source: draft-ietf-httpbis/latest/p1-messaging.xml @ 2398

Last change on this file since 2398 was 2398, checked in by fielding@…, 8 years ago

rephrase misused SHOULDs; addresses #472

  • Property svn:eol-style set to native
  • Property svn:mime-type set to text/xml
File size: 236.9 KB
1<?xml version="1.0" encoding="utf-8"?>
2<?xml-stylesheet type='text/xsl' href='../myxml2rfc.xslt'?>
3<!DOCTYPE rfc [
4  <!ENTITY MAY "<bcp14 xmlns=''>MAY</bcp14>">
5  <!ENTITY MUST "<bcp14 xmlns=''>MUST</bcp14>">
6  <!ENTITY MUST-NOT "<bcp14 xmlns=''>MUST NOT</bcp14>">
7  <!ENTITY OPTIONAL "<bcp14 xmlns=''>OPTIONAL</bcp14>">
8  <!ENTITY RECOMMENDED "<bcp14 xmlns=''>RECOMMENDED</bcp14>">
9  <!ENTITY REQUIRED "<bcp14 xmlns=''>REQUIRED</bcp14>">
10  <!ENTITY SHALL "<bcp14 xmlns=''>SHALL</bcp14>">
11  <!ENTITY SHALL-NOT "<bcp14 xmlns=''>SHALL NOT</bcp14>">
12  <!ENTITY SHOULD "<bcp14 xmlns=''>SHOULD</bcp14>">
13  <!ENTITY SHOULD-NOT "<bcp14 xmlns=''>SHOULD NOT</bcp14>">
14  <!ENTITY ID-VERSION "latest">
15  <!ENTITY ID-MONTH "September">
16  <!ENTITY ID-YEAR "2013">
17  <!ENTITY mdash "&#8212;">
18  <!ENTITY Note "<x:h xmlns:x=''>Note:</x:h>">
19  <!ENTITY caching-overview       "<xref target='Part6' x:rel='#caching.overview' xmlns:x=''/>">
20  <!ENTITY cache-incomplete       "<xref target='Part6' x:rel='#response.cacheability' xmlns:x=''/>">
21  <!ENTITY payload                "<xref target='Part2' x:rel='#payload' xmlns:x=''/>">
22  <!ENTITY media-type            "<xref target='Part2' x:rel='#media.type' xmlns:x=''/>">
23  <!ENTITY content-codings        "<xref target='Part2' x:rel='#content.codings' xmlns:x=''/>">
24  <!ENTITY CONNECT                "<xref target='Part2' x:rel='#CONNECT' xmlns:x=''/>">
25  <!ENTITY content.negotiation    "<xref target='Part2' x:rel='#content.negotiation' xmlns:x=''/>">
26  <!ENTITY diff-mime              "<xref target='Part2' x:rel='#differences.between.http.and.mime' xmlns:x=''/>">
27  <!ENTITY representation         "<xref target='Part2' x:rel='#representations' xmlns:x=''/>">
28  <!ENTITY HEAD                   "<xref target='Part2' x:rel='#HEAD' xmlns:x=''/>">
29  <!ENTITY header-allow           "<xref target='Part2' x:rel='#header.allow' xmlns:x=''/>">
30  <!ENTITY header-cache-control   "<xref target='Part6' x:rel='#header.cache-control' xmlns:x=''/>">
31  <!ENTITY header-content-encoding    "<xref target='Part2' x:rel='#header.content-encoding' xmlns:x=''/>">
32  <!ENTITY header-content-location    "<xref target='Part2' x:rel='#header.content-location' xmlns:x=''/>">
33  <!ENTITY header-content-range   "<xref target='Part5' x:rel='#header.content-range' xmlns:x=''/>">
34  <!ENTITY header-content-type    "<xref target='Part2' x:rel='#header.content-type' xmlns:x=''/>">
35  <!ENTITY header-date            "<xref target='Part2' x:rel='' xmlns:x=''/>">
36  <!ENTITY header-etag            "<xref target='Part4' x:rel='#header.etag' xmlns:x=''/>">
37  <!ENTITY header-expires         "<xref target='Part6' x:rel='#header.expires' xmlns:x=''/>">
38  <!ENTITY header-last-modified   "<xref target='Part4' x:rel='#header.last-modified' xmlns:x=''/>">
39  <!ENTITY header-mime-version    "<xref target='Part2' x:rel='#mime-version' xmlns:x=''/>">
40  <!ENTITY header-pragma          "<xref target='Part6' x:rel='#header.pragma' xmlns:x=''/>">
41  <!ENTITY header-proxy-authenticate  "<xref target='Part7' x:rel='#header.proxy-authenticate' xmlns:x=''/>">
42  <!ENTITY header-proxy-authorization "<xref target='Part7' x:rel='#header.proxy-authorization' xmlns:x=''/>">
43  <!ENTITY header-server          "<xref target='Part2' x:rel='#header.server' xmlns:x=''/>">
44  <!ENTITY header-warning         "<xref target='Part6' x:rel='#header.warning' xmlns:x=''/>">
45  <!ENTITY idempotent-methods     "<xref target='Part2' x:rel='#idempotent.methods' xmlns:x=''/>">
46  <!ENTITY safe-methods           "<xref target='Part2' x:rel='#safe.methods' xmlns:x=''/>">
47  <!ENTITY methods                "<xref target='Part2' x:rel='#methods' xmlns:x=''/>">
48  <!ENTITY OPTIONS                "<xref target='Part2' x:rel='#OPTIONS' xmlns:x=''/>">
49  <!ENTITY qvalue                 "<xref target='Part2' x:rel='#quality.values' xmlns:x=''/>">
50  <!ENTITY resource               "<xref target='Part2' x:rel='#resources' xmlns:x=''/>">
51  <!ENTITY status-codes           "<xref target='Part2' x:rel='' xmlns:x=''/>">
52  <!ENTITY status-1xx             "<xref target='Part2' x:rel='#status.1xx' xmlns:x=''/>">
53  <!ENTITY status-203             "<xref target='Part2' x:rel='#status.203' xmlns:x=''/>">
54  <!ENTITY status-3xx             "<xref target='Part2' x:rel='#status.3xx' xmlns:x=''/>">
55  <!ENTITY status-304             "<xref target='Part4' x:rel='#status.304' xmlns:x=''/>">
56  <!ENTITY status-4xx             "<xref target='Part2' x:rel='#status.4xx' xmlns:x=''/>">
57  <!ENTITY status-414             "<xref target='Part2' x:rel='#status.414' xmlns:x=''/>">
58  <!ENTITY iana-header-registry   "<xref target='Part2' x:rel='#header.field.registry' xmlns:x=''/>">
60<?rfc toc="yes" ?>
61<?rfc symrefs="yes" ?>
62<?rfc sortrefs="yes" ?>
63<?rfc compact="yes"?>
64<?rfc subcompact="no" ?>
65<?rfc linkmailto="no" ?>
66<?rfc editing="no" ?>
67<?rfc comments="yes"?>
68<?rfc inline="yes"?>
69<?rfc rfcedstyle="yes"?>
70<?rfc-ext allow-markup-in-artwork="yes" ?>
71<?rfc-ext include-references-in-index="yes" ?>
72<rfc obsoletes="2145,2616" updates="2817,2818" category="std" x:maturity-level="proposed"
73     ipr="pre5378Trust200902" docName="draft-ietf-httpbis-p1-messaging-&ID-VERSION;"
74     xmlns:x=''>
75<x:link rel="next" basename="p2-semantics"/>
76<x:feedback template="{docname},%20%22{section}%22&amp;body=&lt;{ref}&gt;:"/>
79  <title abbrev="HTTP/1.1 Message Syntax and Routing">Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing</title>
81  <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
82    <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
83    <address>
84      <postal>
85        <street>345 Park Ave</street>
86        <city>San Jose</city>
87        <region>CA</region>
88        <code>95110</code>
89        <country>USA</country>
90      </postal>
91      <email></email>
92      <uri></uri>
93    </address>
94  </author>
96  <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
97    <organization abbrev="greenbytes">greenbytes GmbH</organization>
98    <address>
99      <postal>
100        <street>Hafenweg 16</street>
101        <city>Muenster</city><region>NW</region><code>48155</code>
102        <country>Germany</country>
103      </postal>
104      <email></email>
105      <uri></uri>
106    </address>
107  </author>
109  <date month="&ID-MONTH;" year="&ID-YEAR;"/>
110  <workgroup>HTTPbis Working Group</workgroup>
114   The Hypertext Transfer Protocol (HTTP) is an application-level protocol for
115   distributed, collaborative, hypertext information systems. HTTP has been in
116   use by the World Wide Web global information initiative since 1990.
117   This document provides an overview of HTTP architecture and its associated
118   terminology, defines the "http" and "https" Uniform Resource Identifier
119   (URI) schemes, defines the HTTP/1.1 message syntax and parsing requirements,
120   and describes general security concerns for implementations.
124<note title="Editorial Note (To be removed by RFC Editor)">
125  <t>
126    Discussion of this draft takes place on the HTTPBIS working group
127    mailing list (, which is archived at
128    <eref target=""/>.
129  </t>
130  <t>
131    The current issues list is at
132    <eref target=""/> and related
133    documents (including fancy diffs) can be found at
134    <eref target=""/>.
135  </t>
136  <t>
137    The changes in this draft are summarized in <xref target="changes.since.23"/>.
138  </t>
142<section title="Introduction" anchor="introduction">
144   The Hypertext Transfer Protocol (HTTP) is an application-level
145   request/response protocol that uses extensible semantics and self-descriptive
146   message payloads for flexible interaction with network-based hypertext
147   information systems. This document is the first in a series of documents
148   that collectively form the HTTP/1.1 specification:
149   <list style="empty">
150    <t>RFC xxx1: Message Syntax and Routing</t>
151    <t><xref target="Part2" x:fmt="none">RFC xxx2</xref>: Semantics and Content</t>
152    <t><xref target="Part4" x:fmt="none">RFC xxx3</xref>: Conditional Requests</t>
153    <t><xref target="Part5" x:fmt="none">RFC xxx4</xref>: Range Requests</t>
154    <t><xref target="Part6" x:fmt="none">RFC xxx5</xref>: Caching</t>
155    <t><xref target="Part7" x:fmt="none">RFC xxx6</xref>: Authentication</t>
156   </list>
159   This HTTP/1.1 specification obsoletes and moves to historic status
160   <xref target="RFC2616" x:fmt="none">RFC 2616</xref>, its predecessor
161   <xref target="RFC2068" x:fmt="none">RFC 2068</xref>, and
162   <xref target="RFC2145" x:fmt="none">RFC 2145</xref> (on HTTP versioning).
163   This specification also updates the use of CONNECT to establish a tunnel,
164   previously defined in <xref target="RFC2817" x:fmt="none">RFC 2817</xref>,
165   and defines the "https" URI scheme that was described informally in
166   <xref target="RFC2818" x:fmt="none">RFC 2818</xref>.
169   HTTP is a generic interface protocol for information systems. It is
170   designed to hide the details of how a service is implemented by presenting
171   a uniform interface to clients that is independent of the types of
172   resources provided. Likewise, servers do not need to be aware of each
173   client's purpose: an HTTP request can be considered in isolation rather
174   than being associated with a specific type of client or a predetermined
175   sequence of application steps. The result is a protocol that can be used
176   effectively in many different contexts and for which implementations can
177   evolve independently over time.
180   HTTP is also designed for use as an intermediation protocol for translating
181   communication to and from non-HTTP information systems.
182   HTTP proxies and gateways can provide access to alternative information
183   services by translating their diverse protocols into a hypertext
184   format that can be viewed and manipulated by clients in the same way
185   as HTTP services.
188   One consequence of this flexibility is that the protocol cannot be
189   defined in terms of what occurs behind the interface. Instead, we
190   are limited to defining the syntax of communication, the intent
191   of received communication, and the expected behavior of recipients.
192   If the communication is considered in isolation, then successful
193   actions ought to be reflected in corresponding changes to the
194   observable interface provided by servers. However, since multiple
195   clients might act in parallel and perhaps at cross-purposes, we
196   cannot require that such changes be observable beyond the scope
197   of a single response.
200   This document describes the architectural elements that are used or
201   referred to in HTTP, defines the "http" and "https" URI schemes,
202   describes overall network operation and connection management,
203   and defines HTTP message framing and forwarding requirements.
204   Our goal is to define all of the mechanisms necessary for HTTP message
205   handling that are independent of message semantics, thereby defining the
206   complete set of requirements for message parsers and
207   message-forwarding intermediaries.
211<section title="Requirement Notation" anchor="intro.requirements">
213   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
214   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
215   document are to be interpreted as described in <xref target="RFC2119"/>.
218   Conformance criteria and considerations regarding error handling
219   are defined in <xref target="conformance"/>.
223<section title="Syntax Notation" anchor="notation">
224<iref primary="true" item="Grammar" subitem="ALPHA"/>
225<iref primary="true" item="Grammar" subitem="CR"/>
226<iref primary="true" item="Grammar" subitem="CRLF"/>
227<iref primary="true" item="Grammar" subitem="CTL"/>
228<iref primary="true" item="Grammar" subitem="DIGIT"/>
229<iref primary="true" item="Grammar" subitem="DQUOTE"/>
230<iref primary="true" item="Grammar" subitem="HEXDIG"/>
231<iref primary="true" item="Grammar" subitem="HTAB"/>
232<iref primary="true" item="Grammar" subitem="LF"/>
233<iref primary="true" item="Grammar" subitem="OCTET"/>
234<iref primary="true" item="Grammar" subitem="SP"/>
235<iref primary="true" item="Grammar" subitem="VCHAR"/>
237   This specification uses the Augmented Backus-Naur Form (ABNF) notation
238   of <xref target="RFC5234"/> with the list rule extension defined in
239   <xref target="abnf.extension"/>.  <xref target="collected.abnf"/> shows
240   the collected ABNF with the list rule expanded.
242<t anchor="core.rules">
243  <x:anchor-alias value="ALPHA"/>
244  <x:anchor-alias value="CTL"/>
245  <x:anchor-alias value="CR"/>
246  <x:anchor-alias value="CRLF"/>
247  <x:anchor-alias value="DIGIT"/>
248  <x:anchor-alias value="DQUOTE"/>
249  <x:anchor-alias value="HEXDIG"/>
250  <x:anchor-alias value="HTAB"/>
251  <x:anchor-alias value="LF"/>
252  <x:anchor-alias value="OCTET"/>
253  <x:anchor-alias value="SP"/>
254  <x:anchor-alias value="VCHAR"/>
255   The following core rules are included by
256   reference, as defined in <xref target="RFC5234" x:fmt="," x:sec="B.1"/>:
257   ALPHA (letters), CR (carriage return), CRLF (CR LF), CTL (controls),
258   DIGIT (decimal 0-9), DQUOTE (double quote),
259   HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF (line feed),
260   OCTET (any 8-bit sequence of data), SP (space), and
261   VCHAR (any visible <xref target="USASCII"/> character).
264   As a convention, ABNF rule names prefixed with "obs-" denote
265   "obsolete" grammar rules that appear for historical reasons.
270<section title="Architecture" anchor="architecture">
272   HTTP was created for the World Wide Web architecture
273   and has evolved over time to support the scalability needs of a worldwide
274   hypertext system. Much of that architecture is reflected in the terminology
275   and syntax productions used to define HTTP.
278<section title="Client/Server Messaging" anchor="operation">
279<iref primary="true" item="client"/>
280<iref primary="true" item="server"/>
281<iref primary="true" item="connection"/>
283   HTTP is a stateless request/response protocol that operates by exchanging
284   <x:dfn>messages</x:dfn> (<xref target="http.message"/>) across a reliable
285   transport or session-layer
286   "<x:dfn>connection</x:dfn>" (<xref target=""/>).
287   An HTTP "<x:dfn>client</x:dfn>" is a program that establishes a connection
288   to a server for the purpose of sending one or more HTTP requests.
289   An HTTP "<x:dfn>server</x:dfn>" is a program that accepts connections
290   in order to service HTTP requests by sending HTTP responses.
292<iref primary="true" item="user agent"/>
293<iref primary="true" item="origin server"/>
294<iref primary="true" item="browser"/>
295<iref primary="true" item="spider"/>
296<iref primary="true" item="sender"/>
297<iref primary="true" item="recipient"/>
299   The terms client and server refer only to the roles that
300   these programs perform for a particular connection.  The same program
301   might act as a client on some connections and a server on others.
302   We use the term "<x:dfn>user agent</x:dfn>" to refer to any of the various
303   client programs that initiate a request, including (but not limited to)
304   browsers, spiders (web-based robots), command-line tools, native
305   applications, and mobile apps.  The term "<x:dfn>origin server</x:dfn>" is
306   used to refer to the program that can originate authoritative responses to
307   a request. For general requirements, we use the terms
308   "<x:dfn>sender</x:dfn>" and "<x:dfn>recipient</x:dfn>" to refer to any
309   component that sends or receives, respectively, a given message.
312   HTTP relies upon the Uniform Resource Identifier (URI)
313   standard <xref target="RFC3986"/> to indicate the target resource
314   (<xref target="target-resource"/>) and relationships between resources.
315   Messages are passed in a format similar to that used by Internet mail
316   <xref target="RFC5322"/> and the Multipurpose Internet Mail Extensions
317   (MIME) <xref target="RFC2045"/> (see &diff-mime; for the differences
318   between HTTP and MIME messages).
321   Most HTTP communication consists of a retrieval request (GET) for
322   a representation of some resource identified by a URI.  In the
323   simplest case, this might be accomplished via a single bidirectional
324   connection (===) between the user agent (UA) and the origin server (O).
326<figure><artwork type="drawing">
327         request   &gt;
328    <x:highlight>UA</x:highlight> ======================================= <x:highlight>O</x:highlight>
329                                &lt;   response
331<iref primary="true" item="message"/>
332<iref primary="true" item="request"/>
333<iref primary="true" item="response"/>
335   A client sends an HTTP request to a server in the form of a <x:dfn>request</x:dfn>
336   message, beginning with a request-line that includes a method, URI, and
337   protocol version (<xref target="request.line"/>),
338   followed by header fields containing
339   request modifiers, client information, and representation metadata
340   (<xref target="header.fields"/>),
341   an empty line to indicate the end of the header section, and finally
342   a message body containing the payload body (if any,
343   <xref target="message.body"/>).
346   A server responds to a client's request by sending one or more HTTP
347   <x:dfn>response</x:dfn>
348   messages, each beginning with a status line that
349   includes the protocol version, a success or error code, and textual
350   reason phrase (<xref target="status.line"/>),
351   possibly followed by header fields containing server
352   information, resource metadata, and representation metadata
353   (<xref target="header.fields"/>),
354   an empty line to indicate the end of the header section, and finally
355   a message body containing the payload body (if any,
356   <xref target="message.body"/>).
359   A connection might be used for multiple request/response exchanges,
360   as defined in <xref target="persistent.connections"/>.
363   The following example illustrates a typical message exchange for a
364   GET request on the URI "":
367Client request:
368</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
369GET /hello.txt HTTP/1.1
370User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3
372Accept-Language: en, mi
376Server response:
377</preamble><artwork type="message/http; msgtype=&#34;response&#34;" x:indent-with="  ">
378HTTP/1.1 200 OK
379Date: Mon, 27 Jul 2009 12:28:53 GMT
380Server: Apache
381Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
382ETag: "34aa387-d-1568eb00"
383Accept-Ranges: bytes
384Content-Length: <x:length-of target="exbody"/>
385Vary: Accept-Encoding
386Content-Type: text/plain
388<x:span anchor="exbody">Hello World! My payload includes a trailing CRLF.
393<section title="Implementation Diversity" anchor="implementation-diversity">
395   When considering the design of HTTP, it is easy to fall into a trap of
396   thinking that all user agents are general-purpose browsers and all origin
397   servers are large public websites. That is not the case in practice.
398   Common HTTP user agents include household appliances, stereos, scales,
399   firmware update scripts, command-line programs, mobile apps,
400   and communication devices in a multitude of shapes and sizes.  Likewise,
401   common HTTP origin servers include home automation units, configurable
402   networking components, office machines, autonomous robots, news feeds,
403   traffic cameras, ad selectors, and video delivery platforms.
406   The term "user agent" does not imply that there is a human user directly
407   interacting with the software agent at the time of a request. In many
408   cases, a user agent is installed or configured to run in the background
409   and save its results for later inspection (or save only a subset of those
410   results that might be interesting or erroneous). Spiders, for example, are
411   typically given a start URI and configured to follow certain behavior while
412   crawling the Web as a hypertext graph.
415   The implementation diversity of HTTP means that we cannot assume the
416   user agent can make interactive suggestions to a user or provide adequate
417   warning for security or privacy options.  In the few cases where this
418   specification requires reporting of errors to the user, it is acceptable
419   for such reporting to only be observable in an error console or log file.
420   Likewise, requirements that an automated action be confirmed by the user
421   before proceeding might be met via advance configuration choices,
422   run-time options, or simple avoidance of the unsafe action; confirmation
423   does not imply any specific user interface or interruption of normal
424   processing if the user has already made that choice.
428<section title="Intermediaries" anchor="intermediaries">
429<iref primary="true" item="intermediary"/>
431   HTTP enables the use of intermediaries to satisfy requests through
432   a chain of connections.  There are three common forms of HTTP
433   <x:dfn>intermediary</x:dfn>: proxy, gateway, and tunnel.  In some cases,
434   a single intermediary might act as an origin server, proxy, gateway,
435   or tunnel, switching behavior based on the nature of each request.
437<figure><artwork type="drawing">
438         &gt;             &gt;             &gt;             &gt;
439    <x:highlight>UA</x:highlight> =========== <x:highlight>A</x:highlight> =========== <x:highlight>B</x:highlight> =========== <x:highlight>C</x:highlight> =========== <x:highlight>O</x:highlight>
440               &lt;             &lt;             &lt;             &lt;
443   The figure above shows three intermediaries (A, B, and C) between the
444   user agent and origin server. A request or response message that
445   travels the whole chain will pass through four separate connections.
446   Some HTTP communication options
447   might apply only to the connection with the nearest, non-tunnel
448   neighbor, only to the end-points of the chain, or to all connections
449   along the chain. Although the diagram is linear, each participant might
450   be engaged in multiple, simultaneous communications. For example, B
451   might be receiving requests from many clients other than A, and/or
452   forwarding requests to servers other than C, at the same time that it
453   is handling A's request. Likewise, later requests might be sent through a
454   different path of connections, often based on dynamic configuration for
455   load balancing.   
458<iref primary="true" item="upstream"/><iref primary="true" item="downstream"/>
459<iref primary="true" item="inbound"/><iref primary="true" item="outbound"/>
460   We use the terms "<x:dfn>upstream</x:dfn>" and "<x:dfn>downstream</x:dfn>"
461   to describe various requirements in relation to the directional flow of a
462   message: all messages flow from upstream to downstream.
463   Likewise, we use the terms inbound and outbound to refer to
464   directions in relation to the request path:
465   "<x:dfn>inbound</x:dfn>" means toward the origin server and
466   "<x:dfn>outbound</x:dfn>" means toward the user agent.
