  (<xref target="request-target"/>)
5244  The term "Effective Request URI" has been introduced.
5245  (<xref target="effective.request.uri" />)
5248  Gateways do not need to generate <x:ref>Via</x:ref> header fields anymore.
5249  (<xref target="header.via"/>)
5252  Exactly when "close" connection options have to be sent has been clarified.
5253  Also, "hop-by-hop" header fields are required to appear in the Connection header
5254  field; just because they're defined as hop-by-hop in this specification
5255  doesn't exempt them.
5256  (<xref target="header.connection"/>)
5259  The limit of two connections per server has been removed.
5260  An idempotent sequence of requests is no longer required to be retried.
5261  The requirement to retry requests under certain circumstances when the
5262  server prematurely closes the connection has been removed.
5263  Also, some extraneous requirements about when servers are allowed to close
5264  connections prematurely have been removed.
5265  (<xref target="persistent.connections"/>)
5268  The semantics of the <x:ref>Upgrade</x:ref> header field is now defined in
5269  responses other than 101 (this was incorporated from <xref
5270  target="RFC2817"/>). Furthermore, the ordering in the field value is now
5271  significant.
5272  (<xref target="header.upgrade"/>)
5275  Empty list elements in list productions (e.g., a list header field containing
5276  ", ,") have been deprecated.
5277  (<xref target="abnf.extension"/>)
5280  Registration of Transfer Codings now requires IETF Review
5281  (<xref target="transfer.coding.registry"/>)
5284  This specification now defines the Upgrade Token Registry, previously
5285  defined in <xref target="RFC2817" x:fmt="of" x:sec="7.2"/>.
5286  (<xref target="upgrade.token.registry"/>)
5289  The expectation to support HTTP/0.9 requests has been removed.
5290  (<xref target="compatibility"/>)
5293  Issues with the Keep-Alive and Proxy-Connection header fields in requests
5294  are pointed out, with use of the latter being discouraged altogether.
5295  (<xref target="compatibility.with.http.1.0.persistent.connections" />)
5300<?BEGININC p1-messaging.abnf-appendix ?>
5301<section xmlns:x="" title="Collected ABNF" anchor="collected.abnf">
5303<artwork type="abnf" name="p1-messaging.parsed-abnf">
5304<x:ref>BWS</x:ref> = OWS
5306<x:ref>Connection</x:ref> = *( "," OWS ) connection-option *( OWS "," [ OWS
5307 connection-option ] )
5308<x:ref>Content-Length</x:ref> = 1*DIGIT
5310<x:ref>HTTP-message</x:ref> = start-line *( header-field CRLF ) CRLF [ message-body
5311 ]
5312<x:ref>HTTP-name</x:ref> = %x48.54.54.50 ; HTTP
5313<x:ref>HTTP-version</x:ref> = HTTP-name "/" DIGIT "." DIGIT
5314<x:ref>Host</x:ref> = uri-host [ ":" port ]
5316<x:ref>OWS</x:ref> = *( SP / HTAB )
5318<x:ref>RWS</x:ref> = 1*( SP / HTAB )
5320<x:ref>TE</x:ref> = [ ( "," / t-codings ) *( OWS "," [ OWS t-codings ] ) ]
5321<x:ref>Trailer</x:ref> = *( "," OWS ) field-name *( OWS "," [ OWS field-name ] )
5322<x:ref>Transfer-Encoding</x:ref> = *( "," OWS ) transfer-coding *( OWS "," [ OWS
5323 transfer-coding ] )
5325<x:ref>URI-reference</x:ref> = &lt;URI-reference, defined in [RFC3986], Section 4.1&gt;