468<t><iref primary="true" item="proxy"/>
469   A "<x:dfn>proxy</x:dfn>" is a message forwarding agent that is selected by the
470   client, usually via local configuration rules, to receive requests
471   for some type(s) of absolute URI and attempt to satisfy those
472   requests via translation through the HTTP interface.  Some translations
473   are minimal, such as for proxy requests for "http" URIs, whereas
474   other requests might require translation to and from entirely different
475   application-level protocols. Proxies are often used to group an
476   organization's HTTP requests through a common intermediary for the
477   sake of security, annotation services, or shared caching.
480<iref primary="true" item="transforming proxy"/>
481<iref primary="true" item="non-transforming proxy"/>
482   An HTTP-to-HTTP proxy is called a "<x:dfn>transforming proxy</x:dfn>" if it is designed
483   or configured to modify request or response messages in a semantically
484   meaningful way (i.e., modifications, beyond those required by normal
485   HTTP processing, that change the message in a way that would be
486   significant to the original sender or potentially significant to
487   downstream recipients).  For example, a transforming proxy might be
488   acting as a shared annotation server (modifying responses to include
489   references to a local annotation database), a malware filter, a
490   format transcoder, or an intranet-to-Internet privacy filter.  Such
491   transformations are presumed to be desired by the client (or client
492   organization) that selected the proxy and are beyond the scope of
493   this specification.  However, when a proxy is not intended to transform
494   a given message, we use the term "<x:dfn>non-transforming proxy</x:dfn>" to target
495   requirements that preserve HTTP message semantics. See &status-203; and
496   &header-warning; for status and warning codes related to transformations.
498<t><iref primary="true" item="gateway"/><iref primary="true" item="reverse proxy"/>
499<iref primary="true" item="accelerator"/>
500   A "<x:dfn>gateway</x:dfn>" (a.k.a., "<x:dfn>reverse proxy</x:dfn>") is an
501   intermediary that acts as an origin server for the outbound connection, but
502   translates received requests and forwards them inbound to another server or
503   servers. Gateways are often used to encapsulate legacy or untrusted
504   information services, to improve server performance through
505   "<x:dfn>accelerator</x:dfn>" caching, and to enable partitioning or load
506   balancing of HTTP services across multiple machines.
509   All HTTP requirements applicable to an origin server
510   also apply to the outbound communication of a gateway.
511   A gateway communicates with inbound servers using any protocol that
512   it desires, including private extensions to HTTP that are outside
513   the scope of this specification.  However, an HTTP-to-HTTP gateway
514   that wishes to interoperate with third-party HTTP servers ought to conform
515   to user agent requirements on the gateway's inbound connection.
517<t><iref primary="true" item="tunnel"/>
518   A "<x:dfn>tunnel</x:dfn>" acts as a blind relay between two connections
519   without changing the messages. Once active, a tunnel is not
520   considered a party to the HTTP communication, though the tunnel might
521   have been initiated by an HTTP request. A tunnel ceases to exist when
522   both ends of the relayed connection are closed. Tunnels are used to
523   extend a virtual connection through an intermediary, such as when
524   Transport Layer Security (TLS, <xref target="RFC5246"/>) is used to
525   establish confidential communication through a shared firewall proxy.
527<t><iref primary="true" item="interception proxy"/>
528<iref primary="true" item="transparent proxy"/>
529<iref primary="true" item="captive portal"/>
530   The above categories for intermediary only consider those acting as
531   participants in the HTTP communication.  There are also intermediaries
532   that can act on lower layers of the network protocol stack, filtering or
533   redirecting HTTP traffic without the knowledge or permission of message
534   senders. Network intermediaries often introduce security flaws or
535   interoperability problems by violating HTTP semantics.  For example, an
536   "<x:dfn>interception proxy</x:dfn>" <xref target="RFC3040"/> (also commonly
537   known as a "<x:dfn>transparent proxy</x:dfn>" <xref target="RFC1919"/> or
538   "<x:dfn>captive portal</x:dfn>")
539   differs from an HTTP proxy because it is not selected by the client.
540   Instead, an interception proxy filters or redirects outgoing TCP port 80
541   packets (and occasionally other common port traffic).
542   Interception proxies are commonly found on public network access points,
543   as a means of enforcing account subscription prior to allowing use of
544   non-local Internet services, and within corporate firewalls to enforce
545   network usage policies.
546   They are indistinguishable from a man-in-the-middle attack.
549   HTTP is defined as a stateless protocol, meaning that each request message
550   can be understood in isolation.  Many implementations depend on HTTP's
551   stateless design in order to reuse proxied connections or dynamically
552   load-balance requests across multiple servers.  Hence, servers &MUST-NOT;
553   assume that two requests on the same connection are from the same user
554   agent unless the connection is secured and specific to that agent.
555   Some non-standard HTTP extensions (e.g., <xref target="RFC4559"/>) have
556   been known to violate this requirement, resulting in security and
557   interoperability problems.
561<section title="Caches" anchor="caches">
562<iref primary="true" item="cache"/>
564   A "<x:dfn>cache</x:dfn>" is a local store of previous response messages and the
565   subsystem that controls its message storage, retrieval, and deletion.
566   A cache stores cacheable responses in order to reduce the response
567   time and network bandwidth consumption on future, equivalent
568   requests. Any client or server &MAY; employ a cache, though a cache
569   cannot be used by a server while it is acting as a tunnel.
572   The effect of a cache is that the request/response chain is shortened
573   if one of the participants along the chain has a cached response
574   applicable to that request. The following illustrates the resulting
575   chain if B has a cached copy of an earlier response from O (via C)
576   for a request that has not been cached by UA or A.
578<figure><artwork type="drawing">
579            &gt;             &gt;
580       <x:highlight>UA</x:highlight> =========== <x:highlight>A</x:highlight> =========== <x:highlight>B</x:highlight> - - - - - - <x:highlight>C</x:highlight> - - - - - - <x:highlight>O</x:highlight>
581                  &lt;             &lt;
583<t><iref primary="true" item="cacheable"/>
584   A response is "<x:dfn>cacheable</x:dfn>" if a cache is allowed to store a copy of
585   the response message for use in answering subsequent requests.
586   Even when a response is cacheable, there might be additional
587   constraints placed by the client or by the origin server on when
588   that cached response can be used for a particular request. HTTP
589   requirements for cache behavior and cacheable responses are
590   defined in &caching-overview;. 
593   There are a wide variety of architectures and configurations
594   of caches deployed across the World Wide Web and
595   inside large organizations. These include national hierarchies
596   of proxy caches to save transoceanic bandwidth, collaborative systems that
597   broadcast or multicast cache entries, archives of pre-fetched cache
598   entries for use in off-line or high-latency environments, and so on.
602<section title="Conformance and Error Handling" anchor="conformance">
604   This specification targets conformance criteria according to the role of
605   a participant in HTTP communication.  Hence, HTTP requirements are placed
606   on senders, recipients, clients, servers, user agents, intermediaries,
607   origin servers, proxies, gateways, or caches, depending on what behavior
608   is being constrained by the requirement. Additional (social) requirements
609   are placed on implementations, resource owners, and protocol element
610   registrations when they apply beyond the scope of a single communication.
613   The verb "generate" is used instead of "send" where a requirement
614   differentiates between creating a protocol element and merely forwarding a
615   received element downstream.
618   An implementation is considered conformant if it complies with all of the
619   requirements associated with the roles it partakes in HTTP.
622   Conformance includes both the syntax and semantics of HTTP protocol
623   elements. A sender &MUST-NOT; generate protocol elements that convey a
624   meaning that is known by that sender to be false. A sender &MUST-NOT;
625   generate protocol elements that do not match the grammar defined by the
626   corresponding ABNF rules. Within a given message, a sender &MUST-NOT;
627   generate protocol elements or syntax alternatives that are only allowed to
628   be generated by participants in other roles (i.e., a role that the sender
629   does not have for that message).
632   When a received protocol element is parsed, the recipient &MUST; be able to
633   parse any value of reasonable length that is applicable to the recipient's
634   role and matches the grammar defined by the corresponding ABNF rules.
635   Note, however, that some received protocol elements might not be parsed.
636   For example, an intermediary forwarding a message might parse a
637   header-field into generic field-name and field-value components, but then
638   forward the header field without further parsing inside the field-value.
641   HTTP does not have specific length limitations for many of its protocol
642   elements because the lengths that might be appropriate will vary widely,
643   depending on the deployment context and purpose of the implementation.
644   Hence, interoperability between senders and recipients depends on shared
645   expectations regarding what is a reasonable length for each protocol
646   element. Furthermore, what is commonly understood to be a reasonable length
647   for some protocol elements has changed over the course of the past two
648   decades of HTTP use, and is expected to continue changing in the future.
651   At a minimum, a recipient &MUST; be able to parse and process protocol
652   element lengths that are at least as long as the values that it generates
653   for those same protocol elements in other messages. For example, an origin
654   server that publishes very long URI references to its own resources needs
655   to be able to parse and process those same references when received as a
656   request target.
659   A recipient &MUST; interpret a received protocol element according to the
660   semantics defined for it by this specification, including extensions to
661   this specification, unless the recipient has determined (through experience
662   or configuration) that the sender incorrectly implements what is implied by
663   those semantics.
664   For example, an origin server might disregard the contents of a received
665   <x:ref>Accept-Encoding</x:ref> header field if inspection of the
666   <x:ref>User-Agent</x:ref> header field indicates a specific implementation
667   version that is known to fail on receipt of certain content codings.
670   Unless noted otherwise, a recipient &MAY; attempt to recover a usable
671   protocol element from an invalid construct.  HTTP does not define
672   specific error handling mechanisms except when they have a direct impact
673   on security, since different applications of the protocol require
674   different error handling strategies.  For example, a Web browser might
675   wish to transparently recover from a response where the
676   <x:ref>Location</x:ref> header field doesn't parse according to the ABNF,
677   whereas a systems control client might consider any form of error recovery
678   to be dangerous.
682<section title="Protocol Versioning" anchor="http.version">
683  <x:anchor-alias value="HTTP-version"/>
684  <x:anchor-alias value="HTTP-name"/>
686   HTTP uses a "&lt;major&gt;.&lt;minor&gt;" numbering scheme to indicate
687   versions of the protocol. This specification defines version "1.1".
688   The protocol version as a whole indicates the sender's conformance
689   with the set of requirements laid out in that version's corresponding
690   specification of HTTP.
693   The version of an HTTP message is indicated by an HTTP-version field
694   in the first line of the message. HTTP-version is case-sensitive.
696<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="HTTP-version"/><iref primary="true" item="Grammar" subitem="HTTP-name"/>
697  <x:ref>HTTP-version</x:ref>  = <x:ref>HTTP-name</x:ref> "/" <x:ref>DIGIT</x:ref> "." <x:ref>DIGIT</x:ref>
698  <x:ref>HTTP-name</x:ref>     = <x:abnf-char-sequence>"HTTP"</x:abnf-char-sequence> ; "HTTP", case-sensitive
701   The HTTP version number consists of two decimal digits separated by a "."
702   (period or decimal point).  The first digit ("major version") indicates the
703   HTTP messaging syntax, whereas the second digit ("minor version") indicates
704   the highest minor version within that major version to which the sender is
705   conformant and able to understand for future communication.  The minor
706   version advertises the sender's communication capabilities even when the
707   sender is only using a backwards-compatible subset of the protocol,
708   thereby letting the recipient know that more advanced features can
709   be used in response (by servers) or in future requests (by clients).
712   When an HTTP/1.1 message is sent to an HTTP/1.0 recipient
713   <xref target="RFC1945"/> or a recipient whose version is unknown,
714   the HTTP/1.1 message is constructed such that it can be interpreted
715   as a valid HTTP/1.0 message if all of the newer features are ignored.
716   This specification places recipient-version requirements on some
717   new features so that a conformant sender will only use compatible
718   features until it has determined, through configuration or the
719   receipt of a message, that the recipient supports HTTP/1.1.
722   The interpretation of a header field does not change between minor
723   versions of the same major HTTP version, though the default
724   behavior of a recipient in the absence of such a field can change.
725   Unless specified otherwise, header fields defined in HTTP/1.1 are
726   defined for all versions of HTTP/1.x.  In particular, the <x:ref>Host</x:ref>
727   and <x:ref>Connection</x:ref> header fields ought to be implemented by all
728   HTTP/1.x implementations whether or not they advertise conformance with
729   HTTP/1.1.
732   New header fields can be introduced without changing the protocol version
733   if their defined semantics allow them to be safely ignored by recipients
734   that do not recognize them. Header field extensibility is discussed in
735   <xref target="field.extensibility"/>.
738   Intermediaries that process HTTP messages (i.e., all intermediaries
739   other than those acting as tunnels) &MUST; send their own HTTP-version
740   in forwarded messages.  In other words, they &MUST-NOT; blindly
741   forward the first line of an HTTP message without ensuring that the
742   protocol version in that message matches a version to which that
743   intermediary is conformant for both the receiving and
744   sending of messages.  Forwarding an HTTP message without rewriting
745   the HTTP-version might result in communication errors when downstream
746   recipients use the message sender's version to determine what features
747   are safe to use for later communication with that sender.
750   A client &SHOULD; send a request version equal to the highest
751   version to which the client is conformant and
752   whose major version is no higher than the highest version supported
753   by the server, if this is known.  A client &MUST-NOT; send a
754   version to which it is not conformant.
757   A client &MAY; send a lower request version if it is known that
758   the server incorrectly implements the HTTP specification, but only
759   after the client has attempted at least one normal request and determined
760   from the response status or header fields (e.g., <x:ref>Server</x:ref>) that
761   the server improperly handles higher request versions.
764   A server &SHOULD; send a response version equal to the highest
765   version to which the server is conformant and
766   whose major version is less than or equal to the one received in the
767   request.  A server &MUST-NOT; send a version to which it is not
768   conformant.  A server &MAY; send a <x:ref>505 (HTTP Version Not
769   Supported)</x:ref> response if it cannot send a response using the
770   major version used in the client's request.
773   A server &MAY; send an HTTP/1.0 response to a request
774   if it is known or suspected that the client incorrectly implements the
775   HTTP specification and is incapable of correctly processing later
776   version responses, such as when a client fails to parse the version
777   number correctly or when an intermediary is known to blindly forward
778   the HTTP-version even when it doesn't conform to the given minor
779   version of the protocol. Such protocol downgrades &SHOULD-NOT; be
780   performed unless triggered by specific client attributes, such as when
781   one or more of the request header fields (e.g., <x:ref>User-Agent</x:ref>)
782   uniquely match the values sent by a client known to be in error.
785   The intention of HTTP's versioning design is that the major number
786   will only be incremented if an incompatible message syntax is
787   introduced, and that the minor number will only be incremented when
788   changes made to the protocol have the effect of adding to the message
789   semantics or implying additional capabilities of the sender.  However,
790   the minor version was not incremented for the changes introduced between
791   <xref target="RFC2068"/> and <xref target="RFC2616"/>, and this revision
792   has specifically avoided any such changes to the protocol.
795   When an HTTP message is received with a major version number that the
796   recipient implements, but a higher minor version number than what the
797   recipient implements, the recipient &SHOULD; process the message as if it
798   were in the highest minor version within that major version to which the
799   recipient is conformant. A recipient can assume that a message with a
800   higher minor version, when sent to a recipient that has not yet indicated
801   support for that higher version, is sufficiently backwards-compatible to be
802   safely processed by any implementation of the same major version.
806<section title="Uniform Resource Identifiers" anchor="uri">
807<iref primary="true" item="resource"/>
809   Uniform Resource Identifiers (URIs) <xref target="RFC3986"/> are used
810   throughout HTTP as the means for identifying resources (&resource;).
811   URI references are used to target requests, indicate redirects, and define
812   relationships.
814  <x:anchor-alias value="URI-reference"/>
815  <x:anchor-alias value="absolute-URI"/>
816  <x:anchor-alias value="relative-part"/>
817  <x:anchor-alias value="authority"/>
818  <x:anchor-alias value="uri-host"/>
819  <x:anchor-alias value="port"/>
820  <x:anchor-alias value="path-abempty"/>
821  <x:anchor-alias value="segment"/>
822  <x:anchor-alias value="query"/>
823  <x:anchor-alias value="fragment"/>
824  <x:anchor-alias value="absolute-path"/>
825  <x:anchor-alias value="partial-URI"/>
827   This specification adopts the definitions of "URI-reference",
828   "absolute-URI", "relative-part", "authority", "port", "host",
829   "path-abempty", "segment", "query", and "fragment" from the
830   URI generic syntax.
831   In addition, we define an "absolute-path" rule (that differs from
832   RFC 3986's "path-absolute" in that it allows a leading "//")
833   and a "partial-URI" rule for protocol elements
834   that allow a relative URI but not a fragment.
836<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="URI-reference"><!--exported production--></iref><iref primary="true" item="Grammar" subitem="absolute-URI"/><iref primary="true" item="Grammar" subitem="authority"/><iref primary="true" item="Grammar" subitem="absolute-path"/><iref primary="true" item="Grammar" subitem="port"/><iref primary="true" item="Grammar" subitem="query"/><iref primary="true" item="Grammar" subitem="fragment"/><iref primary="true" item="Grammar" subitem="segment"/><iref primary="true" item="Grammar" subitem="uri-host"/><iref primary="true" item="Grammar" subitem="partial-URI"><!--exported production--></iref>
837  <x:ref>URI-reference</x:ref> = &lt;URI-reference, defined in <xref target="RFC3986" x:fmt="," x:sec="4.1"/>&gt;
838  <x:ref>absolute-URI</x:ref>  = &lt;absolute-URI, defined in <xref target="RFC3986" x:fmt="," x:sec="4.3"/>&gt;
839  <x:ref>relative-part</x:ref> = &lt;relative-part, defined in <xref target="RFC3986" x:fmt="," x:sec="4.2"/>&gt;
840  <x:ref>authority</x:ref>     = &lt;authority, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2"/>&gt;
841  <x:ref>uri-host</x:ref>      = &lt;host, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2.2"/>&gt;
842  <x:ref>port</x:ref>          = &lt;port, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2.3"/>&gt;
843  <x:ref>path-abempty</x:ref>  = &lt;path-abempty, defined in <xref target="RFC3986" x:fmt="," x:sec="3.3"/>&gt;
844  <x:ref>segment</x:ref>       = &lt;segment, defined in <xref target="RFC3986" x:fmt="," x:sec="3.3"/>&gt;
845  <x:ref>query</x:ref>         = &lt;query, defined in <xref target="RFC3986" x:fmt="," x:sec="3.4"/>&gt;
846  <x:ref>fragment</x:ref>      = &lt;fragment, defined in <xref target="RFC3986" x:fmt="," x:sec="3.5"/>&gt;
848  <x:ref>absolute-path</x:ref> = 1*( "/" segment )
849  <x:ref>partial-URI</x:ref>   = relative-part [ "?" query ]
852   Each protocol element in HTTP that allows a URI reference will indicate
853   in its ABNF production whether the element allows any form of reference
854   (URI-reference), only a URI in absolute form (absolute-URI), only the
855   path and optional query components, or some combination of the above.
856   Unless otherwise indicated, URI references are parsed
857   relative to the effective request URI
858   (<xref target="effective.request.uri"/>).
861<section title="http URI scheme" anchor="http.uri">
862  <x:anchor-alias value="http-URI"/>
863  <iref item="http URI scheme" primary="true"/>
864  <iref item="URI scheme" subitem="http" primary="true"/>
866   The "http" URI scheme is hereby defined for the purpose of minting
867   identifiers according to their association with the hierarchical
868   namespace governed by a potential HTTP origin server listening for
869   TCP (<xref target="RFC0793"/>) connections on a given port.
871<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="http-URI"><!--terminal production--></iref>
872  <x:ref>http-URI</x:ref> = "http:" "//" <x:ref>authority</x:ref> <x:ref>path-abempty</x:ref> [ "?" <x:ref>query</x:ref> ]
873             [ "#" <x:ref>fragment</x:ref> ]
876   The HTTP origin server is identified by the generic syntax's
877   <x:ref>authority</x:ref> component, which includes a host identifier
878   and optional TCP port (<xref target="RFC3986" x:fmt="," x:sec="3.2.2"/>).
879   The remainder of the URI, consisting of both the hierarchical path
880   component and optional query component, serves as an identifier for
881   a potential resource within that origin server's name space.
884   A sender &MUST-NOT; generate an "http" URI with an empty host identifier.
885   A recipient that processes such a URI reference &MUST; reject it as invalid.
888   If the host identifier is provided as an IP address,
889   then the origin server is any listener on the indicated TCP port at
890   that IP address. If host is a registered name, then that name is
891   considered an indirect identifier and the recipient might use a name
892   resolution service, such as DNS, to find the address of a listener
893   for that host.
894   If the port subcomponent is empty or not given, then TCP port 80 is
895   assumed (the default reserved port for WWW services).
898   Regardless of the form of host identifier, access to that host is not
899   implied by the mere presence of its name or address. The host might or might
900   not exist and, even when it does exist, might or might not be running an
901   HTTP server or listening to the indicated port. The "http" URI scheme
902   makes use of the delegated nature of Internet names and addresses to
903   establish a naming authority (whatever entity has the ability to place
904   an HTTP server at that Internet name or address) and allows that
905   authority to determine which names are valid and how they might be used.
908   When an "http" URI is used within a context that calls for access to the
909   indicated resource, a client &MAY; attempt access by resolving
910   the host to an IP address, establishing a TCP connection to that address
911   on the indicated port, and sending an HTTP request message
912   (<xref target="http.message"/>) containing the URI's identifying data
913   (<xref target="message.routing"/>) to the server.
914   If the server responds to that request with a non-interim HTTP response
915   message, as described in &status-codes;, then that response
916   is considered an authoritative answer to the client's request.
919   Although HTTP is independent of the transport protocol, the "http"
920   scheme is specific to TCP-based services because the name delegation
921   process depends on TCP for establishing authority.
922   An HTTP service based on some other underlying connection protocol
923   would presumably be identified using a different URI scheme, just as
924   the "https" scheme (below) is used for resources that require an
925   end-to-end secured connection. Other protocols might also be used to
926   provide access to "http" identified resources &mdash; it is only the
927   authoritative interface that is specific to TCP.
930   The URI generic syntax for authority also includes a deprecated
931   userinfo subcomponent (<xref target="RFC3986" x:fmt="," x:sec="3.2.1"/>)
932   for including user authentication information in the URI.  Some
933   implementations make use of the userinfo component for internal
934   configuration of authentication information, such as within command
935   invocation options, configuration files, or bookmark lists, even
936   though such usage might expose a user identifier or password.
937   Senders &MUST-NOT; generate the userinfo subcomponent (and its "@"
938   delimiter) when an "http" URI reference is generated within a message as a
939   request target or header field value.
940   Recipients of an "http" URI reference &SHOULD; parse for userinfo and
941   treat its presence as an error, since it is likely being used to obscure
942   the authority for the sake of phishing attacks.
946<section title="https URI scheme" anchor="https.uri">
947   <x:anchor-alias value="https-URI"/>
948   <iref item="https URI scheme"/>
949   <iref item="URI scheme" subitem="https"/>
951   The "https" URI scheme is hereby defined for the purpose of minting
952   identifiers according to their association with the hierarchical
953   namespace governed by a potential HTTP origin server listening to a
954   given TCP port for TLS-secured connections
955   (<xref target="RFC0793"/>, <xref target="RFC5246"/>).
958   All of the requirements listed above for the "http" scheme are also
959   requirements for the "https" scheme, except that a default TCP port
960   of 443 is assumed if the port subcomponent is empty or not given,
961   and the user agent &MUST; ensure that its connection to the origin
962   server is secured through the use of strong encryption, end-to-end,
963   prior to sending the first HTTP request.
965<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="https-URI"><!--terminal production--></iref>
966  <x:ref>https-URI</x:ref> = "https:" "//" <x:ref>authority</x:ref> <x:ref>path-abempty</x:ref> [ "?" <x:ref>query</x:ref> ]
967              [ "#" <x:ref>fragment</x:ref> ]
970   Note that the "https" URI scheme depends on both TLS and TCP for
971   establishing authority.
972   Resources made available via the "https" scheme have no shared
973   identity with the "http" scheme even if their resource identifiers
974   indicate the same authority (the same host listening to the same
975   TCP port).  They are distinct name spaces and are considered to be
976   distinct origin servers.  However, an extension to HTTP that is
977   defined to apply to entire host domains, such as the Cookie protocol
978   <xref target="RFC6265"/>, can allow information
979   set by one service to impact communication with other services
980   within a matching group of host domains.
983   The process for authoritative access to an "https" identified
984   resource is defined in <xref target="RFC2818"/>.
988<section title="http and https URI Normalization and Comparison" anchor="uri.comparison">
990   Since the "http" and "https" schemes conform to the URI generic syntax,
991   such URIs are normalized and compared according to the algorithm defined
992   in <xref target="RFC3986" x:fmt="," x:sec="6"/>, using the defaults
993   described above for each scheme.
996   If the port is equal to the default port for a scheme, the normal form is
997   to omit the port subcomponent. When not being used in absolute form as the
998   request target of an OPTIONS request, an empty path component is equivalent
999   to an absolute path of "/", so the normal form is to provide a path of "/"
1000   instead. The scheme and host are case-insensitive and normally provided in
1001   lowercase; all other components are compared in a case-sensitive manner.
1002   Characters other than those in the "reserved" set are equivalent to their
1003   percent-encoded octets (see <xref target="RFC3986" x:fmt=","
1004   x:sec="2.1"/>): the normal form is to not encode them.
1007   For example, the following three URIs are equivalent:
1009<figure><artwork type="example">
1018<section title="Message Format" anchor="http.message">
1019<x:anchor-alias value="generic-message"/>
1020<x:anchor-alias value="message.types"/>
1021<x:anchor-alias value="HTTP-message"/>
1022<x:anchor-alias value="start-line"/>
1023<iref item="header section"/>
1024<iref item="headers"/>
1025<iref item="header field"/>
1027   All HTTP/1.1 messages consist of a start-line followed by a sequence of
1028   octets in a format similar to the Internet Message Format
1029   <xref target="RFC5322"/>: zero or more header fields (collectively
1030   referred to as the "headers" or the "header section"), an empty line
1031   indicating the end of the header section, and an optional message body.
1033<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="HTTP-message"><!--terminal production--></iref>
1034  <x:ref>HTTP-message</x:ref>   = <x:ref>start-line</x:ref>
1035                   *( <x:ref>header-field</x:ref> <x:ref>CRLF</x:ref> )
1036                   <x:ref>CRLF</x:ref>
1037                   [ <x:ref>message-body</x:ref> ]
1040   The normal procedure for parsing an HTTP message is to read the
1041   start-line into a structure, read each header field into a hash
1042   table by field name until the empty line, and then use the parsed
1043   data to determine if a message body is expected.  If a message body
1044   has been indicated, then it is read as a stream until an amount
1045   of octets equal to the message body length is read or the connection
1046   is closed.
1049   Recipients &MUST; parse an HTTP message as a sequence of octets in an
1050   encoding that is a superset of US-ASCII <xref target="USASCII"/>.
1051   Parsing an HTTP message as a stream of Unicode characters, without regard
1052   for the specific encoding, creates security vulnerabilities due to the
1053   varying ways that string processing libraries handle invalid multibyte
1054   character sequences that contain the octet LF (%x0A).  String-based
1055   parsers can only be safely used within protocol elements after the element
1056   has been extracted from the message, such as within a header field-value
1057   after message parsing has delineated the individual fields.
1060   An HTTP message can be parsed as a stream for incremental processing or
1061   forwarding downstream.  However, recipients cannot rely on incremental
1062   delivery of partial messages, since some implementations will buffer or
1063   delay message forwarding for the sake of network efficiency, security
1064   checks, or payload transformations.
1067   A sender &MUST-NOT; send whitespace between the start-line and
1068   the first header field.
1069   A recipient that receives whitespace between the start-line and
1070   the first header field &MUST; either reject the message as invalid or
1071   consume each whitespace-preceded line without further processing of it
1072   (i.e., ignore the entire line, along with any subsequent lines preceded
1073   by whitespace, until a properly formed header field is received or the
1074   header block is terminated).
1077   The presence of such whitespace in a request
1078   might be an attempt to trick a server into ignoring that field or
1079   processing the line after it as a new request, either of which might
1080   result in a security vulnerability if other implementations within
1081   the request chain interpret the same message differently.
1082   Likewise, the presence of such whitespace in a response might be
1083   ignored by some clients or cause others to cease parsing.
1086<section title="Start Line" anchor="start.line">
1087  <x:anchor-alias value="Start-Line"/>
1089   An HTTP message can either be a request from client to server or a
1090   response from server to client.  Syntactically, the two types of message
1091   differ only in the start-line, which is either a request-line (for requests)
1092   or a status-line (for responses), and in the algorithm for determining
1093   the length of the message body (<xref target="message.body"/>).
1096   In theory, a client could receive requests and a server could receive
1097   responses, distinguishing them by their different start-line formats,
1098   but in practice servers are implemented to only expect a request
1099   (a response is interpreted as an unknown or invalid request method)
1100   and clients are implemented to only expect a response.
1102<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="start-line"/>
1103  <x:ref>start-line</x:ref>     = <x:ref>request-line</x:ref> / <x:ref>status-line</x:ref>
1106<section title="Request Line" anchor="request.line">
1107  <x:anchor-alias value="Request"/>
1108  <x:anchor-alias value="request-line"/>
1110   A request-line begins with a method token, followed by a single
1111   space (SP), the request-target, another single space (SP), the
1112   protocol version, and ending with CRLF.
1114<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="request-line"/>
1115  <x:ref>request-line</x:ref>   = <x:ref>method</x:ref> <x:ref>SP</x:ref> <x:ref>request-target</x:ref> <x:ref>SP</x:ref> <x:ref>HTTP-version</x:ref> <x:ref>CRLF</x:ref>
1117<iref primary="true" item="method"/>
1118<t anchor="method">
1119   The method token indicates the request method to be performed on the
1120   target resource. The request method is case-sensitive.
1122<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="method"/>
1123  <x:ref>method</x:ref>         = <x:ref>token</x:ref>
1126   The methods defined by this specification can be found in
1127   &methods;, along with information regarding the HTTP method registry
1128   and considerations for defining new methods.
1130<iref item="request-target"/>
1132   The request-target identifies the target resource upon which to apply
1133   the request, as defined in <xref target="request-target"/>.
1136   Recipients typically parse the request-line into its component parts by
1137   splitting on whitespace (see <xref target="message.robustness"/>), since
1138   no whitespace is allowed in the three components.
1139   Unfortunately, some user agents fail to properly encode or exclude
1140   whitespace found in hypertext references, resulting in those disallowed
1141   characters being sent in a request-target.
1144   Recipients of an invalid request-line &SHOULD; respond with either a
1145   <x:ref>400 (Bad Request)</x:ref> error or a <x:ref>301 (Moved Permanently)</x:ref>
1146   redirect with the request-target properly encoded.  Recipients &SHOULD-NOT;
1147   attempt to autocorrect and then process the request without a redirect,
1148   since the invalid request-line might be deliberately crafted to bypass
1149   security filters along the request chain.
1152   HTTP does not place a pre-defined limit on the length of a request-line.
1153   A server that receives a method longer than any that it implements
1154   &SHOULD; respond with a <x:ref>501 (Not Implemented)</x:ref> status code.
1155   A server ought to be prepared to receive URIs of unbounded length, as
1156   described in <xref target="conformance"/>, and &MUST; respond with a
1157   <x:ref>414 (URI Too Long)</x:ref> status code if the received
1158   request-target is longer than the server wishes to parse (see &status-414;).
1161   Various ad-hoc limitations on request-line length are found in practice.
1162   It is &RECOMMENDED; that all HTTP senders and recipients support, at a
1163   minimum, request-line lengths of 8000 octets.
1167<section title="Status Line" anchor="status.line">
1168  <x:anchor-alias value="response"/>
1169  <x:anchor-alias value="status-line"/>
1170  <x:anchor-alias value="status-code"/>
1171  <x:anchor-alias value="reason-phrase"/>
1173   The first line of a response message is the status-line, consisting
1174   of the protocol version, a space (SP), the status code, another space,
1175   a possibly-empty textual phrase describing the status code, and
1176   ending with CRLF.
1178<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="status-line"/>
1179  <x:ref>status-line</x:ref> = <x:ref>HTTP-version</x:ref> <x:ref>SP</x:ref> <x:ref>status-code</x:ref> <x:ref>SP</x:ref> <x:ref>reason-phrase</x:ref> <x:ref>CRLF</x:ref>
1182   The status-code element is a 3-digit integer code describing the
1183   result of the server's attempt to understand and satisfy the client's
1184   corresponding request. The rest of the response message is to be
1185   interpreted in light of the semantics defined for that status code.
1186   See &status-codes; for information about the semantics of status codes,
1187   including the classes of status code (indicated by the first digit),
1188   the status codes defined by this specification, considerations for the
1189   definition of new status codes, and the IANA registry.
1191<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="status-code"/>
1192  <x:ref>status-code</x:ref>    = 3<x:ref>DIGIT</x:ref>
1195   The reason-phrase element exists for the sole purpose of providing a
1196   textual description associated with the numeric status code, mostly
1197   out of deference to earlier Internet application protocols that were more
1198   frequently used with interactive text clients. A client &SHOULD; ignore
1199   the reason-phrase content.
1201<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="reason-phrase"/>
1202  <x:ref>reason-phrase</x:ref>  = *( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1207<section title="Header Fields" anchor="header.fields">
1208  <x:anchor-alias value="header-field"/>
1209  <x:anchor-alias value="field-content"/>
1210  <x:anchor-alias value="field-name"/>
1211  <x:anchor-alias value="field-value"/>
1212  <x:anchor-alias value="obs-fold"/>
1214   Each HTTP header field consists of a case-insensitive field name
1215   followed by a colon (":"), optional leading whitespace, the field value,
1216   and optional trailing whitespace.
1218<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="header-field"/><iref primary="true" item="Grammar" subitem="field-name"/><iref primary="true" item="Grammar" subitem="field-value"/><iref primary="true" item="Grammar" subitem="field-content"/><iref primary="true" item="Grammar" subitem="obs-fold"/>
1219  <x:ref>header-field</x:ref>   = <x:ref>field-name</x:ref> ":" <x:ref>OWS</x:ref> <x:ref>field-value</x:ref> <x:ref>OWS</x:ref>
1220  <x:ref>field-name</x:ref>     = <x:ref>token</x:ref>
1221  <x:ref>field-value</x:ref>    = *( <x:ref>field-content</x:ref> / <x:ref>obs-fold</x:ref> )
1222  <x:ref>field-content</x:ref>  = *( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1223  <x:ref>obs-fold</x:ref>       = <x:ref>CRLF</x:ref> ( <x:ref>SP</x:ref> / <x:ref>HTAB</x:ref> )
1224                 ; obsolete line folding
1225                 ; see <xref target="field.parsing"/>
1228   The field-name token labels the corresponding field-value as having the
1229   semantics defined by that header field.  For example, the <x:ref>Date</x:ref>
1230   header field is defined in &header-date; as containing the origination
1231   timestamp for the message in which it appears.
1234<section title="Field Extensibility" anchor="field.extensibility">
1236   Header fields are fully extensible: there is no limit on the
1237   introduction of new field names, each presumably defining new semantics,
1238   nor on the number of header fields used in a given message.  Existing
1239   fields are defined in each part of this specification and in many other
1240   specifications outside the core standard.
1243   New header fields can be defined such that, when they are understood by a
1244   recipient, they might override or enhance the interpretation of previously
1245   defined header fields, define preconditions on request evaluation, or
1246   refine the meaning of responses.
1249   A proxy &MUST; forward unrecognized header fields unless the
1250   field-name is listed in the <x:ref>Connection</x:ref> header field
1251   (<xref target="header.connection"/>) or the proxy is specifically
1252   configured to block, or otherwise transform, such fields.
1253   Other recipients &SHOULD; ignore unrecognized header fields.
1254   These requirements allow HTTP's functionality to be enhanced without
1255   requiring prior update of deployed intermediaries.
1258   All defined header fields ought to be registered with IANA in the
1259   Message Header Field Registry, as described in &iana-header-registry;.
1263<section title="Field Order" anchor="field.order">
1265   The order in which header fields with differing field names are
1266   received is not significant. However, it is "good practice" to send
1267   header fields that contain control data first, such as <x:ref>Host</x:ref>
1268   on requests and <x:ref>Date</x:ref> on responses, so that implementations
1269   can decide when not to handle a message as early as possible.  A server
1270   &MUST; wait until the entire header section is received before interpreting
1271   a request message, since later header fields might include conditionals,
1272   authentication credentials, or deliberately misleading duplicate
1273   header fields that would impact request processing.
1276   A sender &MUST-NOT; generate multiple header fields with the same field
1277   name in a message unless either the entire field value for that
1278   header field is defined as a comma-separated list [i.e., #(values)]
1279   or the header field is a well-known exception (as noted below).
1282   A recipient &MAY; combine multiple header fields with the same field name
1283   into one "field-name: field-value" pair, without changing the semantics of
1284   the message, by appending each subsequent field value to the combined
1285   field value in order, separated by a comma. The order in which
1286   header fields with the same field name are received is therefore
1287   significant to the interpretation of the combined field value;
1288   a proxy &MUST-NOT; change the order of these field values when
1289   forwarding a message.
1292  <t>
1293   &Note; In practice, the "Set-Cookie" header field (<xref target="RFC6265"/>)
1294   often appears multiple times in a response message and does not use the
1295   list syntax, violating the above requirements on multiple header fields
1296   with the same name. Since it cannot be combined into a single field-value,
1297   recipients ought to handle "Set-Cookie" as a special case while processing
1298   header fields. (See Appendix A.2.3 of <xref target="Kri2001"/> for details.)
1299  </t>
1303<section title="Whitespace" anchor="whitespace">
1304<t anchor="rule.LWS">
1305   This specification uses three rules to denote the use of linear
1306   whitespace: OWS (optional whitespace), RWS (required whitespace), and
1307   BWS ("bad" whitespace).
1309<t anchor="rule.OWS">
1310   The OWS rule is used where zero or more linear whitespace octets might
1311   appear. For protocol elements where optional whitespace is preferred to
1312   improve readability, a sender &SHOULD; generate the optional whitespace
1313   as a single SP; otherwise, a sender &SHOULD-NOT; generate optional
1314   whitespace except as needed to white-out invalid or unwanted protocol
1315   elements during in-place message filtering.
1317<t anchor="rule.RWS">
1318   The RWS rule is used when at least one linear whitespace octet is required
1319   to separate field tokens. A sender &SHOULD; generate RWS as a single SP.
1321<t anchor="rule.BWS">
1322   The BWS rule is used where the grammar allows optional whitespace only for
1323   historical reasons. A sender &MUST-NOT; generate BWS in messages.
1324   A recipient &MUST; parse for such bad whitespace and remove it before
1325   interpreting the protocol element.
1327<t anchor="rule.whitespace">
1328  <x:anchor-alias value="BWS"/>
1329  <x:anchor-alias value="OWS"/>
1330  <x:anchor-alias value="RWS"/>
1332<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="OWS"/><iref primary="true" item="Grammar" subitem="RWS"/><iref primary="true" item="Grammar" subitem="BWS"/>
1333  <x:ref>OWS</x:ref>            = *( <x:ref>SP</x:ref> / <x:ref>HTAB</x:ref> )
1334                 ; optional whitespace
1335  <x:ref>RWS</x:ref>            = 1*( <x:ref>SP</x:ref> / <x:ref>HTAB</x:ref> )
1336                 ; required whitespace
1337  <x:ref>BWS</x:ref>            = <x:ref>OWS</x:ref>
1338                 ; "bad" whitespace
1342<section title="Field Parsing" anchor="field.parsing">
1344   No whitespace is allowed between the header field-name and colon.
1345   In the past, differences in the handling of such whitespace have led to
1346   security vulnerabilities in request routing and response handling.
1347   A server &MUST; reject any received request message that contains
1348   whitespace between a header field-name and colon with a response code of
1349   <x:ref>400 (Bad Request)</x:ref>. A proxy &MUST; remove any such whitespace
1350   from a response message before forwarding the message downstream.
1353   A field value is preceded by optional whitespace (OWS); a single SP is
1354   preferred. The field value does not include any leading or trailing white
1355   space: OWS occurring before the first non-whitespace octet of the field
1356   value or after the last non-whitespace octet of the field value ought to be
1357   excluded by parsers when extracting the field value from a header field.
1360   A recipient of field-content containing multiple sequential octets of
1361   optional (OWS) or required (RWS) whitespace &SHOULD; either replace the
1362   sequence with a single SP or transform any non-SP octets in the sequence to
1363   SP octets before interpreting the field value or forwarding the message
1364   downstream.
1367   Historically, HTTP header field values could be extended over multiple
1368   lines by preceding each extra line with at least one space or horizontal
1369   tab (obs-fold). This specification deprecates such line folding except
1370   within the message/http media type
1371   (<xref target=""/>).
1372   Senders &MUST-NOT; generate messages that include line folding
1373   (i.e., that contain any field-value that contains a match to the
1374   <x:ref>obs-fold</x:ref> rule) unless the message is intended for packaging
1375   within the message/http media type.
1378   A server that receives an <x:ref>obs-fold</x:ref> in a request message that
1379   is not within a message/http container &MUST; either reject the message by
1380   sending a <x:ref>400 (Bad Request)</x:ref>, preferably with a
1381   representation explaining that obsolete line folding is unacceptable, or
1382   replace each received <x:ref>obs-fold</x:ref> with one or more
1383   <x:ref>SP</x:ref> octets prior to interpreting the field value or
1384   forwarding the message downstream.
1387   A proxy or gateway that receives an <x:ref>obs-fold</x:ref> in a response
1388   message that is not within a message/http container &MUST; either discard
1389   the message and replace it with a <x:ref>502 (Bad Gateway)</x:ref>
1390   response, preferably with a representation explaining that unacceptable
1391   line folding was received, or replace each received <x:ref>obs-fold</x:ref>
1392   with one or more <x:ref>SP</x:ref> octets prior to interpreting the field
1393   value or forwarding the message downstream.
1396   A user agent that receives an <x:ref>obs-fold</x:ref> in a response message
1397   that is not within a message/http container &MUST; replace each received
1398   <x:ref>obs-fold</x:ref> with one or more <x:ref>SP</x:ref> octets prior to
1399   interpreting the field value.
1402   Historically, HTTP has allowed field content with text in the ISO-8859-1
1403   <xref target="ISO-8859-1"/> charset, supporting other charsets only
1404   through use of <xref target="RFC2047"/> encoding.
1405   In practice, most HTTP header field values use only a subset of the
1406   US-ASCII charset <xref target="USASCII"/>. Newly defined
1407   header fields &SHOULD; limit their field values to US-ASCII octets.
1408   Recipients &SHOULD; treat other octets in field content (obs-text) as
1409   opaque data.
1413<section title="Field Limits" anchor="field.limits">
1415   HTTP does not place a pre-defined limit on the length of each header field
1416   or on the length of the header block as a whole, as described in
1417   <xref target="conformance"/>. Various ad-hoc limitations on individual
1418   header field length are found in practice, often depending on the specific
1419   field semantics.
1422   A server ought to be prepared to receive request header fields of unbounded
1423   length and &MUST; respond with an appropriate
1424   <x:ref>4xx (Client Error)</x:ref> status code if the received header
1425   field(s) are larger than the server wishes to process.
1428   A client ought to be prepared to receive response header fields of
1429   unbounded length.
1430   A client &MAY; discard or truncate received header fields that are larger
1431   than the client wishes to process if the field semantics are such that the
1432   dropped value(s) can be safely ignored without changing the
1433   message framing or response semantics.
1437<section title="Field value components" anchor="field.components">
1438<t anchor="rule.token.separators">
1439  <x:anchor-alias value="tchar"/>
1440  <x:anchor-alias value="token"/>
1441  <x:anchor-alias value="special"/>
1442  <x:anchor-alias value="word"/>
1443   Many HTTP header field values consist of words (token or quoted-string)
1444   separated by whitespace or special characters.
1446<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="word"/><iref primary="true" item="Grammar" subitem="token"/><iref primary="true" item="Grammar" subitem="tchar"/><iref primary="true" item="Grammar" subitem="special"><!--unused production--></iref>
1447  <x:ref>word</x:ref>           = <x:ref>token</x:ref> / <x:ref>quoted-string</x:ref>
1449  <x:ref>token</x:ref>          = 1*<x:ref>tchar</x:ref>
1451  IMPORTANT: when editing "tchar" make sure that "special" is updated accordingly!!!
1452 -->
1453  <x:ref>tchar</x:ref>          = "!" / "#" / "$" / "%" / "&amp;" / "'" / "*"
1454                 / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"
1455                 / <x:ref>DIGIT</x:ref> / <x:ref>ALPHA</x:ref>
1456                 ; any <x:ref>VCHAR</x:ref>, except <x:ref>special</x:ref>
1458  <x:ref>special</x:ref>        = "(" / ")" / "&lt;" / ">" / "@" / ","
1459                 / ";" / ":" / "\" / DQUOTE / "/" / "["
1460                 / "]" / "?" / "=" / "{" / "}"
1462<t anchor="rule.quoted-string">
1463  <x:anchor-alias value="quoted-string"/>
1464  <x:anchor-alias value="qdtext"/>
1465  <x:anchor-alias value="obs-text"/>
1466   A string of text is parsed as a single word if it is quoted using
1467   double-quote marks.
1469<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-string"/><iref primary="true" item="Grammar" subitem="qdtext"/><iref primary="true" item="Grammar" subitem="obs-text"/>
1470  <x:ref>quoted-string</x:ref>  = <x:ref>DQUOTE</x:ref> *( <x:ref>qdtext</x:ref> / <x:ref>quoted-pair</x:ref> ) <x:ref>DQUOTE</x:ref>
1471  <x:ref>qdtext</x:ref>         = <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> /%x21 / %x23-5B / %x5D-7E / <x:ref>obs-text</x:ref>
1472  <x:ref>obs-text</x:ref>       = %x80-FF
1474<t anchor="rule.quoted-pair">
1475  <x:anchor-alias value="quoted-pair"/>
1476   The backslash octet ("\") can be used as a single-octet
1477   quoting mechanism within quoted-string constructs:
1479<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-pair"/>
1480  <x:ref>quoted-pair</x:ref>    = "\" ( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1483   Recipients that process the value of a quoted-string &MUST; handle a
1484   quoted-pair as if it were replaced by the octet following the backslash.