5326<x:ref>Upgrade</x:ref> = *( "," OWS ) protocol *( OWS "," [ OWS protocol ] )
5328<x:ref>Via</x:ref> = *( "," OWS ) ( received-protocol RWS received-by [ RWS comment
5329 ] ) *( OWS "," [ OWS ( received-protocol RWS received-by [ RWS
5330 comment ] ) ] )
5332<x:ref>absolute-URI</x:ref> = &lt;absolute-URI, defined in [RFC3986], Section 4.3&gt;
5333<x:ref>absolute-form</x:ref> = absolute-URI
5334<x:ref>absolute-path</x:ref> = 1*( "/" segment )
5335<x:ref>asterisk-form</x:ref> = "*"
5336<x:ref>authority</x:ref> = &lt;authority, defined in [RFC3986], Section 3.2&gt;
5337<x:ref>authority-form</x:ref> = authority
5339<x:ref>chunk</x:ref> = chunk-size [ chunk-ext ] CRLF chunk-data CRLF
5340<x:ref>chunk-data</x:ref> = 1*OCTET
5341<x:ref>chunk-ext</x:ref> = *( ";" chunk-ext-name [ "=" chunk-ext-val ] )
5342<x:ref>chunk-ext-name</x:ref> = token
5343<x:ref>chunk-ext-val</x:ref> = token / quoted-string
5344<x:ref>chunk-size</x:ref> = 1*HEXDIG
5345<x:ref>chunked-body</x:ref> = *chunk last-chunk trailer-part CRLF
5346<x:ref>comment</x:ref> = "(" *( ctext / quoted-pair / comment ) ")"
5347<x:ref>connection-option</x:ref> = token
5348<x:ref>ctext</x:ref> = HTAB / SP / %x21-27 ; '!'-'''
5349 / %x2A-5B ; '*'-'['
5350 / %x5D-7E ; ']'-'~'
5351 / obs-text
5353<x:ref>field-content</x:ref> = *( HTAB / SP / VCHAR / obs-text )
5354<x:ref>field-name</x:ref> = token
5355<x:ref>field-value</x:ref> = *( field-content / obs-fold )
5356<x:ref>fragment</x:ref> = &lt;fragment, defined in [RFC3986], Section 3.5&gt;
5358<x:ref>header-field</x:ref> = field-name ":" OWS field-value OWS
5359<x:ref>http-URI</x:ref> = "http://" authority path-abempty [ "?" query ] [ "#"
5360 fragment ]
5361<x:ref>https-URI</x:ref> = "https://" authority path-abempty [ "?" query ] [ "#"
5362 fragment ]
5364<x:ref>last-chunk</x:ref> = 1*"0" [ chunk-ext ] CRLF
5366<x:ref>message-body</x:ref> = *OCTET
5367<x:ref>method</x:ref> = token
5369<x:ref>obs-fold</x:ref> = CRLF ( SP / HTAB )
5370<x:ref>obs-text</x:ref> = %x80-FF
5371<x:ref>origin-form</x:ref> = absolute-path [ "?" query ]
5373<x:ref>partial-URI</x:ref> = relative-part [ "?" query ]
5374<x:ref>path-abempty</x:ref> = &lt;path-abempty, defined in [RFC3986], Section 3.3&gt;
5375<x:ref>port</x:ref> = &lt;port, defined in [RFC3986], Section 3.2.3&gt;
5376<x:ref>protocol</x:ref> = protocol-name [ "/" protocol-version ]
5377<x:ref>protocol-name</x:ref> = token
5378<x:ref>protocol-version</x:ref> = token
5379<x:ref>pseudonym</x:ref> = token
5381<x:ref>qdtext</x:ref> = HTAB / SP / "!" / %x23-5B ; '#'-'['
5382 / %x5D-7E ; ']'-'~'
5383 / obs-text
5384<x:ref>query</x:ref> = &lt;query, defined in [RFC3986], Section 3.4&gt;
5385<x:ref>quoted-pair</x:ref> = "\" ( HTAB / SP / VCHAR / obs-text )
5386<x:ref>quoted-string</x:ref> = DQUOTE *( qdtext / quoted-pair ) DQUOTE
5388<x:ref>rank</x:ref> = ( "0" [ "." *3DIGIT ] ) / ( "1" [ "." *3"0" ] )
5389<x:ref>reason-phrase</x:ref> = *( HTAB / SP / VCHAR / obs-text )
5390<x:ref>received-by</x:ref> = ( uri-host [ ":" port ] ) / pseudonym
5391<x:ref>received-protocol</x:ref> = [ protocol-name "/" ] protocol-version
5392<x:ref>relative-part</x:ref> = &lt;relative-part, defined in [RFC3986], Section 4.2&gt;