1487   Senders &SHOULD-NOT; generate a quoted-pair in a quoted-string except where
1488   necessary to quote DQUOTE and backslash octets occurring within that string.
1490<t anchor="rule.comment">
1491  <x:anchor-alias value="comment"/>
1492  <x:anchor-alias value="ctext"/>
1493   Comments can be included in some HTTP header fields by surrounding
1494   the comment text with parentheses. Comments are only allowed in
1495   fields containing "comment" as part of their field value definition.
1497<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="comment"/><iref primary="true" item="Grammar" subitem="ctext"/>
1498  <x:ref>comment</x:ref>        = "(" *( <x:ref>ctext</x:ref> / <x:ref>quoted-cpair</x:ref> / <x:ref>comment</x:ref> ) ")"
1499  <x:ref>ctext</x:ref>          = <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / %x21-27 / %x2A-5B / %x5D-7E / <x:ref>obs-text</x:ref>
1501<t anchor="rule.quoted-cpair">
1502  <x:anchor-alias value="quoted-cpair"/>
1503   The backslash octet ("\") can be used as a single-octet
1504   quoting mechanism within comment constructs:
1506<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-cpair"/>
1507  <x:ref>quoted-cpair</x:ref>   = "\" ( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1510   Senders &SHOULD-NOT; escape octets in comments that do not require escaping
1511   (i.e., other than the backslash octet "\" and the parentheses "(" and ")").
1517<section title="Message Body" anchor="message.body">
1518  <x:anchor-alias value="message-body"/>
1520   The message body (if any) of an HTTP message is used to carry the
1521   payload body of that request or response.  The message body is
1522   identical to the payload body unless a transfer coding has been
1523   applied, as described in <xref target="header.transfer-encoding"/>.
1525<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="message-body"/>
1526  <x:ref>message-body</x:ref> = *OCTET
1529   The rules for when a message body is allowed in a message differ for
1530   requests and responses.
1533   The presence of a message body in a request is signaled by a
1534   <x:ref>Content-Length</x:ref> or <x:ref>Transfer-Encoding</x:ref> header
1535   field. Request message framing is independent of method semantics,
1536   even if the method does not define any use for a message body.
1539   The presence of a message body in a response depends on both
1540   the request method to which it is responding and the response
1541   status code (<xref target="status.line"/>).
1542   Responses to the HEAD request method never include a message body
1543   because the associated response header fields (e.g.,
1544   <x:ref>Transfer-Encoding</x:ref>, <x:ref>Content-Length</x:ref>, etc.),
1545   if present, indicate only what their values would have been if the request
1546   method had been GET (&HEAD;).
1547   <x:ref>2xx (Successful)</x:ref> responses to CONNECT switch to tunnel
1548   mode instead of having a message body (&CONNECT;).
1549   All <x:ref>1xx (Informational)</x:ref>, <x:ref>204 (No Content)</x:ref>, and
1550   <x:ref>304 (Not Modified)</x:ref> responses do not include a message body.
1551   All other responses do include a message body, although the body
1552   might be of zero length.
1555<section title="Transfer-Encoding" anchor="header.transfer-encoding">
1556  <iref primary="true" item="Transfer-Encoding header field" x:for-anchor=""/>
1557  <iref item="chunked (Coding Format)"/>
1558  <x:anchor-alias value="Transfer-Encoding"/>
1560   The Transfer-Encoding header field lists the transfer coding names
1561   corresponding to the sequence of transfer codings that have been
1562   (or will be) applied to the payload body in order to form the message body.
1563   Transfer codings are defined in <xref target="transfer.codings"/>.
1565<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Transfer-Encoding"/>
1566  <x:ref>Transfer-Encoding</x:ref> = 1#<x:ref>transfer-coding</x:ref>
1569   Transfer-Encoding is analogous to the Content-Transfer-Encoding field of
1570   MIME, which was designed to enable safe transport of binary data over a
1571   7-bit transport service (<xref target="RFC2045" x:fmt="," x:sec="6"/>).
1572   However, safe transport has a different focus for an 8bit-clean transfer
1573   protocol. In HTTP's case, Transfer-Encoding is primarily intended to
1574   accurately delimit a dynamically generated payload and to distinguish
1575   payload encodings that are only applied for transport efficiency or
1576   security from those that are characteristics of the selected resource.
1579   All HTTP/1.1 recipients &MUST; be able to parse the chunked transfer coding
1580   (<xref target="chunked.encoding"/>) because it plays a crucial role in
1581   framing messages when the payload body size is not known in advance.
1582   A sender &MUST-NOT; apply chunked more than once to a message body
1583   (i.e., chunking an already chunked message is not allowed).
1584   If any transfer coding other than chunked is applied to a request payload
1585   body, the sender &MUST; apply chunked as the final transfer coding to
1586   ensure that the message is properly framed.
1587   If any transfer coding other than chunked is applied to a response payload
1588   body, the sender &MUST; either apply chunked as the final transfer coding
1589   or terminate the message by closing the connection.
1592   For example,
1593</preamble><artwork type="example">
1594  Transfer-Encoding: gzip, chunked
1596   indicates that the payload body has been compressed using the gzip
1597   coding and then chunked using the chunked coding while forming the
1598   message body.
1601   Unlike <x:ref>Content-Encoding</x:ref> (&content-codings;),
1602   Transfer-Encoding is a property of the message, not of the representation, and
1603   any recipient along the request/response chain &MAY; decode the received
1604   transfer coding(s) or apply additional transfer coding(s) to the message
1605   body, assuming that corresponding changes are made to the Transfer-Encoding
1606   field-value. Additional information about the encoding parameters &MAY; be
1607   provided by other header fields not defined by this specification.
1610   Transfer-Encoding &MAY; be sent in a response to a HEAD request or in a
1611   <x:ref>304 (Not Modified)</x:ref> response (&status-304;) to a GET request,
1612   neither of which includes a message body,
1613   to indicate that the origin server would have applied a transfer coding
1614   to the message body if the request had been an unconditional GET.
1615   This indication is not required, however, because any recipient on
1616   the response chain (including the origin server) can remove transfer
1617   codings when they are not needed.
1620   A server &MUST-NOT; send a Transfer-Encoding header field in any response
1621   with a status code of
1622   <x:ref>1xx (Informational)</x:ref> or <x:ref>204 (No Content)</x:ref>.
1623   A server &MUST-NOT; send a Transfer-Encoding header field in any
1624   <x:ref>2xx (Successful)</x:ref> response to a CONNECT request (&CONNECT;).
1627   Transfer-Encoding was added in HTTP/1.1.  It is generally assumed that
1628   implementations advertising only HTTP/1.0 support will not understand
1629   how to process a transfer-encoded payload.
1630   A client &MUST-NOT; send a request containing Transfer-Encoding unless it
1631   knows the server will handle HTTP/1.1 (or later) requests; such knowledge
1632   might be in the form of specific user configuration or by remembering the
1633   version of a prior received response.
1634   A server &MUST-NOT; send a response containing Transfer-Encoding unless
1635   the corresponding request indicates HTTP/1.1 (or later).
1638   A server that receives a request message with a transfer coding it does
1639   not understand &SHOULD; respond with <x:ref>501 (Not Implemented)</x:ref>.
1643<section title="Content-Length" anchor="header.content-length">
1644  <iref primary="true" item="Content-Length header field" x:for-anchor=""/>
1645  <x:anchor-alias value="Content-Length"/>
1647   When a message does not have a <x:ref>Transfer-Encoding</x:ref> header
1648   field, a Content-Length header field can provide the anticipated size,
1649   as a decimal number of octets, for a potential payload body.
1650   For messages that do include a payload body, the Content-Length field-value
1651   provides the framing information necessary for determining where the body
1652   (and message) ends.  For messages that do not include a payload body, the
1653   Content-Length indicates the size of the selected representation
1654   (&representation;).
1656<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Content-Length"/>
1657  <x:ref>Content-Length</x:ref> = 1*<x:ref>DIGIT</x:ref>
1660   An example is
1662<figure><artwork type="example">
1663  Content-Length: 3495
1666   A sender &MUST-NOT; send a Content-Length header field in any message that
1667   contains a <x:ref>Transfer-Encoding</x:ref> header field.
1670   A user agent &SHOULD; send a Content-Length in a request message when no
1671   <x:ref>Transfer-Encoding</x:ref> is sent and the request method defines
1672   a meaning for an enclosed payload body. For example, a Content-Length
1673   header field is normally sent in a POST request even when the value is
1674   0 (indicating an empty payload body).  A user agent &SHOULD-NOT; send a
1675   Content-Length header field when the request message does not contain a
1676   payload body and the method semantics do not anticipate such a body.
1679   A server &MAY; send a Content-Length header field in a response to a HEAD
1680   request (&HEAD;); a server &MUST-NOT; send Content-Length in such a
1681   response unless its field-value equals the decimal number of octets that
1682   would have been sent in the payload body of a response if the same
1683   request had used the GET method.
1686   A server &MAY; send a Content-Length header field in a
1687   <x:ref>304 (Not Modified)</x:ref> response to a conditional GET request
1688   (&status-304;); a server &MUST-NOT; send Content-Length in such a
1689   response unless its field-value equals the decimal number of octets that
1690   would have been sent in the payload body of a <x:ref>200 (OK)</x:ref>
1691   response to the same request.
1694   A server &MUST-NOT; send a Content-Length header field in any response
1695   with a status code of
1696   <x:ref>1xx (Informational)</x:ref> or <x:ref>204 (No Content)</x:ref>.
1697   A server &MUST-NOT; send a Content-Length header field in any
1698   <x:ref>2xx (Successful)</x:ref> response to a CONNECT request (&CONNECT;).
1701   Aside from the cases defined above, in the absence of Transfer-Encoding,
1702   an origin server &SHOULD; send a Content-Length header field when the
1703   payload body size is known prior to sending the complete header block.
1704   This will allow downstream recipients to measure transfer progress,
1705   know when a received message is complete, and potentially reuse the
1706   connection for additional requests.
1709   Any Content-Length field value greater than or equal to zero is valid.
1710   Since there is no predefined limit to the length of a payload,
1711   recipients &SHOULD; anticipate potentially large decimal numerals and
1712   prevent parsing errors due to integer conversion overflows
1713   (<xref target="attack.protocol.element.size.overflows"/>).
1716   If a message is received that has multiple Content-Length header fields
1717   with field-values consisting of the same decimal value, or a single
1718   Content-Length header field with a field value containing a list of
1719   identical decimal values (e.g., "Content-Length: 42, 42"), indicating that
1720   duplicate Content-Length header fields have been generated or combined by an
1721   upstream message processor, then the recipient &MUST; either reject the
1722   message as invalid or replace the duplicated field-values with a single
1723   valid Content-Length field containing that decimal value prior to
1724   determining the message body length or forwarding the message.
1727  <t>
1728   &Note; HTTP's use of Content-Length for message framing differs
1729   significantly from the same field's use in MIME, where it is an optional
1730   field used only within the "message/external-body" media-type.
1731  </t>
1735<section title="Message Body Length" anchor="message.body.length">
1736  <iref item="chunked (Coding Format)"/>
1738   The length of a message body is determined by one of the following
1739   (in order of precedence):
1742  <list style="numbers">
1743    <x:lt><t>
1744     Any response to a HEAD request and any response with a
1745     <x:ref>1xx (Informational)</x:ref>, <x:ref>204 (No Content)</x:ref>, or
1746     <x:ref>304 (Not Modified)</x:ref> status code is always
1747     terminated by the first empty line after the header fields, regardless of
1748     the header fields present in the message, and thus cannot contain a
1749     message body.
1750    </t></x:lt>
1751    <x:lt><t>
1752     Any <x:ref>2xx (Successful)</x:ref> response to a CONNECT request implies that the
1753     connection will become a tunnel immediately after the empty line that
1754     concludes the header fields.  A client &MUST; ignore any
1755     <x:ref>Content-Length</x:ref> or <x:ref>Transfer-Encoding</x:ref> header
1756     fields received in such a message.
1757    </t></x:lt>
1758    <x:lt><t>
1759     If a <x:ref>Transfer-Encoding</x:ref> header field is present
1760     and the chunked transfer coding (<xref target="chunked.encoding"/>)
1761     is the final encoding, the message body length is determined by reading
1762     and decoding the chunked data until the transfer coding indicates the
1763     data is complete.
1764    </t>
1765    <t>
1766     If a <x:ref>Transfer-Encoding</x:ref> header field is present in a
1767     response and the chunked transfer coding is not the final encoding, the
1768     message body length is determined by reading the connection until it is
1769     closed by the server.
1770     If a <x:ref>Transfer-Encoding</x:ref> header field is present in a request and the
1771     chunked transfer coding is not the final encoding, the message body
1772     length cannot be determined reliably; the server &MUST; respond with
1773     the <x:ref>400 (Bad Request)</x:ref> status code and then close the connection.
1774    </t>
1775    <t>
1776     If a message is received with both a <x:ref>Transfer-Encoding</x:ref>
1777     and a <x:ref>Content-Length</x:ref> header field, the Transfer-Encoding
1778     overrides the Content-Length. Such a message might indicate an attempt
1779     to perform request or response smuggling (bypass of security-related
1780     checks on message routing or content) and thus ought to be handled as
1781     an error.  A sender &MUST; remove the received Content-Length field
1782     prior to forwarding such a message downstream.
1783    </t></x:lt>
1784    <x:lt><t>
1785     If a message is received without <x:ref>Transfer-Encoding</x:ref> and with
1786     either multiple <x:ref>Content-Length</x:ref> header fields having
1787     differing field-values or a single Content-Length header field having an
1788     invalid value, then the message framing is invalid and
1789     the recipient &MUST; treat it as an unrecoverable error to prevent
1790     request or response smuggling.
1791     If this is a request message, the server &MUST; respond with
1792     a <x:ref>400 (Bad Request)</x:ref> status code and then close the connection.
1793     If this is a response message received by a proxy,
1794     the proxy &MUST; close the connection to the server, discard the received
1795     response, and send a <x:ref>502 (Bad Gateway)</x:ref> response to the
1796     client.
1797     If this is a response message received by a user agent,
1798     the user agent &MUST; close the connection to the server and discard the
1799     received response.
1800    </t></x:lt>
1801    <x:lt><t>
1802     If a valid <x:ref>Content-Length</x:ref> header field is present without
1803     <x:ref>Transfer-Encoding</x:ref>, its decimal value defines the
1804     expected message body length in octets.
1805     If the sender closes the connection or the recipient times out before the
1806     indicated number of octets are received, the recipient &MUST; consider
1807     the message to be incomplete and close the connection.
1808    </t></x:lt>
1809    <x:lt><t>
1810     If this is a request message and none of the above are true, then the
1811     message body length is zero (no message body is present).
1812    </t></x:lt>
1813    <x:lt><t>
1814     Otherwise, this is a response message without a declared message body
1815     length, so the message body length is determined by the number of octets
1816     received prior to the server closing the connection.
1817    </t></x:lt>
1818  </list>
1821   Since there is no way to distinguish a successfully completed,
1822   close-delimited message from a partially-received message interrupted
1823   by network failure, a server &SHOULD; use encoding or
1824   length-delimited messages whenever possible.  The close-delimiting
1825   feature exists primarily for backwards compatibility with HTTP/1.0.
1828   A server &MAY; reject a request that contains a message body but
1829   not a <x:ref>Content-Length</x:ref> by responding with
1830   <x:ref>411 (Length Required)</x:ref>.
1833   Unless a transfer coding other than chunked has been applied,
1834   a client that sends a request containing a message body &SHOULD;
1835   use a valid <x:ref>Content-Length</x:ref> header field if the message body
1836   length is known in advance, rather than the chunked transfer coding, since some
1837   existing services respond to chunked with a <x:ref>411 (Length Required)</x:ref>
1838   status code even though they understand the chunked transfer coding.  This
1839   is typically because such services are implemented via a gateway that
1840   requires a content-length in advance of being called and the server
1841   is unable or unwilling to buffer the entire request before processing.
1844   A user agent that sends a request containing a message body &MUST; send a
1845   valid <x:ref>Content-Length</x:ref> header field if it does not know the
1846   server will handle HTTP/1.1 (or later) requests; such knowledge can be in
1847   the form of specific user configuration or by remembering the version of a
1848   prior received response.
1851   If the final response to the last request on a connection has been
1852   completely received and there remains additional data to read, a user agent
1853   &MAY; discard the remaining data or attempt to determine if that data
1854   belongs as part of the prior response body, which might be the case if the
1855   prior message's Content-Length value is incorrect. A client &MUST-NOT;
1856   process, cache, or forward such extra data as a separate response, since
1857   such behavior would be vulnerable to cache poisoning.
1862<section anchor="incomplete.messages" title="Handling Incomplete Messages">
1864   A server that receives an incomplete request message, usually due to a
1865   canceled request or a triggered time-out exception, &MAY; send an error
1866   response prior to closing the connection.
1869   A client that receives an incomplete response message, which can occur
1870   when a connection is closed prematurely or when decoding a supposedly
1871   chunked transfer coding fails, &MUST; record the message as incomplete.
1872   Cache requirements for incomplete responses are defined in
1873   &cache-incomplete;.
1876   If a response terminates in the middle of the header block (before the
1877   empty line is received) and the status code might rely on header fields to
1878   convey the full meaning of the response, then the client cannot assume
1879   that meaning has been conveyed; the client might need to repeat the
1880   request in order to determine what action to take next.
1883   A message body that uses the chunked transfer coding is
1884   incomplete if the zero-sized chunk that terminates the encoding has not
1885   been received.  A message that uses a valid <x:ref>Content-Length</x:ref> is
1886   incomplete if the size of the message body received (in octets) is less than
1887   the value given by Content-Length.  A response that has neither chunked
1888   transfer coding nor Content-Length is terminated by closure of the
1889   connection, and thus is considered complete regardless of the number of
1890   message body octets received, provided that the header block was received
1891   intact.
1895<section title="Message Parsing Robustness" anchor="message.robustness">
1897   Older HTTP/1.0 user agent implementations might send an extra CRLF
1898   after a POST request as a workaround for some early server
1899   applications that failed to read message body content that was
1900   not terminated by a line-ending. An HTTP/1.1 user agent &MUST-NOT;
1901   preface or follow a request with an extra CRLF.  If terminating
1902   the request message body with a line-ending is desired, then the
1903   user agent &MUST; count the terminating CRLF octets as part of the
1904   message body length.
1907   In the interest of robustness, a server that is expecting to receive and
1908   parse a request-line &SHOULD; ignore at least one empty line (CRLF)
1909   received prior to the request-line.
1912   Although the line terminator for the start-line and header
1913   fields is the sequence CRLF, recipients &MAY; recognize a
1914   single LF as a line terminator and ignore any preceding CR.
1917   Although the request-line and status-line grammar rules require that each
1918   of the component elements be separated by a single SP octet, recipients
1919   &MAY; instead parse on whitespace-delimited word boundaries and, aside
1920   from the CRLF terminator, treat any form of whitespace as the SP separator
1921   while ignoring preceding or trailing whitespace;
1922   such whitespace includes one or more of the following octets:
1923   SP, HTAB, VT (%x0B), FF (%x0C), or bare CR.
1926   When a server listening only for HTTP request messages, or processing
1927   what appears from the start-line to be an HTTP request message,
1928   receives a sequence of octets that does not match the HTTP-message
1929   grammar aside from the robustness exceptions listed above, the
1930   server &SHOULD; respond with a <x:ref>400 (Bad Request)</x:ref> response. 
1935<section title="Transfer Codings" anchor="transfer.codings">
1936  <x:anchor-alias value="transfer-coding"/>
1937  <x:anchor-alias value="transfer-extension"/>
1939   Transfer coding names are used to indicate an encoding
1940   transformation that has been, can be, or might need to be applied to a
1941   payload body in order to ensure "safe transport" through the network.
1942   This differs from a content coding in that the transfer coding is a
1943   property of the message rather than a property of the representation
1944   that is being transferred.
1946<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="transfer-coding"/><iref primary="true" item="Grammar" subitem="transfer-extension"/>
1947  <x:ref>transfer-coding</x:ref>    = "chunked" ; <xref target="chunked.encoding"/>
1948                     / "compress" ; <xref target="compress.coding"/>
1949                     / "deflate" ; <xref target="deflate.coding"/>
1950                     / "gzip" ; <xref target="gzip.coding"/>
1951                     / <x:ref>transfer-extension</x:ref>
1952  <x:ref>transfer-extension</x:ref> = <x:ref>token</x:ref> *( <x:ref>OWS</x:ref> ";" <x:ref>OWS</x:ref> <x:ref>transfer-parameter</x:ref> )
1954<t anchor="rule.parameter">
1955  <x:anchor-alias value="attribute"/>
1956  <x:anchor-alias value="transfer-parameter"/>
1957  <x:anchor-alias value="value"/>
1958   Parameters are in the form of attribute/value pairs.
1960<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="transfer-parameter"/><iref primary="true" item="Grammar" subitem="attribute"/><iref primary="true" item="Grammar" subitem="value"/><iref primary="true" item="Grammar" subitem="date2"/><iref primary="true" item="Grammar" subitem="date3"/>
1961  <x:ref>transfer-parameter</x:ref> = <x:ref>attribute</x:ref> <x:ref>BWS</x:ref> "=" <x:ref>BWS</x:ref> <x:ref>value</x:ref>
1962  <x:ref>attribute</x:ref>          = <x:ref>token</x:ref>
1963  <x:ref>value</x:ref>              = <x:ref>word</x:ref>
1966   All transfer-coding names are case-insensitive and ought to be registered
1967   within the HTTP Transfer Coding registry, as defined in
1968   <xref target="transfer.coding.registry"/>.
1969   They are used in the <x:ref>TE</x:ref> (<xref target="header.te"/>) and
1970   <x:ref>Transfer-Encoding</x:ref> (<xref target="header.transfer-encoding"/>)
1971   header fields.
1974<section title="Chunked Transfer Coding" anchor="chunked.encoding">
1975  <iref primary="true" item="chunked (Coding Format)"/>
1976  <x:anchor-alias value="chunk"/>
1977  <x:anchor-alias value="chunked-body"/>
1978  <x:anchor-alias value="chunk-data"/>
1979  <x:anchor-alias value="chunk-ext"/>
1980  <x:anchor-alias value="chunk-ext-name"/>
1981  <x:anchor-alias value="chunk-ext-val"/>
1982  <x:anchor-alias value="chunk-size"/>
1983  <x:anchor-alias value="last-chunk"/>
1984  <x:anchor-alias value="quoted-str-nf"/>
1985  <x:anchor-alias value="qdtext-nf"/>
1987   The chunked transfer coding modifies the body of a message in order to
1988   transfer it as a series of chunks, each with its own size indicator,
1989   followed by an &OPTIONAL; trailer containing header fields. This
1990   allows dynamically generated content to be transferred along with the
1991   information necessary for the recipient to verify that it has
1992   received the full message.
1994<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="chunked-body"><!--terminal production--></iref><iref primary="true" item="Grammar" subitem="chunk"/><iref primary="true" item="Grammar" subitem="chunk-size"/><iref primary="true" item="Grammar" subitem="last-chunk"/><iref primary="true" item="Grammar" subitem="chunk-ext"/><iref primary="true" item="Grammar" subitem="chunk-ext-name"/><iref primary="true" item="Grammar" subitem="chunk-ext-val"/><iref primary="true" item="Grammar" subitem="chunk-data"/><iref primary="false" item="Grammar" subitem="trailer-part"/><iref primary="true" item="Grammar" subitem="quoted-str-nf"/><iref primary="true" item="Grammar" subitem="qdtext-nf"/>
1995  <x:ref>chunked-body</x:ref>   = *<x:ref>chunk</x:ref>
1996                   <x:ref>last-chunk</x:ref>
1997                   <x:ref>trailer-part</x:ref>
1998                   <x:ref>CRLF</x:ref>
2000  <x:ref>chunk</x:ref>          = <x:ref>chunk-size</x:ref> [ <x:ref>chunk-ext</x:ref> ] <x:ref>CRLF</x:ref>
2001                   <x:ref>chunk-data</x:ref> <x:ref>CRLF</x:ref>
2002  <x:ref>chunk-size</x:ref>     = 1*<x:ref>HEXDIG</x:ref>
2003  <x:ref>last-chunk</x:ref>     = 1*("0") [ <x:ref>chunk-ext</x:ref> ] <x:ref>CRLF</x:ref>
2005  <x:ref>chunk-ext</x:ref>      = *( ";" <x:ref>chunk-ext-name</x:ref> [ "=" <x:ref>chunk-ext-val</x:ref> ] )
2006  <x:ref>chunk-ext-name</x:ref> = <x:ref>token</x:ref>
2007  <x:ref>chunk-ext-val</x:ref>  = <x:ref>token</x:ref> / <x:ref>quoted-str-nf</x:ref>
2008  <x:ref>chunk-data</x:ref>     = 1*<x:ref>OCTET</x:ref> ; a sequence of chunk-size octets
2010  <x:ref>quoted-str-nf</x:ref>  = <x:ref>DQUOTE</x:ref> *( <x:ref>qdtext-nf</x:ref> / <x:ref>quoted-pair</x:ref> ) <x:ref>DQUOTE</x:ref>
2011                 ; like <x:ref>quoted-string</x:ref>, but disallowing line folding
2012  <x:ref>qdtext-nf</x:ref>      = <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / %x21 / %x23-5B / %x5D-7E / <x:ref>obs-text</x:ref>
2015   Chunk extensions within the chunked transfer coding are deprecated.
2016   Senders &SHOULD-NOT; send chunk-ext.
2017   Definition of new chunk extensions is discouraged.
2020   The chunk-size field is a string of hex digits indicating the size of
2021   the chunk-data in octets. The chunked transfer coding is complete when a
2022   chunk with a chunk-size of zero is received, possibly followed by a
2023   trailer, and finally terminated by an empty line.
2026<section title="Chunked Trailer Part" anchor="chunked.trailer.part">
2027  <x:anchor-alias value="trailer-part"/>
2029   A trailer allows the sender to include additional fields at the end of a
2030   chunked message in order to supply metadata that might be dynamically
2031   generated while the message body is sent, such as a message integrity
2032   check, digital signature, or post-processing status. The trailer fields are
2033   identical to header fields, except they are sent in a chunked trailer
2034   instead of the message header block.
2036<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="trailer-part"/>
2037  <x:ref>trailer-part</x:ref>   = *( <x:ref>header-field</x:ref> <x:ref>CRLF</x:ref> )
2040   A sender &MUST-NOT; generate a trailer that contains a field which needs to
2041   be known by the recipient before it can begin processing the message body.
2042   For example, most recipients need to know the values of
2043   <x:ref>Content-Encoding</x:ref> and <x:ref>Content-Type</x:ref> in order to
2044   select a content handler, so placing those fields in a trailer would force
2045   the recipient to buffer the entire body before it could begin, greatly
2046   increasing user-perceived latency and defeating one of the main advantages
2047   of using chunked to send data streams of unknown length.
2048   A sender &MUST-NOT; generate a trailer containing a
2049   <x:ref>Transfer-Encoding</x:ref>,
2050   <x:ref>Content-Length</x:ref>, or
2051   <x:ref>Trailer</x:ref> field.
2054   A server &MUST; generate an empty trailer with the chunked transfer coding
2055   unless at least one of the following is true:
2056  <list style="numbers">
2057    <t>the request included a <x:ref>TE</x:ref> header field that indicates
2058    "trailers" is acceptable in the transfer coding of the response, as
2059    described in <xref target="header.te"/>; or,</t>
2061    <t>the trailer fields consist entirely of optional metadata and the
2062    recipient could use the message (in a manner acceptable to the generating
2063    server) without receiving that metadata. In other words, the generating
2064    server is willing to accept the possibility that the trailer fields might
2065    be silently discarded along the path to the client.</t>
2066  </list>
2069   The above requirement prevents the need for an infinite buffer when a
2070   message is being received by an HTTP/1.1 (or later) proxy and forwarded to
2071   an HTTP/1.0 recipient.
2075<section title="Decoding Chunked" anchor="decoding.chunked">
2077   A process for decoding the chunked transfer coding
2078   can be represented in pseudo-code as:
2080<figure><artwork type="code">
2081  length := 0
2082  read chunk-size, chunk-ext (if any), and CRLF
2083  while (chunk-size &gt; 0) {
2084     read chunk-data and CRLF
2085     append chunk-data to decoded-body
2086     length := length + chunk-size
2087     read chunk-size, chunk-ext (if any), and CRLF
2088  }
2089  read header-field
2090  while (header-field not empty) {
2091     append header-field to existing header fields
2092     read header-field
2093  }
2094  Content-Length := length
2095  Remove "chunked" from Transfer-Encoding
2096  Remove Trailer from existing header fields
2099   All recipients &MUST; be able to parse and decode the
2100   chunked transfer coding and &MUST; ignore chunk-ext extensions
2101   they do not understand.
2106<section title="Compression Codings" anchor="compression.codings">
2108   The codings defined below can be used to compress the payload of a
2109   message.
2112<section title="Compress Coding" anchor="compress.coding">
2113<iref item="compress (Coding Format)"/>
2115   The "compress" coding is an adaptive Lempel-Ziv-Welch (LZW) coding
2116   <xref target="Welch"/> that is commonly produced by the UNIX file
2117   compression program "compress".
2118   Recipients &SHOULD; consider "x-compress" to be equivalent to "compress".
2122<section title="Deflate Coding" anchor="deflate.coding">
2123<iref item="deflate (Coding Format)"/>
2125   The "deflate" coding is a "zlib" data format <xref target="RFC1950"/>
2126   containing a "deflate" compressed data stream <xref target="RFC1951"/>
2127   that uses a combination of the Lempel-Ziv (LZ77) compression algorithm and
2128   Huffman coding.
2131  <t>
2132    &Note; Some incorrect implementations send the "deflate"
2133    compressed data without the zlib wrapper.
2134   </t>
2138<section title="Gzip Coding" anchor="gzip.coding">
2139<iref item="gzip (Coding Format)"/>
2141   The "gzip" coding is an LZ77 coding with a 32 bit CRC that is commonly
2142   produced by the gzip file compression program <xref target="RFC1952"/>.
2143   Recipients &SHOULD; consider "x-gzip" to be equivalent to "gzip".
2149<section title="TE" anchor="header.te">
2150  <iref primary="true" item="TE header field" x:for-anchor=""/>
2151  <x:anchor-alias value="TE"/>
2152  <x:anchor-alias value="t-codings"/>
2153  <x:anchor-alias value="t-ranking"/>
2154  <x:anchor-alias value="rank"/>
2156   The "TE" header field in a request indicates what transfer codings,
2157   besides chunked, the client is willing to accept in response, and
2158   whether or not the client is willing to accept trailer fields in a
2159   chunked transfer coding.
2162   The TE field-value consists of a comma-separated list of transfer coding
2163   names, each allowing for optional parameters (as described in
2164   <xref target="transfer.codings"/>), and/or the keyword "trailers".
2165   Clients &MUST-NOT; send the chunked transfer coding name in TE;
2166   chunked is always acceptable for HTTP/1.1 recipients.
2168<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="TE"/><iref primary="true" item="Grammar" subitem="t-codings"/><iref primary="true" item="Grammar" subitem="t-ranking"/><iref primary="true" item="Grammar" subitem="rank"/>
2169  <x:ref>TE</x:ref>        = #<x:ref>t-codings</x:ref>
2170  <x:ref>t-codings</x:ref> = "trailers" / ( <x:ref>transfer-coding</x:ref> [ <x:ref>t-ranking</x:ref> ] )
2171  <x:ref>t-ranking</x:ref> = <x:ref>OWS</x:ref> ";" <x:ref>OWS</x:ref> "q=" <x:ref>rank</x:ref>
2172  <x:ref>rank</x:ref>      = ( "0" [ "." 0*3<x:ref>DIGIT</x:ref> ] )
2173             / ( "1" [ "." 0*3("0") ] )
2176   Three examples of TE use are below.
2178<figure><artwork type="example">
2179  TE: deflate
2180  TE:
2181  TE: trailers, deflate;q=0.5
2184   The presence of the keyword "trailers" indicates that the client is willing
2185   to accept trailer fields in a chunked transfer coding, as defined in
2186   <xref target="chunked.trailer.part"/>, on behalf of itself and any downstream
2187   clients. For requests from an intermediary, this implies that either:
2188   (a) all downstream clients are willing to accept trailer fields in the
2189   forwarded response; or,
2190   (b) the intermediary will attempt to buffer the response on behalf of
2191   downstream recipients.
2192   Note that HTTP/1.1 does not define any means to limit the size of a
2193   chunked response such that an intermediary can be assured of buffering the
2194   entire response.
2197   When multiple transfer codings are acceptable, the client &MAY; rank the
2198   codings by preference using a case-insensitive "q" parameter (similar to
2199   the qvalues used in content negotiation fields, &qvalue;). The rank value
2200   is a real number in the range 0 through 1, where 0.001 is the least
2201   preferred and 1 is the most preferred; a value of 0 means "not acceptable".
2204   If the TE field-value is empty or if no TE field is present, the only
2205   acceptable transfer coding is chunked. A message with no transfer coding
2206   is always acceptable.
2209   Since the TE header field only applies to the immediate connection,
2210   a sender of TE &MUST; also send a "TE" connection option within the
2211   <x:ref>Connection</x:ref> header field (<xref target="header.connection"/>)
2212   in order to prevent the TE field from being forwarded by intermediaries
2213   that do not support its semantics.
2217<section title="Trailer" anchor="header.trailer">
2218  <iref primary="true" item="Trailer header field" x:for-anchor=""/>
2219  <x:anchor-alias value="Trailer"/>
2221   When a message includes a message body encoded with the chunked
2222   transfer coding and the sender desires to send metadata in the form of
2223   trailer fields at the end of the message, the sender &SHOULD; generate a
2224   <x:ref>Trailer</x:ref> header field before the message body to indicate
2225   which fields will be present in the trailers. This allows the recipient
2226   to prepare for receipt of that metadata before it starts processing the body,
2227   which is useful if the message is being streamed and the recipient wishes
2228   to confirm an integrity check on the fly.
2230<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Trailer"/>
2231  <x:ref>Trailer</x:ref> = 1#<x:ref>field-name</x:ref>
2236<section title="Message Routing" anchor="message.routing">
2238   HTTP request message routing is determined by each client based on the
2239   target resource, the client's proxy configuration, and
2240   establishment or reuse of an inbound connection.  The corresponding
2241   response routing follows the same connection chain back to the client.
2244<section title="Identifying a Target Resource" anchor="target-resource">
2245  <iref primary="true" item="target resource"/>
2246  <iref primary="true" item="target URI"/>
2247  <x:anchor-alias value="target resource"/>
2248  <x:anchor-alias value="target URI"/>
2250   HTTP is used in a wide variety of applications, ranging from
2251   general-purpose computers to home appliances.  In some cases,
2252   communication options are hard-coded in a client's configuration.
2253   However, most HTTP clients rely on the same resource identification
2254   mechanism and configuration techniques as general-purpose Web browsers.
2257   HTTP communication is initiated by a user agent for some purpose.
2258   The purpose is a combination of request semantics, which are defined in
2259   <xref target="Part2"/>, and a target resource upon which to apply those
2260   semantics.  A URI reference (<xref target="uri"/>) is typically used as
2261   an identifier for the "<x:dfn>target resource</x:dfn>", which a user agent
2262   would resolve to its absolute form in order to obtain the
2263   "<x:dfn>target URI</x:dfn>".  The target URI
2264   excludes the reference's fragment component, if any,
2265   since fragment identifiers are reserved for client-side processing
2266   (<xref target="RFC3986" x:fmt="," x:sec="3.5"/>).
2270<section title="Connecting Inbound" anchor="connecting.inbound">
2272   Once the target URI is determined, a client needs to decide whether
2273   a network request is necessary to accomplish the desired semantics and,
2274   if so, where that request is to be directed.
2277   If the client has a cache <xref target="Part6"/> and the request can be
2278   satisfied by it, then the request is
2279   usually directed there first.
2282   If the request is not satisfied by a cache, then a typical client will
2283   check its configuration to determine whether a proxy is to be used to
2284   satisfy the request.  Proxy configuration is implementation-dependent,
2285   but is often based on URI prefix matching, selective authority matching,
2286   or both, and the proxy itself is usually identified by an "http" or
2287   "https" URI.  If a proxy is applicable, the client connects inbound by
2288   establishing (or reusing) a connection to that proxy.
2291   If no proxy is applicable, a typical client will invoke a handler routine,
2292   usually specific to the target URI's scheme, to connect directly
2293   to an authority for the target resource.  How that is accomplished is
2294   dependent on the target URI scheme and defined by its associated
2295   specification, similar to how this specification defines origin server
2296   access for resolution of the "http" (<xref target="http.uri"/>) and
2297   "https" (<xref target="https.uri"/>) schemes.
2300   HTTP requirements regarding connection management are defined in
2301   <xref target=""/>.
2305<section title="Request Target" anchor="request-target">
2307   Once an inbound connection is obtained,
2308   the client sends an HTTP request message (<xref target="http.message"/>)
2309   with a request-target derived from the target URI.
2310   There are four distinct formats for the request-target, depending on both
2311   the method being requested and whether the request is to a proxy.
2313<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="request-target"/><iref primary="true" item="Grammar" subitem="origin-form"/><iref primary="true" item="Grammar" subitem="absolute-form"/><iref primary="true" item="Grammar" subitem="authority-form"/><iref primary="true" item="Grammar" subitem="asterisk-form"/>
2314  <x:ref>request-target</x:ref> = <x:ref>origin-form</x:ref>
2315                 / <x:ref>absolute-form</x:ref>
2316                 / <x:ref>authority-form</x:ref>
2317                 / <x:ref>asterisk-form</x:ref>
2319  <x:ref>origin-form</x:ref>    = <x:ref>absolute-path</x:ref> [ "?" <x:ref>query</x:ref> ]
2320  <x:ref>absolute-form</x:ref>  = <x:ref>absolute-URI</x:ref>
2321  <x:ref>authority-form</x:ref> = <x:ref>authority</x:ref>
2322  <x:ref>asterisk-form</x:ref>  = "*"
2324<t anchor="origin-form"><iref item="origin-form (of request-target)"/>
2325  <x:h>origin-form</x:h>
2328   The most common form of request-target is the <x:dfn>origin-form</x:dfn>.
2329   When making a request directly to an origin server, other than a CONNECT
2330   or server-wide OPTIONS request (as detailed below),
2331   a client &MUST; send only the absolute path and query components of
2332   the target URI as the request-target.
2333   If the target URI's path component is empty, then the client &MUST; send
2334   "/" as the path within the origin-form of request-target.
2335   A <x:ref>Host</x:ref> header field is also sent, as defined in
2336   <xref target=""/>.
2339   For example, a client wishing to retrieve a representation of the resource
2340   identified as
2342<figure><artwork x:indent-with="  " type="example">
2346   directly from the origin server would open (or reuse) a TCP connection
2347   to port 80 of the host "" and send the lines:
2349<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2350GET /where?q=now HTTP/1.1
2354   followed by the remainder of the request message.
2356<t anchor="absolute-form"><iref item="absolute-form (of request-target)"/>
2357  <x:h>absolute-form</x:h>
2360   When making a request to a proxy, other than a CONNECT or server-wide
2361   OPTIONS request (as detailed below), a client &MUST; send the target URI
2362   in <x:dfn>absolute-form</x:dfn> as the request-target.
2363   The proxy is requested to either service that request from a valid cache,
2364   if possible, or make the same request on the client's behalf to either
2365   the next inbound proxy server or directly to the origin server indicated
2366   by the request-target.  Requirements on such "forwarding" of messages are
2367   defined in <xref target="message.forwarding"/>.
2370   An example absolute-form of request-line would be:
2372<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2373GET HTTP/1.1
2376   To allow for transition to the absolute-form for all requests in some
2377   future version of HTTP, HTTP/1.1 servers &MUST; accept the absolute-form
2378   in requests, even though HTTP/1.1 clients will only send them in requests
2379   to proxies.
2381<t anchor="authority-form"><iref item="authority-form (of request-target)"/>
2382  <x:h>authority-form</x:h>
2385   The <x:dfn>authority-form</x:dfn> of request-target is only used for
2386   CONNECT requests (&CONNECT;). When making a CONNECT request to establish a
2387   tunnel through one or more proxies, a client &MUST; send only the target
2388   URI's authority component (excluding any userinfo and its "@" delimiter) as
2389   the request-target. For example,
2391<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2394<t anchor="asterisk-form"><iref item="asterisk-form (of request-target)"/>
2395  <x:h>asterisk-form</x:h>
2398   The <x:dfn>asterisk-form</x:dfn> of request-target is only used for a server-wide
2399   OPTIONS request (&OPTIONS;).  When a client wishes to request OPTIONS
2400   for the server as a whole, as opposed to a specific named resource of
2401   that server, the client &MUST; send only "*" (%x2A) as the request-target.
2402   For example,
2404<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2405OPTIONS * HTTP/1.1
2408   If a proxy receives an OPTIONS request with an absolute-form of
2409   request-target in which the URI has an empty path and no query component,
2410   then the last proxy on the request chain &MUST; send a request-target
2411   of "*" when it forwards the request to the indicated origin server.
2414   For example, the request
2415</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2419  would be forwarded by the final proxy as
2420</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2421OPTIONS * HTTP/1.1
2425   after connecting to port 8001 of host "".
2430<section title="Host" anchor="">
2431  <iref primary="true" item="Host header field" x:for-anchor=""/>
2432  <x:anchor-alias value="Host"/>
2434   The "Host" header field in a request provides the host and port
2435   information from the target URI, enabling the origin
2436   server to distinguish among resources while servicing requests
2437   for multiple host names on a single IP address.
2439<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Host"/>
2440  <x:ref>Host</x:ref> = <x:ref>uri-host</x:ref> [ ":" <x:ref>port</x:ref> ] ; <xref target="http.uri"/>
2443   A client &MUST; send a Host header field in all HTTP/1.1 request messages.
2444   If the target URI includes an authority component, then a client &MUST;
2445   send a field-value for Host that is identical to that authority
2446   component, excluding any userinfo subcomponent and its "@" delimiter
2447   (<xref target="http.uri"/>).
2448   If the authority component is missing or undefined for the target URI,
2449   then a client &MUST; send a Host header field with an empty field-value.
2452   Since the Host field-value is critical information for handling a request,
2453   a user agent &SHOULD; generate Host as the first header field following the
2454   request-line.
2457   For example, a GET request to the origin server for
2458   &lt;; would begin with:
2460<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2461GET /pub/WWW/ HTTP/1.1
2465   A client &MUST; send a Host header field in an HTTP/1.1 request even
2466   if the request-target is in the absolute-form, since this
2467   allows the Host information to be forwarded through ancient HTTP/1.0
2468   proxies that might not have implemented Host.
2471   When a proxy receives a request with an absolute-form of
2472   request-target, the proxy &MUST; ignore the received
2473   Host header field (if any) and instead replace it with the host
2474   information of the request-target.  A proxy that forwards such a request
2475   &MUST; generate a new Host field-value based on the received
2476   request-target rather than forward the received Host field-value.
2479   Since the Host header field acts as an application-level routing
2480   mechanism, it is a frequent target for malware seeking to poison
2481   a shared cache or redirect a request to an unintended server.
2482   An interception proxy is particularly vulnerable if it relies on
2483   the Host field-value for redirecting requests to internal
2484   servers, or for use as a cache key in a shared cache, without
2485   first verifying that the intercepted connection is targeting a
2486   valid IP address for that host.
2489   A server &MUST; respond with a <x:ref>400 (Bad Request)</x:ref> status code
2490   to any HTTP/1.1 request message that lacks a Host header field and
2491   to any request message that contains more than one Host header field
2492   or a Host header field with an invalid field-value.
2496<section title="Effective Request URI" anchor="effective.request.uri">
2497  <iref primary="true" item="effective request URI"/>
2498  <x:anchor-alias value="effective request URI"/>
2500   A server that receives an HTTP request message &MUST; reconstruct
2501   the user agent's original target URI, based on the pieces of information
2502   learned from the request-target, <x:ref>Host</x:ref> header field, and
2503   connection context, in order to identify the intended target resource and
2504   properly service the request. The URI derived from this reconstruction
2505   process is referred to as the "<x:dfn>effective request URI</x:dfn>".
2508   For a user agent, the effective request URI is the target URI.
2511   If the request-target is in absolute-form, then the effective request URI
2512   is the same as the request-target.  Otherwise, the effective request URI
2513   is constructed as follows.
2516   If the request is received over a TLS-secured TCP connection,
2517   then the effective request URI's scheme is "https"; otherwise, the
2518   scheme is "http".
2521   If the request-target is in authority-form, then the effective
2522   request URI's authority component is the same as the request-target.
2523   Otherwise, if a <x:ref>Host</x:ref> header field is supplied with a
2524   non-empty field-value, then the authority component is the same as the
2525   Host field-value. Otherwise, the authority component is the concatenation of
2526   the default host name configured for the server, a colon (":"), and the
2527   connection's incoming TCP port number in decimal form.
2530   If the request-target is in authority-form or asterisk-form, then the
2531   effective request URI's combined path and query component is empty.
2532   Otherwise, the combined path and query component is the same as the
2533   request-target.
2536   The components of the effective request URI, once determined as above,
2537   can be combined into absolute-URI form by concatenating the scheme,
2538   "://", authority, and combined path and query component.
2542   Example 1: the following message received over an insecure TCP connection
2544<artwork type="example" x:indent-with="  ">
2545GET /pub/WWW/TheProject.html HTTP/1.1
2551  has an effective request URI of
2553<artwork type="example" x:indent-with="  ">
2559   Example 2: the following message received over a TLS-secured TCP connection
2561<artwork type="example" x:indent-with="  ">
2562OPTIONS * HTTP/1.1
2568  has an effective request URI of
2570<artwork type="example" x:indent-with="  ">
2575   An origin server that does not allow resources to differ by requested
2576   host &MAY; ignore the <x:ref>Host</x:ref> field-value and instead replace it
2577   with a configured server name when constructing the effective request URI.