5393<x:ref>request-line</x:ref> = method SP request-target SP HTTP-version CRLF
5394<x:ref>request-target</x:ref> = origin-form / absolute-form / authority-form /
5395 asterisk-form
5397<x:ref>segment</x:ref> = &lt;segment, defined in [RFC3986], Section 3.3&gt;
5398<x:ref>start-line</x:ref> = request-line / status-line
5399<x:ref>status-code</x:ref> = 3DIGIT
5400<x:ref>status-line</x:ref> = HTTP-version SP status-code SP reason-phrase CRLF
5402<x:ref>t-codings</x:ref> = "trailers" / ( transfer-coding [ t-ranking ] )
5403<x:ref>t-ranking</x:ref> = OWS ";" OWS "q=" rank
5404<x:ref>tchar</x:ref> = "!" / "#" / "$" / "%" / "&amp;" / "'" / "*" / "+" / "-" / "." /
5405 "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
5406<x:ref>token</x:ref> = 1*tchar
5407<x:ref>trailer-part</x:ref> = *( header-field CRLF )
5408<x:ref>transfer-coding</x:ref> = "chunked" / "compress" / "deflate" / "gzip" /
5409 transfer-extension
5410<x:ref>transfer-extension</x:ref> = token *( OWS ";" OWS transfer-parameter )
5411<x:ref>transfer-parameter</x:ref> = token BWS "=" BWS ( token / quoted-string )
5413<x:ref>uri-host</x:ref> = &lt;host, defined in [RFC3986], Section 3.2.2&gt;
5417<?ENDINC p1-messaging.abnf-appendix ?>
5419<section title="Change Log (to be removed by RFC Editor before publication)" anchor="change.log">
5421<section title="Since RFC 2616">
5423  Changes up to the IETF Last Call draft are summarized
5424  in <eref target=""/>.
5428<section title="Since draft-ietf-httpbis-p1-messaging-24" anchor="changes.since.24">
5430  Closed issues:
5431  <list style="symbols">
5432    <t>
5433      <eref target=""/>:
5434      "APPSDIR review of draft-ietf-httpbis-p1-messaging-24"
5435    </t>
5436    <t>
5437      <eref target=""/>:
5438      "integer value parsing"
5439    </t>
5440    <t>
5441      <eref target=""/>:
5442      "move IANA registrations to correct draft"
5443    </t>
5444  </list>
5448<section title="Since draft-ietf-httpbis-p1-messaging-25" anchor="changes.since.25">
5450  Closed issues:
5451  <list style="symbols">
5452    <t>
5453      <eref target=""/>:
5454      "check media type registration templates"
5455    </t>
5456    <t>
5457      <eref target=""/>:
5458      "Redundant rule quoted-str-nf"
5459    </t>
5460    <t>
5461      <eref target=""/>:
5462      "add 'stateless' to Abstract"
5463    </t>
5464    <t>
5465      <eref target=""/>:
5466      "clarify ABNF layering"
5467    </t>
5468    <t>
5469      <eref target=""/>:
5470      "use of 'word' ABNF production"
5471    </t>
5472    <t>
5473      <eref target=""/>:
5474      "improve introduction of list rule"
5475    </t>
5476    <t>
5477      <eref target=""/>:
5478      "moving 2616/2068/2145 to historic"
5479    </t>
5480    <t>
5481      <eref target=""/>:
5482      "augment security considerations with pointers to current research"
5483    </t>
5484  </list>
5487  Partly resolved issues:
5488  <list style="symbols">
5489    <t>
5490      <eref target=""/>:
5491      "IESG ballot on draft-ietf-httpbis-p1-messaging-25"
5492    </t>
5493  </list>
Note: See TracBrowser for help on using the repository browser.