2580   Recipients of an HTTP/1.0 request that lacks a <x:ref>Host</x:ref> header
2581   field &MAY; attempt to use heuristics (e.g., examination of the URI path for
2582   something unique to a particular host) in order to guess the
2583   effective request URI's authority component.
2587<section title="Associating a Response to a Request" anchor="">
2589   HTTP does not include a request identifier for associating a given
2590   request message with its corresponding one or more response messages.
2591   Hence, it relies on the order of response arrival to correspond exactly
2592   to the order in which requests are made on the same connection.
2593   More than one response message per request only occurs when one or more
2594   informational responses (<x:ref>1xx</x:ref>, see &status-1xx;) precede a
2595   final response to the same request.
2598   A client that has more than one outstanding request on a connection &MUST;
2599   maintain a list of outstanding requests in the order sent and &MUST;
2600   associate each received response message on that connection to the highest
2601   ordered request that has not yet received a final (non-<x:ref>1xx</x:ref>)
2602   response.
2606<section title="Message Forwarding" anchor="message.forwarding">
2608   As described in <xref target="intermediaries"/>, intermediaries can serve
2609   a variety of roles in the processing of HTTP requests and responses.
2610   Some intermediaries are used to improve performance or availability.
2611   Others are used for access control or to filter content.
2612   Since an HTTP stream has characteristics similar to a pipe-and-filter
2613   architecture, there are no inherent limits to the extent an intermediary
2614   can enhance (or interfere) with either direction of the stream.
2617   An intermediary not acting as a tunnel &MUST; implement the
2618   <x:ref>Connection</x:ref> header field, as specified in
2619   <xref target="header.connection"/>, and exclude fields from being forwarded
2620   that are only intended for the incoming connection.
2623   An intermediary &MUST-NOT; forward a message to itself unless it is
2624   protected from an infinite request loop. In general, an intermediary ought
2625   to recognize its own server names, including any aliases, local variations,
2626   or literal IP addresses, and respond to such requests directly.
2629<section title="Via" anchor="header.via">
2630  <iref primary="true" item="Via header field" x:for-anchor=""/>
2631  <x:anchor-alias value="pseudonym"/>
2632  <x:anchor-alias value="received-by"/>
2633  <x:anchor-alias value="received-protocol"/>
2634  <x:anchor-alias value="Via"/>
2636   The "Via" header field indicates the presence of intermediate protocols and
2637   recipients between the user agent and the server (on requests) or between
2638   the origin server and the client (on responses), similar to the
2639   "Received" header field in email
2640   (<xref target="RFC5322" x:fmt="of" x:sec="3.6.7"/>).
2641   Via can be used for tracking message forwards,
2642   avoiding request loops, and identifying the protocol capabilities of
2643   senders along the request/response chain.
2645<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Via"/><iref primary="true" item="Grammar" subitem="received-protocol"/><iref primary="true" item="Grammar" subitem="protocol-name"/><iref primary="true" item="Grammar" subitem="protocol-version"/><iref primary="true" item="Grammar" subitem="received-by"/><iref primary="true" item="Grammar" subitem="pseudonym"/>
2646  <x:ref>Via</x:ref> = 1#( <x:ref>received-protocol</x:ref> <x:ref>RWS</x:ref> <x:ref>received-by</x:ref> [ <x:ref>RWS</x:ref> <x:ref>comment</x:ref> ] )
2648  <x:ref>received-protocol</x:ref> = [ <x:ref>protocol-name</x:ref> "/" ] <x:ref>protocol-version</x:ref>
2649                      ; see <xref target="header.upgrade"/>
2650  <x:ref>received-by</x:ref>       = ( <x:ref>uri-host</x:ref> [ ":" <x:ref>port</x:ref> ] ) / <x:ref>pseudonym</x:ref>
2651  <x:ref>pseudonym</x:ref>         = <x:ref>token</x:ref>
2654   Multiple Via field values represent each proxy or gateway that has
2655   forwarded the message. Each intermediary appends its own information
2656   about how the message was received, such that the end result is ordered
2657   according to the sequence of forwarding recipients.
2660   A proxy &MUST; send an appropriate Via header field, as described below, in
2661   each message that it forwards.
2662   An HTTP-to-HTTP gateway &MUST; send an appropriate Via header field in
2663   each inbound request message and &MAY; send a Via header field in
2664   forwarded response messages.
2667   For each intermediary, the received-protocol indicates the protocol and
2668   protocol version used by the upstream sender of the message. Hence, the
2669   Via field value records the advertised protocol capabilities of the
2670   request/response chain such that they remain visible to downstream
2671   recipients; this can be useful for determining what backwards-incompatible
2672   features might be safe to use in response, or within a later request, as
2673   described in <xref target="http.version"/>. For brevity, the protocol-name
2674   is omitted when the received protocol is HTTP.
2677   The received-by field is normally the host and optional port number of a
2678   recipient server or client that subsequently forwarded the message.
2679   However, if the real host is considered to be sensitive information, a
2680   sender &MAY; replace it with a pseudonym. If a port is not provided,
2681   a recipient &MAY; interpret that as meaning it was received on the default
2682   TCP port, if any, for the received-protocol.
2685   A sender &MAY; generate comments in the Via header field to identify the
2686   software of each recipient, analogous to the <x:ref>User-Agent</x:ref> and
2687   <x:ref>Server</x:ref> header fields. However, all comments in the Via field
2688   are optional and a recipient &MAY; remove them prior to forwarding the
2689   message.
2692   For example, a request message could be sent from an HTTP/1.0 user
2693   agent to an internal proxy code-named "fred", which uses HTTP/1.1 to
2694   forward the request to a public proxy at, which completes
2695   the request by forwarding it to the origin server at
2696   The request received by would then have the following
2697   Via header field:
2699<figure><artwork type="example">
2700  Via: 1.0 fred, 1.1
2703   An intermediary used as a portal through a network firewall
2704   &SHOULD-NOT; forward the names and ports of hosts within the firewall
2705   region unless it is explicitly enabled to do so. If not enabled, such an
2706   intermediary &SHOULD; replace each received-by host of any host behind the
2707   firewall by an appropriate pseudonym for that host.
2710   An intermediary &MAY; combine an ordered subsequence of Via header
2711   field entries into a single such entry if the entries have identical
2712   received-protocol values. For example,
2714<figure><artwork type="example">
2715  Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy
2718  could be collapsed to
2720<figure><artwork type="example">
2721  Via: 1.0 ricky, 1.1 mertz, 1.0 lucy
2724   Senders &SHOULD-NOT; combine multiple entries unless they are all
2725   under the same organizational control and the hosts have already been
2726   replaced by pseudonyms. Senders &MUST-NOT; combine entries that
2727   have different received-protocol values.
2731<section title="Transformations" anchor="message.transformations">
2733   Some intermediaries include features for transforming messages and their
2734   payloads.  A transforming proxy might, for example, convert between image
2735   formats in order to save cache space or to reduce the amount of traffic on
2736   a slow link. However, operational problems might occur when these
2737   transformations are applied to payloads intended for critical applications,
2738   such as medical imaging or scientific data analysis, particularly when
2739   integrity checks or digital signatures are used to ensure that the payload
2740   received is identical to the original.
2743   If a proxy receives a request-target with a host name that is not a
2744   fully qualified domain name, it &MAY; add its own domain to the host name
2745   it received when forwarding the request.  A proxy &MUST-NOT; change the
2746   host name if it is a fully qualified domain name.
2749   A proxy &MUST-NOT; modify the "absolute-path" and "query" parts of the
2750   received request-target when forwarding it to the next inbound server,
2751   except as noted above to replace an empty path with "/" or "*".
2754   A proxy &MUST-NOT; modify header fields that provide information about the
2755   end points of the communication chain, the resource state, or the selected
2756   representation. A proxy &MAY; change the message body through application
2757   or removal of a transfer coding (<xref target="transfer.codings"/>).
2760   A non-transforming proxy &MUST-NOT; modify the message payload (&payload;).
2761   A transforming proxy &MUST-NOT; modify the payload of a message that
2762   contains the no-transform cache-control directive.
2765   A transforming proxy &MAY; transform the payload of a message
2766   that does not contain the no-transform cache-control directive;
2767   if the payload is transformed, the transforming proxy &MUST; add a
2768   Warning header field with the warn-code of 214 ("Transformation Applied")
2769   if one does not already appear in the message (see &header-warning;).
2770   If the payload of a <x:ref>200 (OK)</x:ref> response is transformed, the
2771   transforming proxy can also inform downstream recipients that a
2772   transformation has been applied by changing the response status code to
2773   <x:ref>203 (Non-Authoritative Information)</x:ref> (&status-203;).
2779<section title="Connection Management" anchor="">
2781   HTTP messaging is independent of the underlying transport or
2782   session-layer connection protocol(s).  HTTP only presumes a reliable
2783   transport with in-order delivery of requests and the corresponding
2784   in-order delivery of responses.  The mapping of HTTP request and
2785   response structures onto the data units of an underlying transport
2786   protocol is outside the scope of this specification.
2789   As described in <xref target="connecting.inbound"/>, the specific
2790   connection protocols to be used for an HTTP interaction are determined by
2791   client configuration and the <x:ref>target URI</x:ref>.
2792   For example, the "http" URI scheme
2793   (<xref target="http.uri"/>) indicates a default connection of TCP
2794   over IP, with a default TCP port of 80, but the client might be
2795   configured to use a proxy via some other connection, port, or protocol.
2798   HTTP implementations are expected to engage in connection management,
2799   which includes maintaining the state of current connections,
2800   establishing a new connection or reusing an existing connection,
2801   processing messages received on a connection, detecting connection
2802   failures, and closing each connection.
2803   Most clients maintain multiple connections in parallel, including
2804   more than one connection per server endpoint.
2805   Most servers are designed to maintain thousands of concurrent connections,
2806   while controlling request queues to enable fair use and detect
2807   denial of service attacks.
2810<section title="Connection" anchor="header.connection">
2811  <iref primary="true" item="Connection header field" x:for-anchor=""/>
2812  <iref primary="true" item="close" x:for-anchor=""/>
2813  <x:anchor-alias value="Connection"/>
2814  <x:anchor-alias value="connection-option"/>
2815  <x:anchor-alias value="close"/>
2817   The "Connection" header field allows the sender to indicate desired
2818   control options for the current connection.  In order to avoid confusing
2819   downstream recipients, a proxy or gateway &MUST; remove or replace any
2820   received connection options before forwarding the message.
2823   When a header field aside from Connection is used to supply control
2824   information for or about the current connection, the sender &MUST; list
2825   the corresponding field-name within the "Connection" header field.
2826   A proxy or gateway &MUST; parse a received Connection
2827   header field before a message is forwarded and, for each
2828   connection-option in this field, remove any header field(s) from
2829   the message with the same name as the connection-option, and then
2830   remove the Connection header field itself (or replace it with the
2831   intermediary's own connection options for the forwarded message).
2834   Hence, the Connection header field provides a declarative way of
2835   distinguishing header fields that are only intended for the
2836   immediate recipient ("hop-by-hop") from those fields that are
2837   intended for all recipients on the chain ("end-to-end"), enabling the
2838   message to be self-descriptive and allowing future connection-specific
2839   extensions to be deployed without fear that they will be blindly
2840   forwarded by older intermediaries.
2843   The Connection header field's value has the following grammar:
2845<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Connection"/><iref primary="true" item="Grammar" subitem="connection-option"/>
2846  <x:ref>Connection</x:ref>        = 1#<x:ref>connection-option</x:ref>
2847  <x:ref>connection-option</x:ref> = <x:ref>token</x:ref>
2850   Connection options are case-insensitive.
2853   A sender &MUST-NOT; send a connection option corresponding to a header
2854   field that is intended for all recipients of the payload.
2855   For example, <x:ref>Cache-Control</x:ref> is never appropriate as a
2856   connection option (&header-cache-control;).
2859   The connection options do not have to correspond to a header field
2860   present in the message, since a connection-specific header field
2861   might not be needed if there are no parameters associated with that
2862   connection option.  Recipients that trigger certain connection
2863   behavior based on the presence of connection options &MUST; do so
2864   based on the presence of the connection-option rather than only the
2865   presence of the optional header field.  In other words, if the
2866   connection option is received as a header field but not indicated
2867   within the Connection field-value, then the recipient &MUST; ignore
2868   the connection-specific header field because it has likely been
2869   forwarded by an intermediary that is only partially conformant.
2872   When defining new connection options, specifications ought to
2873   carefully consider existing deployed header fields and ensure
2874   that the new connection option does not share the same name as
2875   an unrelated header field that might already be deployed.
2876   Defining a new connection option essentially reserves that potential
2877   field-name for carrying additional information related to the
2878   connection option, since it would be unwise for senders to use
2879   that field-name for anything else.
2882   The "<x:dfn>close</x:dfn>" connection option is defined for a
2883   sender to signal that this connection will be closed after completion of
2884   the response. For example,
2886<figure><artwork type="example">
2887  Connection: close
2890   in either the request or the response header fields indicates that the
2891   sender is going to close the connection after the current request/response
2892   is complete (<xref target="persistent.tear-down"/>).
2895   A client that does not support <x:ref>persistent connections</x:ref> &MUST;
2896   send the "close" connection option in every request message.
2899   A server that does not support <x:ref>persistent connections</x:ref> &MUST;
2900   send the "close" connection option in every response message that
2901   does not have a <x:ref>1xx (Informational)</x:ref> status code.
2905<section title="Establishment" anchor="persistent.establishment">
2907   It is beyond the scope of this specification to describe how connections
2908   are established via various transport or session-layer protocols.
2909   Each connection applies to only one transport link.
2913<section title="Persistence" anchor="persistent.connections">
2914   <x:anchor-alias value="persistent connections"/>
2916   HTTP/1.1 defaults to the use of "<x:dfn>persistent connections</x:dfn>",
2917   allowing multiple requests and responses to be carried over a single
2918   connection. The "<x:ref>close</x:ref>" connection-option is used to signal
2919   that a connection will not persist after the current request/response.
2920   HTTP implementations &SHOULD; support persistent connections.
2923   A recipient determines whether a connection is persistent or not based on
2924   the most recently received message's protocol version and
2925   <x:ref>Connection</x:ref> header field (if any):
2926   <list style="symbols">
2927     <t>If the <x:ref>close</x:ref> connection option is present, the
2928        connection will not persist after the current response; else,</t>
2929     <t>If the received protocol is HTTP/1.1 (or later), the connection will
2930        persist after the current response; else,</t>
2931     <t>If the received protocol is HTTP/1.0, the "keep-alive"
2932        connection option is present, the recipient is not a proxy, and
2933        the recipient wishes to honor the HTTP/1.0 "keep-alive" mechanism,
2934        the connection will persist after the current response; otherwise,</t>
2935     <t>The connection will close after the current response.</t>
2936   </list>
2939   A server &MAY; assume that an HTTP/1.1 client intends to maintain a
2940   persistent connection until a <x:ref>close</x:ref> connection option
2941   is received in a request.
2944   A client &MAY; reuse a persistent connection until it sends or receives
2945   a <x:ref>close</x:ref> connection option or receives an HTTP/1.0 response
2946   without a "keep-alive" connection option.
2949   In order to remain persistent, all messages on a connection need to
2950   have a self-defined message length (i.e., one not defined by closure
2951   of the connection), as described in <xref target="message.body"/>.
2952   A server &MUST; read the entire request message body or close
2953   the connection after sending its response, since otherwise the
2954   remaining data on a persistent connection would be misinterpreted
2955   as the next request.  Likewise,
2956   a client &MUST; read the entire response message body if it intends
2957   to reuse the same connection for a subsequent request.
2960   A proxy server &MUST-NOT; maintain a persistent connection with an
2961   HTTP/1.0 client (see <xref x:sec="19.7.1" x:fmt="of" target="RFC2068"/> for
2962   information and discussion of the problems with the Keep-Alive header field
2963   implemented by many HTTP/1.0 clients).
2966   Clients and servers &SHOULD-NOT; assume that a persistent connection is
2967   maintained for HTTP versions less than 1.1 unless it is explicitly
2968   signaled.
2969   See <xref target="compatibility.with.http.1.0.persistent.connections"/>
2970   for more information on backward compatibility with HTTP/1.0 clients.
2973<section title="Retrying Requests" anchor="persistent.retrying.requests">
2975   Connections can be closed at any time, with or without intention.
2976   Implementations ought to anticipate the need to recover
2977   from asynchronous close events.
2980   When an inbound connection is closed prematurely, a client &MAY; open a new
2981   connection and automatically retransmit an aborted sequence of requests if
2982   all of those requests have idempotent methods (&idempotent-methods;).
2983   A proxy &MUST-NOT; automatically retry non-idempotent requests.
2986   A user agent &MUST-NOT; automatically retry a request with a non-idempotent
2987   method unless it has some means to know that the request semantics are
2988   actually idempotent, regardless of the method, or some means to detect that
2989   the original request was never applied. For example, a user agent that
2990   knows (through design or configuration) that a POST request to a given
2991   resource is safe can repeat that request automatically.
2992   Likewise, a user agent designed specifically to operate on a version
2993   control repository might be able to recover from partial failure conditions
2994   by checking the target resource revision(s) after a failed connection,
2995   reverting or fixing any changes that were partially applied, and then
2996   automatically retrying the requests that failed.
2999   A client &SHOULD-NOT; automatically retry a failed automatic retry.
3003<section title="Pipelining" anchor="pipelining">
3004   <x:anchor-alias value="pipeline"/>
3006   A client that supports persistent connections &MAY; "<x:dfn>pipeline</x:dfn>"
3007   its requests (i.e., send multiple requests without waiting for each
3008   response). A server &MAY; process a sequence of pipelined requests in
3009   parallel if they all have safe methods (&safe-methods;), but &MUST; send
3010   the corresponding responses in the same order that the requests were
3011   received.
3014   A client that pipelines requests &SHOULD; retry unanswered requests if the
3015   connection closes before it receives all of the corresponding responses.
3016   When retrying pipelined requests after a failed connection (a connection
3017   not explicitly closed by the server in its last complete response), a
3018   client &MUST-NOT; pipeline immediately after connection establishment,
3019   since the first remaining request in the prior pipeline might have caused
3020   an error response that can be lost again if multiple requests are sent on a
3021   prematurely closed connection (see the TCP reset problem described in
3022   <xref target="persistent.tear-down"/>).
3025   Idempotent methods (&idempotent-methods;) are significant to pipelining
3026   because they can be automatically retried after a connection failure.
3027   A user agent &SHOULD-NOT; pipeline requests after a non-idempotent method,
3028   until the final response status code for that method has been received,
3029   unless the user agent has a means to detect and recover from partial
3030   failure conditions involving the pipelined sequence.
3033   An intermediary that receives pipelined requests &MAY; pipeline those
3034   requests when forwarding them inbound, since it can rely on the outbound
3035   user agent(s) to determine what requests can be safely pipelined. If the
3036   inbound connection fails before receiving a response, the pipelining
3037   intermediary &MAY; attempt to retry a sequence of requests that have yet
3038   to receive a response if the requests all have idempotent methods;
3039   otherwise, the pipelining intermediary &SHOULD; forward any received
3040   responses and then close the corresponding outbound connection(s) so that
3041   the outbound user agent(s) can recover accordingly.
3046<section title="Concurrency" anchor="persistent.concurrency">
3048   Clients &SHOULD; limit the number of simultaneous
3049   connections that they maintain to a given server.
3052   Previous revisions of HTTP gave a specific number of connections as a
3053   ceiling, but this was found to be impractical for many applications. As a
3054   result, this specification does not mandate a particular maximum number of
3055   connections, but instead encourages clients to be conservative when opening
3056   multiple connections.
3059   Multiple connections are typically used to avoid the "head-of-line
3060   blocking" problem, wherein a request that takes significant server-side
3061   processing and/or has a large payload blocks subsequent requests on the
3062   same connection. However, each connection consumes server resources.
3063   Furthermore, using multiple connections can cause undesirable side effects
3064   in congested networks.
3067   Note that servers might reject traffic that they deem abusive, including an
3068   excessive number of connections from a client.
3072<section title="Failures and Time-outs" anchor="persistent.failures">
3074   Servers will usually have some time-out value beyond which they will
3075   no longer maintain an inactive connection. Proxy servers might make
3076   this a higher value since it is likely that the client will be making
3077   more connections through the same server. The use of persistent
3078   connections places no requirements on the length (or existence) of
3079   this time-out for either the client or the server.
3082   A client or server that wishes to time-out &SHOULD; issue a graceful close
3083   on the connection. Implementations &SHOULD; constantly monitor open
3084   connections for a received closure signal and respond to it as appropriate,
3085   since prompt closure of both sides of a connection enables allocated system
3086   resources to be reclaimed.
3089   A client, server, or proxy &MAY; close the transport connection at any
3090   time. For example, a client might have started to send a new request
3091   at the same time that the server has decided to close the "idle"
3092   connection. From the server's point of view, the connection is being
3093   closed while it was idle, but from the client's point of view, a
3094   request is in progress.
3097   Servers &SHOULD; maintain persistent connections and allow the underlying
3098   transport's flow control mechanisms to resolve temporary overloads, rather
3099   than terminate connections with the expectation that clients will retry.
3100   The latter technique can exacerbate network congestion.
3103   A client sending a message body &SHOULD; monitor
3104   the network connection for an error response while it is transmitting
3105   the request. If the client sees an error response, it &SHOULD;
3106   immediately cease transmitting the body and close the connection.
3110<section title="Tear-down" anchor="persistent.tear-down">
3111  <iref primary="false" item="Connection header field" x:for-anchor=""/>
3112  <iref primary="false" item="close" x:for-anchor=""/>
3114   The <x:ref>Connection</x:ref> header field
3115   (<xref target="header.connection"/>) provides a "<x:ref>close</x:ref>"
3116   connection option that a sender &SHOULD; send when it wishes to close
3117   the connection after the current request/response pair.
3120   A client that sends a <x:ref>close</x:ref> connection option &MUST-NOT;
3121   send further requests on that connection (after the one containing
3122   <x:ref>close</x:ref>) and &MUST; close the connection after reading the
3123   final response message corresponding to this request.
3126   A server that receives a <x:ref>close</x:ref> connection option &MUST;
3127   initiate a close of the connection (see below) after it sends the
3128   final response to the request that contained <x:ref>close</x:ref>.
3129   The server &SHOULD; send a <x:ref>close</x:ref> connection option
3130   in its final response on that connection. The server &MUST-NOT; process
3131   any further requests received on that connection.
3134   A server that sends a <x:ref>close</x:ref> connection option &MUST;
3135   initiate a close of the connection (see below) after it sends the
3136   response containing <x:ref>close</x:ref>. The server &MUST-NOT; process
3137   any further requests received on that connection.
3140   A client that receives a <x:ref>close</x:ref> connection option &MUST;
3141   cease sending requests on that connection and close the connection
3142   after reading the response message containing the close; if additional
3143   pipelined requests had been sent on the connection, the client &SHOULD-NOT;
3144   assume that they will be processed by the server.
3147   If a server performs an immediate close of a TCP connection, there is a
3148   significant risk that the client will not be able to read the last HTTP
3149   response.  If the server receives additional data from the client on a
3150   fully-closed connection, such as another request that was sent by the
3151   client before receiving the server's response, the server's TCP stack will
3152   send a reset packet to the client; unfortunately, the reset packet might
3153   erase the client's unacknowledged input buffers before they can be read
3154   and interpreted by the client's HTTP parser.
3157   To avoid the TCP reset problem, servers typically close a connection in
3158   stages. First, the server performs a half-close by closing only the write
3159   side of the read/write connection. The server then continues to read from
3160   the connection until it receives a corresponding close by the client, or
3161   until the server is reasonably certain that its own TCP stack has received
3162   the client's acknowledgement of the packet(s) containing the server's last
3163   response. Finally, the server fully closes the connection.
3166   It is unknown whether the reset problem is exclusive to TCP or might also
3167   be found in other transport connection protocols.
3171<section title="Upgrade" anchor="header.upgrade">
3172  <iref primary="true" item="Upgrade header field" x:for-anchor=""/>
3173  <x:anchor-alias value="Upgrade"/>
3174  <x:anchor-alias value="protocol"/>
3175  <x:anchor-alias value="protocol-name"/>
3176  <x:anchor-alias value="protocol-version"/>
3178   The "Upgrade" header field is intended to provide a simple mechanism
3179   for transitioning from HTTP/1.1 to some other protocol on the same
3180   connection.  A client &MAY; send a list of protocols in the Upgrade
3181   header field of a request to invite the server to switch to one or
3182   more of those protocols, in order of descending preference, before sending
3183   the final response. A server &MAY; ignore a received Upgrade header field
3184   if it wishes to continue using the current protocol on that connection.
3186<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Upgrade"/>
3187  <x:ref>Upgrade</x:ref>          = 1#<x:ref>protocol</x:ref>
3189  <x:ref>protocol</x:ref>         = <x:ref>protocol-name</x:ref> ["/" <x:ref>protocol-version</x:ref>]
3190  <x:ref>protocol-name</x:ref>    = <x:ref>token</x:ref>
3191  <x:ref>protocol-version</x:ref> = <x:ref>token</x:ref>
3194   A server that sends a <x:ref>101 (Switching Protocols)</x:ref> response
3195   &MUST; send an Upgrade header field to indicate the new protocol(s) to
3196   which the connection is being switched; if multiple protocol layers are
3197   being switched, the sender &MUST; list the protocols in layer-ascending
3198   order. A server &MUST-NOT; switch to a protocol that was not indicated by
3199   the client in the corresponding request's Upgrade header field.
3200   A server &MAY; choose to ignore the order of preference indicated by the
3201   client and select the new protocol(s) based on other factors, such as the
3202   nature of the request or the current load on the server.
3205   A server that sends a <x:ref>426 (Upgrade Required)</x:ref> response
3206   &MUST; send an Upgrade header field to indicate the acceptable protocols,
3207   in order of descending preference.
3210   A server &MAY; send an Upgrade header field in any other response to
3211   advertise that it implements support for upgrading to the listed protocols,
3212   in order of descending preference, when appropriate for a future request.
3215   The following is a hypothetical example sent by a client:
3216</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
3217GET /hello.txt HTTP/1.1
3219Connection: upgrade
3220Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11
3224   Upgrade cannot be used to insist on a protocol change; its acceptance and
3225   use by the server is optional. The capabilities and nature of the
3226   application-level communication after the protocol change is entirely
3227   dependent upon the new protocol(s) chosen. However, immediately after
3228   sending the 101 response, the server is expected to continue responding to
3229   the original request as if it had received its equivalent within the new
3230   protocol (i.e., the server still has an outstanding request to satisfy
3231   after the protocol has been changed, and is expected to do so without
3232   requiring the request to be repeated).
3235   For example, if the Upgrade header field is received in a GET request
3236   and the server decides to switch protocols, it first responds
3237   with a <x:ref>101 (Switching Protocols)</x:ref> message in HTTP/1.1 and
3238   then immediately follows that with the new protocol's equivalent of a
3239   response to a GET on the target resource.  This allows a connection to be
3240   upgraded to protocols with the same semantics as HTTP without the
3241   latency cost of an additional round-trip.  A server &MUST-NOT; switch
3242   protocols unless the received message semantics can be honored by the new
3243   protocol; an OPTIONS request can be honored by any protocol.
3246   The following is an example response to the above hypothetical request:
3247</preamble><artwork type="message/http; msgtype=&#34;response&#34;" x:indent-with="  ">
3248HTTP/1.1 101 Switching Protocols
3249Connection: upgrade
3250Upgrade: HTTP/2.0
3252[... data stream switches to HTTP/2.0 with an appropriate response
3253(as defined by new protocol) to the "GET /hello.txt" request ...]
3256   When Upgrade is sent, the sender &MUST; also send a
3257   <x:ref>Connection</x:ref> header field (<xref target="header.connection"/>)
3258   that contains an "upgrade" connection option, in order to prevent Upgrade
3259   from being accidentally forwarded by intermediaries that might not implement
3260   the listed protocols.  A server &MUST; ignore an Upgrade header field that
3261   is received in an HTTP/1.0 request.
3264   The Upgrade header field only applies to switching protocols on top of the
3265   existing connection; it cannot be used to switch the underlying connection
3266   (transport) protocol, nor to switch the existing communication to a
3267   different connection. For those purposes, it is more appropriate to use a
3268   <x:ref>3xx (Redirection)</x:ref> response (&status-3xx;).
3271   This specification only defines the protocol name "HTTP" for use by
3272   the family of Hypertext Transfer Protocols, as defined by the HTTP
3273   version rules of <xref target="http.version"/> and future updates to this
3274   specification. Additional tokens ought to be registered with IANA using the
3275   registration procedure defined in <xref target="upgrade.token.registry"/>.
3280<section title="ABNF list extension: #rule" anchor="abnf.extension">
3282  A #rule extension to the ABNF rules of <xref target="RFC5234"/> is used to
3283  improve readability in the definitions of some header field values.
3286  A construct "#" is defined, similar to "*", for defining comma-delimited
3287  lists of elements. The full form is "&lt;n&gt;#&lt;m&gt;element" indicating
3288  at least &lt;n&gt; and at most &lt;m&gt; elements, each separated by a single
3289  comma (",") and optional whitespace (OWS).   
3292  Thus, a sender &MUST; expand the list construct as follows:
3293</preamble><artwork type="example">
3294  1#element =&gt; element *( OWS "," OWS element )
3297  and:
3298</preamble><artwork type="example">
3299  #element =&gt; [ 1#element ]
3302  and for n &gt;= 1 and m &gt; 1:
3303</preamble><artwork type="example">
3304  &lt;n&gt;#&lt;m&gt;element =&gt; element &lt;n-1&gt;*&lt;m-1&gt;( OWS "," OWS element )
3307  For compatibility with legacy list rules, recipients &MUST; parse and ignore
3308  a reasonable number of empty list elements: enough to handle common mistakes
3309  by senders that merge values, but not so much that they could be used as a
3310  denial of service mechanism. In other words, recipients &MUST; expand the
3311  list construct as follows:
3313<figure><artwork type="example">
3314  #element =&gt; [ ( "," / element ) *( OWS "," [ OWS element ] ) ]
3316  1#element =&gt; *( "," OWS ) element *( OWS "," [ OWS element ] )
3319  Empty elements do not contribute to the count of elements present.
3320  For example, given these ABNF productions:
3322<figure><artwork type="example">
3323  example-list      = 1#example-list-elmt
3324  example-list-elmt = token ; see <xref target="field.components"/>
3327  Then the following are valid values for example-list (not including the
3328  double quotes, which are present for delimitation only):
3330<figure><artwork type="example">
3331  "foo,bar"
3332  "foo ,bar,"
3333  "foo , ,bar,charlie   "
3336  In contrast, the following values would be invalid, since at least one
3337  non-empty element is required by the example-list production:
3339<figure><artwork type="example">
3340  ""
3341  ","
3342  ",   ,"
3345  <xref target="collected.abnf"/> shows the collected ABNF after the list
3346  constructs have been expanded, as described above, for recipients.
3350<section title="IANA Considerations" anchor="IANA.considerations">
3352<section title="Header Field Registration" anchor="header.field.registration">
3354   HTTP header fields are registered within the Message Header Field Registry
3355   maintained at
3356   <eref target=""/>.
3359   This document defines the following HTTP header fields, so their
3360   associated registry entries shall be updated according to the permanent
3361   registrations below (see <xref target="BCP90"/>):
3363<?BEGININC p1-messaging.iana-headers ?>
3364<!--AUTOGENERATED FROM extract-header-defs.xslt, do not edit manually-->
3365<texttable align="left" suppress-title="true" anchor="iana.header.registration.table">
3366   <ttcol>Header Field Name</ttcol>
3367   <ttcol>Protocol</ttcol>
3368   <ttcol>Status</ttcol>
3369   <ttcol>Reference</ttcol>
3371   <c>Connection</c>
3372   <c>http</c>
3373   <c>standard</c>
3374   <c>
3375      <xref target="header.connection"/>
3376   </c>
3377   <c>Content-Length</c>
3378   <c>http</c>
3379   <c>standard</c>
3380   <c>
3381      <xref target="header.content-length"/>
3382   </c>
3383   <c>Host</c>
3384   <c>http</c>
3385   <c>standard</c>
3386   <c>
3387      <xref target=""/>
3388   </c>
3389   <c>TE</c>
3390   <c>http</c>
3391   <c>standard</c>
3392   <c>
3393      <xref target="header.te"/>
3394   </c>
3395   <c>Trailer</c>
3396   <c>http</c>
3397   <c>standard</c>
3398   <c>
3399      <xref target="header.trailer"/>
3400   </c>
3401   <c>Transfer-Encoding</c>
3402   <c>http</c>
3403   <c>standard</c>
3404   <c>
3405      <xref target="header.transfer-encoding"/>
3406   </c>
3407   <c>Upgrade</c>
3408   <c>http</c>
3409   <c>standard</c>
3410   <c>
3411      <xref target="header.upgrade"/>
3412   </c>
3413   <c>Via</c>
3414   <c>http</c>
3415   <c>standard</c>
3416   <c>
3417      <xref target="header.via"/>
3418   </c>
3421<?ENDINC p1-messaging.iana-headers ?>
3423   Furthermore, the header field-name "Close" shall be registered as
3424   "reserved", since using that name as an HTTP header field might
3425   conflict with the "close" connection option of the "<x:ref>Connection</x:ref>"
3426   header field (<xref target="header.connection"/>).
3428<texttable align="left" suppress-title="true">
3429   <ttcol>Header Field Name</ttcol>
3430   <ttcol>Protocol</ttcol>
3431   <ttcol>Status</ttcol>
3432   <ttcol>Reference</ttcol>
3434   <c>Close</c>
3435   <c>http</c>
3436   <c>reserved</c>
3437   <c>
3438      <xref target="header.field.registration"/>
3439   </c>
3442   The change controller is: "IETF ( - Internet Engineering Task Force".
3446<section title="URI Scheme Registration" anchor="uri.scheme.registration">
3448   IANA maintains the registry of URI Schemes <xref target="BCP115"/> at
3449   <eref target=""/>.
3452   This document defines the following URI schemes, so their
3453   associated registry entries shall be updated according to the permanent
3454   registrations below:
3456<texttable align="left" suppress-title="true">
3457   <ttcol>URI Scheme</ttcol>
3458   <ttcol>Description</ttcol>
3459   <ttcol>Reference</ttcol>
3461   <c>http</c>
3462   <c>Hypertext Transfer Protocol</c>
3463   <c><xref target="http.uri"/></c>
3465   <c>https</c>
3466   <c>Hypertext Transfer Protocol Secure</c>
3467   <c><xref target="https.uri"/></c>
3471<section title="Internet Media Type Registration" anchor="">
3473   This document serves as the specification for the Internet media types
3474   "message/http" and "application/http". The following is to be registered with
3475   IANA (see <xref target="BCP13"/>).
3477<section title="Internet Media Type message/http" anchor="">
3478<iref item="Media Type" subitem="message/http" primary="true"/>
3479<iref item="message/http Media Type" primary="true"/>
3481   The message/http type can be used to enclose a single HTTP request or
3482   response message, provided that it obeys the MIME restrictions for all
3483   "message" types regarding line length and encodings.
3486  <list style="hanging" x:indent="12em">
3487    <t hangText="Type name:">
3488      message
3489    </t>
3490    <t hangText="Subtype name:">
3491      http
3492    </t>
3493    <t hangText="Required parameters:">
3494      none
3495    </t>
3496    <t hangText="Optional parameters:">
3497      version, msgtype
3498      <list style="hanging">
3499        <t hangText="version:">
3500          The HTTP-version number of the enclosed message
3501          (e.g., "1.1"). If not present, the version can be
3502          determined from the first line of the body.
3503        </t>
3504        <t hangText="msgtype:">
3505          The message type &mdash; "request" or "response". If not
3506          present, the type can be determined from the first
3507          line of the body.
3508        </t>
3509      </list>
3510    </t>
3511    <t hangText="Encoding considerations:">
3512      only "7bit", "8bit", or "binary" are permitted
3513    </t>
3514    <t hangText="Security considerations:">
3515      none
3516    </t>
3517    <t hangText="Interoperability considerations:">
3518      none
3519    </t>
3520    <t hangText="Published specification:">
3521      This specification (see <xref target=""/>).
3522    </t>
3523    <t hangText="Applications that use this media type:">
3524    </t>
3525    <t hangText="Additional information:">
3526      <list style="hanging">
3527        <t hangText="Magic number(s):">none</t>
3528        <t hangText="File extension(s):">none</t>
3529        <t hangText="Macintosh file type code(s):">none</t>
3530      </list>
3531    </t>
3532    <t hangText="Person and email address to contact for further information:">
3533      See Authors Section.
3534    </t>
3535    <t hangText="Intended usage:">
3536      COMMON
3537    </t>
3538    <t hangText="Restrictions on usage:">
3539      none
3540    </t>
3541    <t hangText="Author:">
3542      See Authors Section.
3543    </t>
3544    <t hangText="Change controller:">
3545      IESG
3546    </t>
3547  </list>
3550<section title="Internet Media Type application/http" anchor="">
3551<iref item="Media Type" subitem="application/http" primary="true"/>
3552<iref item="application/http Media Type" primary="true"/>
3554   The application/http type can be used to enclose a pipeline of one or more
3555   HTTP request or response messages (not intermixed).
3558  <list style="hanging" x:indent="12em">
3559    <t hangText="Type name:">
3560      application
3561    </t>
3562    <t hangText="Subtype name:">
3563      http
3564    </t>
3565    <t hangText="Required parameters:">
3566      none
3567    </t>
3568    <t hangText="Optional parameters:">
3569      version, msgtype
3570      <list style="hanging">
3571        <t hangText="version:">
3572          The HTTP-version number of the enclosed messages
3573          (e.g., "1.1"). If not present, the version can be
3574          determined from the first line of the body.
3575        </t>
3576        <t hangText="msgtype:">
3577          The message type &mdash; "request" or "response". If not
3578          present, the type can be determined from the first
3579          line of the body.
3580        </t>
3581      </list>
3582    </t>
3583    <t hangText="Encoding considerations:">
3584      HTTP messages enclosed by this type
3585      are in "binary" format; use of an appropriate
3586      Content-Transfer-Encoding is required when
3587      transmitted via E-mail.
3588    </t>
3589    <t hangText="Security considerations:">
3590      none
3591    </t>
3592    <t hangText="Interoperability considerations:">
3593      none
3594    </t>
3595    <t hangText="Published specification:">
3596      This specification (see <xref target=""/>).
3597    </t>
3598    <t hangText="Applications that use this media type:">
3599    </t>
3600    <t hangText="Additional information:">
3601      <list style="hanging">
3602        <t hangText="Magic number(s):">none</t>
3603        <t hangText="File extension(s):">none</t>
3604        <t hangText="Macintosh file type code(s):">none</t>
3605      </list>
3606    </t>
3607    <t hangText="Person and email address to contact for further information:">
3608      See Authors Section.
3609    </t>
3610    <t hangText="Intended usage:">
3611      COMMON
3612    </t>
3613    <t hangText="Restrictions on usage:">
3614      none
3615    </t>
3616    <t hangText="Author:">
3617      See Authors Section.
3618    </t>
3619    <t hangText="Change controller:">
3620      IESG
3621    </t>
3622  </list>
3627<section title="Transfer Coding Registry" anchor="transfer.coding.registry">
3629   The HTTP Transfer Coding Registry defines the name space for transfer
3630   coding names. It is maintained at <eref target=""/>.
3633<section title="Procedure" anchor="transfer.coding.registry.procedure">
3635   Registrations &MUST; include the following fields:
3636   <list style="symbols">
3637     <t>Name</t>
3638     <t>Description</t>
3639     <t>Pointer to specification text</t>
3640   </list>
3643   Names of transfer codings &MUST-NOT; overlap with names of content codings
3644   (&content-codings;) unless the encoding transformation is identical, as
3645   is the case for the compression codings defined in
3646   <xref target="compression.codings"/>.
3649   Values to be added to this name space require IETF Review (see
3650   <xref target="RFC5226" x:fmt="of" x:sec="4.1"/>), and &MUST;
3651   conform to the purpose of transfer coding defined in this specification.
3654   Use of program names for the identification of encoding formats
3655   is not desirable and is discouraged for future encodings.
3659<section title="Registration" anchor="transfer.coding.registration">
3661   The HTTP Transfer Coding Registry shall be updated with the registrations
3662   below:
3664<texttable align="left" suppress-title="true" anchor="iana.transfer.coding.registration.table">
3665   <ttcol>Name</ttcol>
3666   <ttcol>Description</ttcol>
3667   <ttcol>Reference</ttcol>
3668   <c>chunked</c>
3669   <c>Transfer in a series of chunks</c>
3670   <c>
3671      <xref target="chunked.encoding"/>
3672   </c>
3673   <c>compress</c>
3674   <c>UNIX "compress" data format <xref target="Welch"/></c>
3675   <c>
3676      <xref target="compress.coding"/>
3677   </c>
3678   <c>deflate</c>
3679   <c>"deflate" compressed data (<xref target="RFC1951"/>) inside
3680   the "zlib" data format (<xref target="RFC1950"/>)
3681   </c>
3682   <c>
3683      <xref target="deflate.coding"/>
3684   </c>
3685   <c>gzip</c>
3686   <c>GZIP file format <xref target="RFC1952"/></c>
3687   <c>
3688      <xref target="gzip.coding"/>
3689   </c>
3690   <c>x-compress</c>
3691   <c>Deprecated (alias for compress)</c>
3692   <c>
3693      <xref target="compress.coding"/>
3694   </c>
3695   <c>x-gzip</c>
3696   <c>Deprecated (alias for gzip)</c>
3697   <c>
3698      <xref target="gzip.coding"/>
3699   </c>
3704<section title="Upgrade Token Registry" anchor="upgrade.token.registry">
3706   The HTTP Upgrade Token Registry defines the name space for protocol-name
3707   tokens used to identify protocols in the <x:ref>Upgrade</x:ref> header
3708   field. The registry is maintained at <eref target=""/>.
3711<section title="Procedure" anchor="upgrade.token.registry.procedure">  
3713   Each registered protocol name is associated with contact information
3714   and an optional set of specifications that details how the connection
3715   will be processed after it has been upgraded.
3718   Registrations happen on a "First Come First Served" basis (see
3719   <xref target="RFC5226" x:sec="4.1" x:fmt="of"/>) and are subject to the
3720   following rules:
3721  <list style="numbers">
3722    <t>A protocol-name token, once registered, stays registered forever.</t>
3723    <t>The registration &MUST; name a responsible party for the
3724       registration.</t>
3725    <t>The registration &MUST; name a point of contact.</t>
3726    <t>The registration &MAY; name a set of specifications associated with
3727       that token. Such specifications need not be publicly available.</t>
3728    <t>The registration &SHOULD; name a set of expected "protocol-version"
3729       tokens associated with that token at the time of registration.</t>
3730    <t>The responsible party &MAY; change the registration at any time.
3731       The IANA will keep a record of all such changes, and make them
3732       available upon request.</t>
3733    <t>The IESG &MAY; reassign responsibility for a protocol token.
3734       This will normally only be used in the case when a
3735       responsible party cannot be contacted.</t>
3736  </list>
3739   This registration procedure for HTTP Upgrade Tokens replaces that
3740   previously defined in <xref target="RFC2817" x:fmt="of" x:sec="7.2"/>.
3744<section title="Upgrade Token Registration" anchor="upgrade.token.registration">
3746   The HTTP Upgrade Token Registry shall be updated with the registration
3747   below:
3749<texttable align="left" suppress-title="true">
3750   <ttcol>Value</ttcol>
3751   <ttcol>Description</ttcol>
3752   <ttcol>Expected Version Tokens</ttcol>
3753   <ttcol>Reference</ttcol>
3755   <c>HTTP</c>
3756   <c>Hypertext Transfer Protocol</c>
3757   <c>any DIGIT.DIGIT (e.g, "2.0")</c>
3758   <c><xref target="http.version"/></c>
3761   The responsible party is: "IETF ( - Internet Engineering Task Force".
3768<section title="Security Considerations" anchor="security.considerations">
3770   This section is meant to inform developers, information providers, and
3771   users of known security concerns relevant to HTTP/1.1 message syntax,
3772   parsing, and routing.
3775<section title="DNS-related Attacks" anchor="dns.related.attacks">
3777   HTTP clients rely heavily on the Domain Name Service (DNS), and are thus
3778   generally prone to security attacks based on the deliberate misassociation
3779   of IP addresses and DNS names not protected by DNSSEC. Clients need to be
3780   cautious in assuming the validity of an IP number/DNS name association unless
3781   the response is protected by DNSSEC (<xref target="RFC4033"/>).
3785<section title="Intermediaries and Caching" anchor="attack.intermediaries">
3787   By their very nature, HTTP intermediaries are men-in-the-middle, and
3788   represent an opportunity for man-in-the-middle attacks. Compromise of
3789   the systems on which the intermediaries run can result in serious security
3790   and privacy problems. Intermediaries have access to security-related
3791   information, personal information about individual users and
3792   organizations, and proprietary information belonging to users and
3793   content providers. A compromised intermediary, or an intermediary
3794   implemented or configured without regard to security and privacy
3795   considerations, might be used in the commission of a wide range of
3796   potential attacks.
3799   Intermediaries that contain a shared cache are especially vulnerable
3800   to cache poisoning attacks.
3803   Implementers need to consider the privacy and security
3804   implications of their design and coding decisions, and of the
3805   configuration options they provide to operators (especially the
3806   default configuration).
3809   Users need to be aware that intermediaries are no more trustworthy than
3810   the people who run them; HTTP itself cannot solve this problem.
3814<section title="Buffer Overflows" anchor="attack.protocol.element.size.overflows">
3816   Because HTTP uses mostly textual, character-delimited fields, attackers can
3817   overflow buffers in implementations, and/or perform a Denial of Service
3818   against implementations that accept fields with unlimited lengths.
3821   To promote interoperability, this specification makes specific
3822   recommendations for minimum size limits on request-line
3823   (<xref target="request.line"/>)
3824   and blocks of header fields (<xref target="header.fields"/>). These are
3825   minimum recommendations, chosen to be supportable even by implementations
3826   with limited resources; it is expected that most implementations will
3827   choose substantially higher limits.
3830   This specification also provides a way for servers to reject messages that
3831   have request-targets that are too long (&status-414;) or request entities
3832   that are too large (&status-4xx;). Additional status codes related to
3833   capacity limits have been defined by extensions to HTTP
3834   <xref target="RFC6585"/>.
3837   Recipients ought to carefully limit the extent to which they read other
3838   fields, including (but not limited to) request methods, response status
3839   phrases, header field-names, and body chunks, so as to avoid denial of
3840   service attacks without impeding interoperability.
3844<section title="Message Integrity" anchor="message.integrity">
3846   HTTP does not define a specific mechanism for ensuring message integrity,
3847   instead relying on the error-detection ability of underlying transport
3848   protocols and the use of length or chunk-delimited framing to detect
3849   completeness. Additional integrity mechanisms, such as hash functions or
3850   digital signatures applied to the content, can be selectively added to
3851   messages via extensible metadata header fields. Historically, the lack of
3852   a single integrity mechanism has been justified by the informal nature of
3853   most HTTP communication.  However, the prevalence of HTTP as an information
3854   access mechanism has resulted in its increasing use within environments
3855   where verification of message integrity is crucial.
3858   User agents are encouraged to implement configurable means for detecting
3859   and reporting failures of message integrity such that those means can be
3860   enabled within environments for which integrity is necessary. For example,
3861   a browser being used to view medical history or drug interaction
3862   information needs to indicate to the user when such information is detected
3863   by the protocol to be incomplete, expired, or corrupted during transfer.
3864   Such mechanisms might be selectively enabled via user agent extensions or
3865   the presence of message integrity metadata in a response.
3866   At a minimum, user agents ought to provide some indication that allows a
3867   user to distinguish between a complete and incomplete response message
3868   (<xref target="incomplete.messages"/>) when such verification is desired.
3872<section title="Server Log Information" anchor="abuse.of.server.log.information">
3874   A server is in the position to save personal data about a user's requests
3875   over time, which might identify their reading patterns or subjects of
3876   interest.  In particular, log information gathered at an intermediary
3877   often contains a history of user agent interaction, across a multitude
3878   of sites, that can be traced to individual users.
3881   HTTP log information is confidential in nature; its handling is often
3882   constrained by laws and regulations.  Log information needs to be securely
3883   stored and appropriate guidelines followed for its analysis.
3884   Anonymization of personal information within individual entries helps,
3885   but is generally not sufficient to prevent real log traces from being
3886   re-identified based on correlation with other access characteristics.
3887   As such, access traces that are keyed to a specific client are unsafe to
3888   publish even if the key is pseudonymous.
3891   To minimize the risk of theft or accidental publication, log information
3892   ought to be purged of personally identifiable information, including
3893   user identifiers, IP addresses, and user-provided query parameters,
3894   as soon as that information is no longer necessary to support operational
3895   needs for security, auditing, or fraud control.
3900<section title="Acknowledgments" anchor="acks">
3902   This edition of HTTP/1.1 builds on the many contributions that went into
3903   <xref target="RFC1945" format="none">RFC 1945</xref>,
3904   <xref target="RFC2068" format="none">RFC 2068</xref>,
3905   <xref target="RFC2145" format="none">RFC 2145</xref>, and
3906   <xref target="RFC2616" format="none">RFC 2616</xref>, including
3907   substantial contributions made by the previous authors, editors, and
3908   working group chairs: Tim Berners-Lee, Ari Luotonen, Roy T. Fielding,
3909   Henrik Frystyk Nielsen, Jim Gettys, Jeffrey C. Mogul, Larry Masinter,
3910   and Paul J. Leach. Mark Nottingham oversaw this effort as working group chair.
3913   Since 1999, the following contributors have helped improve the HTTP
3914   specification by reporting bugs, asking smart questions, drafting or
3915   reviewing text, and evaluating open issues:
3917<?BEGININC acks ?>
3918<t>Adam Barth,
3919Adam Roach,
3920Addison Phillips,
3921Adrian Chadd,
3922Adrien W. de Croy,
3923Alan Ford,
3924Alan Ruttenberg,
3925Albert Lunde,
3926Alek Storm,
3927Alex Rousskov,
3928Alexandre Morgaut,
3929Alexey Melnikov,
3930Alisha Smith,
3931Amichai Rothman,
3932Amit Klein,
3933Amos Jeffries,
3934Andreas Maier,
3935Andreas Petersson,
3936Anil Sharma,
3937Anne van Kesteren,
3938Anthony Bryan,
3939Asbjorn Ulsberg,
3940Ashok Kumar,
3941Balachander Krishnamurthy,
3942Barry Leiba,
3943Ben Laurie,
3944Benjamin Carlyle,
3945Benjamin Niven-Jenkins,
3946Bil Corry,
3947Bill Burke,
3948Bjoern Hoehrmann,
3949Bob Scheifler,
3950Boris Zbarsky,
3951Brett Slatkin,
3952Brian Kell,
3953Brian McBarron,
3954Brian Pane,
3955Brian Raymor,
3956Brian Smith,
3957Bryce Nesbitt,
3958Cameron Heavon-Jones,
3959Carl Kugler,
3960Carsten Bormann,
3961Charles Fry,
3962Chris Newman,
3963Cyrus Daboo,
3964Dale Robert Anderson,
3965Dan Wing,
3966Dan Winship,
3967Daniel Stenberg,
3968Darrel Miller,
3969Dave Cridland,
3970Dave Crocker,
3971Dave Kristol,
3972Dave Thaler,
3973David Booth,
3974David Singer,
3975David W. Morris,
3976Diwakar Shetty,
3977Dmitry Kurochkin,
3978Drummond Reed,
3979Duane Wessels,
3980Edward Lee,
3981Eitan Adler,
3982Eliot Lear,
3983Eran Hammer-Lahav,
3984Eric D. Williams,
3985Eric J. Bowman,
3986Eric Lawrence,
3987Eric Rescorla,
3988Erik Aronesty,
3989Evan Prodromou,
3990Felix Geisendoerfer,
3991Florian Weimer,
3992Frank Ellermann,
3993Fred Akalin,
3994Fred Bohle,
3995Frederic Kayser,
3996Gabor Molnar,
3997Gabriel Montenegro,
3998Geoffrey Sneddon,
3999Gervase Markham,
4000Gili Tzabari,
4001Grahame Grieve,
4002Greg Wilkins,
4003Grzegorz Calkowski,
4004Harald Tveit Alvestrand,
4005Harry Halpin,
4006Helge Hess,
4007Henrik Nordstrom,
4008Henry S. Thompson,
4009Henry Story,
4010Herbert van de Sompel,
4011Herve Ruellan,
4012Howard Melman,
4013Hugo Haas,
4014Ian Fette,
4015Ian Hickson,
4016Ido Safruti,
4017Ilari Liusvaara,
4018Ilya Grigorik,
4019Ingo Struck,
4020J. Ross Nicoll,
4021James Cloos,
4022James H. Manger,
4023James Lacey,
4024James M. Snell,
4025Jamie Lokier,
4026Jan Algermissen,
4027Jeff Hodges (who came up with the term 'effective Request-URI'),
4028Jeff Pinner,
4029Jeff Walden,
4030Jim Luther,
4031Jitu Padhye,
4032Joe D. Williams,
4033Joe Gregorio,
4034Joe Orton,
4035John C. Klensin,
4036John C. Mallery,
4037John Cowan,
4038John Kemp,
4039John Panzer,
4040John Schneider,
4041John Stracke,
4042John Sullivan,
4043Jonas Sicking,
4044Jonathan A. Rees,
4045Jonathan Billington,
4046Jonathan Moore,
4047Jonathan Silvera,
4048Jordi Ros,
4049Joris Dobbelsteen,
4050Josh Cohen,
4051Julien Pierre,
4052Jungshik Shin,
4053Justin Chapweske,
4054Justin Erenkrantz,
4055Justin James,
4056Kalvinder Singh,
4057Karl Dubost,
4058Keith Hoffman,
4059Keith Moore,
4060Ken Murchison,
4061Koen Holtman,
4062Konstantin Voronkov,
4063Kris Zyp,
4064Lisa Dusseault,
4065Maciej Stachowiak,
4066Manu Sporny,
4067Marc Schneider,
4068Marc Slemko,
4069Mark Baker,
4070Mark Pauley,
4071Mark Watson,
4072Markus Isomaki,
4073Markus Lanthaler,
4074Martin J. Duerst,
4075Martin Musatov,
4076Martin Nilsson,
4077Martin Thomson,
4078Matt Lynch,
4079Matthew Cox,
4080Max Clark,
4081Michael Burrows,
4082Michael Hausenblas,
4083Michael Sweet,
4084Michael Tuexen,
4085Michael Welzl,
4086Mike Amundsen,
4087Mike Belshe,
4088Mike Bishop,
4089Mike Kelly,
4090Mike Schinkel,
4091Miles Sabin,
4092Murray S. Kucherawy,
4093Mykyta Yevstifeyev,
4094Nathan Rixham,
4095Nicholas Shanks,
4096Nico Williams,
4097Nicolas Alvarez,
4098Nicolas Mailhot,
4099Noah Slater,
4100Osama Mazahir,
4101Pablo Castro,
4102Pat Hayes,
4103Patrick R. McManus,
4104Paul E. Jones,
4105Paul Hoffman,
4106Paul Marquess,
4107Peter Lepeska,
4108Peter Occil,
4109Peter Saint-Andre,
4110Peter Watkins,
4111Phil Archer,
4112Philippe Mougin,
4113Phillip Hallam-Baker,
4114Piotr Dobrogost,
4115Poul-Henning Kamp,
4116Preethi Natarajan,
4117Rajeev Bector,
4118Ray Polk,
4119Reto Bachmann-Gmuer,
4120Richard Cyganiak,
4121Robby Simpson,
4122Robert Brewer,
4123Robert Collins,
4124Robert Mattson,
4125Robert O'Callahan,
4126Robert Olofsson,
4127Robert Sayre,
4128Robert Siemer,
4129Robert de Wilde,
4130Roberto Javier Godoy,
4131Roberto Peon,
4132Roland Zink,
4133Ronny Widjaja,
4134Ryan Hamilton,
4135S. Mike Dierken,
4136Salvatore Loreto,
4137Sam Johnston,
4138Sam Pullara,
4139Sam Ruby,
4140Scott Lawrence (who maintained the original issues list),
4141Sean B. Palmer,
4142Sebastien Barnoud,
4143Shane McCarron,
4144Shigeki Ohtsu,
4145Stefan Eissing,
4146Stefan Tilkov,
4147Stefanos Harhalakis,
4148Stephane Bortzmeyer,
4149Stephen Farrell,
4150Stephen Ludin,
4151Stuart Williams,
4152Subbu Allamaraju,
4153Sylvain Hellegouarch,
4154Tapan Divekar,
4155Tatsuhiro Tsujikawa,
4156Tatsuya Hayashi,
4157Ted Hardie,
4158Thomas Broyer,
4159Thomas Fossati,
4160Thomas Maslen,
4161Thomas Nordin,
4162Thomas Roessler,
4163Tim Bray,
4164Tim Morgan,
4165Tim Olsen,
4166Tom Zhou,
4167Travis Snoozy,
4168Tyler Close,
4169Vincent Murphy,
4170Wenbo Zhu,
4171Werner Baumann,
4172Wilbur Streett,
4173Wilfredo Sanchez Vega,
4174William A. Rowe Jr.,
4175William Chan,
4176Willy Tarreau,
4177Xiaoshu Wang,
4178Yaron Goland,
4179Yngve Nysaeter Pettersen,
4180Yoav Nir,
4181Yogesh Bang,
4182Yuchung Cheng,
4183Yutaka Oiwa,
4184Yves Lafon (long-time member of the editor team),
4185Zed A. Shaw, and
4186Zhong Yu.
4188<?ENDINC acks ?>
4190   See <xref target="RFC2616" x:fmt="of" x:sec="16"/> for additional
4191   acknowledgements from prior revisions.
4198<references title="Normative References">
4200<reference anchor="Part2">
4201  <front>
4202    <title>Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content</title>
4203    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4204      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4205      <address><email></email></address>
4206    </author>
4207    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4208      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4209      <address><email></email></address>
4210    </author>
4211    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4212  </front>
4213  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p2-semantics-&ID-VERSION;"/>
4214  <x:source href="p2-semantics.xml" basename="p2-semantics">
4215    <x:defines>1xx (Informational)</x:defines>
4216    <x:defines>1xx</x:defines>
4217    <x:defines>100 (Continue)</x:defines>
4218    <x:defines>101 (Switching Protocols)</x:defines>
4219    <x:defines>2xx (Successful)</x:defines>
4220    <x:defines>2xx</x:defines>
4221    <x:defines>200 (OK)</x:defines>
4222    <x:defines>203 (Non-Authoritative Information)</x:defines>
4223    <x:defines>204 (No Content)</x:defines>
4224    <x:defines>3xx (Redirection)</x:defines>
4225    <x:defines>3xx</x:defines>
4226    <x:defines>301 (Moved Permanently)</x:defines>
4227    <x:defines>4xx (Client Error)</x:defines>
4228    <x:defines>4xx</x:defines>
4229    <x:defines>400 (Bad Request)</x:defines>
4230    <x:defines>411 (Length Required)</x:defines>
4231    <x:defines>414 (URI Too Long)</x:defines>
4232    <x:defines>417 (Expectation Failed)</x:defines>
4233    <x:defines>426 (Upgrade Required)</x:defines>
4234    <x:defines>501 (Not Implemented)</x:defines>
4235    <x:defines>502 (Bad Gateway)</x:defines>
4236    <x:defines>505 (HTTP Version Not Supported)</x:defines>
4237    <x:defines>Accept-Encoding</x:defines>
4238    <x:defines>Allow</x:defines>
4239    <x:defines>Content-Encoding</x:defines>
4240    <x:defines>Content-Location</x:defines>
4241    <x:defines>Content-Type</x:defines>
4242    <x:defines>Date</x:defines>
4243    <x:defines>Expect</x:defines>
4244    <x:defines>Location</x:defines>
4245    <x:defines>Server</x:defines>
4246    <x:defines>User-Agent</x:defines>
4247  </x:source>
4250<reference anchor="Part4">
4251  <front>
4252    <title>Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests</title>
4253    <author fullname="Roy T. Fielding" initials="R." role="editor" surname="Fielding">
4254      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4255      <address><email></email></address>
4256    </author>
4257    <author fullname="Julian F. Reschke" initials="J. F." role="editor" surname="Reschke">
4258      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4259      <address><email></email></address>
4260    </author>
4261    <date month="&ID-MONTH;" year="&ID-YEAR;" />
4262  </front>
4263  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p4-conditional-&ID-VERSION;" />
4264  <x:source basename="p4-conditional" href="p4-conditional.xml">
4265    <x:defines>304 (Not Modified)</x:defines>
4266    <x:defines>ETag</x:defines>
4267    <x:defines>Last-Modified</x:defines>
4268  </x:source>
4271<reference anchor="Part5">
4272  <front>
4273    <title>Hypertext Transfer Protocol (HTTP/1.1): Range Requests</title>
4274    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4275      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4276      <address><email></email></address>
4277    </author>
4278    <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
4279      <organization abbrev="W3C">World Wide Web Consortium</organization>
4280      <address><email></email></address>
4281    </author>
4282    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4283      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4284      <address><email></email></address>
4285    </author>
4286    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4287  </front>
4288  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p5-range-&ID-VERSION;"/>
4289  <x:source href="p5-range.xml" basename="p5-range">
4290    <x:defines>Content-Range</x:defines>
4291  </x:source>
4294<reference anchor="Part6">
4295  <front>
4296    <title>Hypertext Transfer Protocol (HTTP/1.1): Caching</title>
4297    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4298      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4299      <address><email></email></address>
4300    </author>
4301    <author initials="M." surname="Nottingham" fullname="Mark Nottingham" role="editor">
4302      <organization>Akamai</organization>
4303      <address><email></email></address>
4304    </author>
4305    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4306      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4307      <address><email></email></address>
4308    </author>
4309    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4310  </front>
4311  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p6-cache-&ID-VERSION;"/>
4312  <x:source href="p6-cache.xml" basename="p6-cache">
4313    <x:defines>Cache-Control</x:defines>
4314    <x:defines>Expires</x:defines>
4315  </x:source>
4318<reference anchor="Part7">
4319  <front>
4320    <title>Hypertext Transfer Protocol (HTTP/1.1): Authentication</title>
4321    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4322      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4323      <address><email></email></address>
4324    </author>
4325    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4326      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4327      <address><email></email></address>
4328    </author>
4329    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4330  </front>
4331  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p7-auth-&ID-VERSION;"/>
4332  <x:source href="p7-auth.xml" basename="p7-auth">
4333    <x:defines>Proxy-Authenticate</x:defines>
4334    <x:defines>Proxy-Authorization</x:defines>
4335  </x:source>
4338<reference anchor="RFC5234">
4339  <front>
4340    <title abbrev="ABNF for Syntax Specifications">Augmented BNF for Syntax Specifications: ABNF</title>
4341    <author initials="D." surname="Crocker" fullname="Dave Crocker" role="editor">
4342      <organization>Brandenburg InternetWorking</organization>
4343      <address>
4344        <email></email>
4345      </address> 
4346    </author>
4347    <author initials="P." surname="Overell" fullname="Paul Overell">
4348      <organization>THUS plc.</organization>
4349      <address>
4350        <email></email>
4351      </address>
4352    </author>
4353    <date month="January" year="2008"/>
4354  </front>
4355  <seriesInfo name="STD" value="68"/>
4356  <seriesInfo name="RFC" value="5234"/>
4359<reference anchor="RFC2119">
4360  <front>
4361    <title>Key words for use in RFCs to Indicate Requirement Levels</title>
4362    <author initials="S." surname="Bradner" fullname="Scott Bradner">
4363      <organization>Harvard University</organization>
4364      <address><email></email></address>
4365    </author>
4366    <date month="March" year="1997"/>
4367  </front>
4368  <seriesInfo name="BCP" value="14"/>
4369  <seriesInfo name="RFC" value="2119"/>
4372<reference anchor="RFC3986">
4373 <front>
4374  <title abbrev='URI Generic Syntax'>Uniform Resource Identifier (URI): Generic Syntax</title>
4375  <author initials='T.' surname='Berners-Lee' fullname='Tim Berners-Lee'>
4376    <organization abbrev="W3C/MIT">World Wide Web Consortium</organization>
4377    <address>
4378       <email></email>
4379       <uri></uri>
4380    </address>
4381  </author>
4382  <author initials='R.' surname='Fielding' fullname='Roy T. Fielding'>
4383    <organization abbrev="Day Software">Day Software</organization>
4384    <address>
4385      <email></email>
4386      <uri></uri>
4387    </address>
4388  </author>
4389  <author initials='L.' surname='Masinter' fullname='Larry Masinter'>
4390    <organization abbrev="Adobe Systems">Adobe Systems Incorporated</organization>
4391    <address>
4392      <email></email>
4393      <uri></uri>
4394    </address>
4395  </author>
4396  <date month='January' year='2005'></date>
4397 </front>
4398 <seriesInfo name="STD" value="66"/>
4399 <seriesInfo name="RFC" value="3986"/>
4402<reference anchor="RFC0793">
4403  <front>
4404    <title>Transmission Control Protocol</title>
4405    <author initials='J.' surname='Postel' fullname='Jon Postel'>
4406      <organization>University of Southern California (USC)/Information Sciences Institute</organization>
4407    </author>
4408    <date year='1981' month='September' />
4409  </front>
4410  <seriesInfo name='STD' value='7' />
4411  <seriesInfo name='RFC' value='793' />
4414<reference anchor="USASCII">
4415  <front>
4416    <title>Coded Character Set -- 7-bit American Standard Code for Information Interchange</title>
4417    <author>
4418      <organization>American National Standards Institute</organization>
4419    </author>
4420    <date year="1986"/>
4421  </front>
4422  <seriesInfo name="ANSI" value="X3.4"/>
4425<reference anchor="RFC1950">
4426  <front>
4427    <title>ZLIB Compressed Data Format Specification version 3.3</title>
4428    <author initials="L.P." surname="Deutsch" fullname="L. Peter Deutsch">
4429      <organization>Aladdin Enterprises</organization>
4430      <address><email></email></address>
4431    </author>
4432    <author initials="J-L." surname="Gailly" fullname="Jean-Loup Gailly"/>
4433    <date month="May" year="1996"/>
4434  </front>
4435  <seriesInfo name="RFC" value="1950"/>
4436  <!--<annotation>
4437    RFC 1950 is an Informational RFC, thus it might be less stable than
4438    this specification. On the other hand, this downward reference was
4439    present since the publication of <xref target="RFC2068" x:fmt="none">RFC 2068</xref> in 1997,
4440    therefore it is unlikely to cause problems in practice. See also
4441    <xref target="BCP97"/>.
4442  </annotation>-->
4445<reference anchor="RFC1951">
4446  <front>
4447    <title>DEFLATE Compressed Data Format Specification version 1.3</title>
4448    <author initials="P." surname="Deutsch" fullname="L. Peter Deutsch">
4449      <organization>Aladdin Enterprises</organization>
4450      <address><email></email></address>
4451    </author>
4452    <date month="May" year="1996"/>
4453  </front>
4454  <seriesInfo name="RFC" value="1951"/>
4455  <!--<annotation>
4456    RFC 1951 is an Informational RFC, thus it might be less stable than
4457    this specification. On the other hand, this downward reference was
4458    present since the publication of <xref target="RFC2068" x:fmt="none">RFC 2068</xref> in 1997,
4459    therefore it is unlikely to cause problems in practice. See also
4460    <xref target="BCP97"/>.
4461  </annotation>-->
4464<reference anchor="RFC1952">
4465  <front>
4466    <title>GZIP file format specification version 4.3</title>
4467    <author initials="P." surname="Deutsch" fullname="L. Peter Deutsch">
4468      <organization>Aladdin Enterprises</organization>
4469      <address><email></email></address>
4470    </author>
4471    <author initials="J-L." surname="Gailly" fullname="Jean-Loup Gailly">
4472      <address><email></email></address>
4473    </author>
4474    <author initials="M." surname="Adler" fullname="Mark Adler">
4475      <address><email></email></address>
4476    </author>
4477    <author initials="L.P." surname="Deutsch" fullname="L. Peter Deutsch">
4478      <address><email></email></address>
4479    </author>
4480    <author initials="G." surname="Randers-Pehrson" fullname="Glenn Randers-Pehrson">
4481      <address><email></email></address>
4482    </author>
4483    <date month="May" year="1996"/>
4484  </front>
4485  <seriesInfo name="RFC" value="1952"/>
4486  <!--<annotation>
4487    RFC 1952 is an Informational RFC, thus it might be less stable than
4488    this specification. On the other hand, this downward reference was
4489    present since the publication of <xref target="RFC2068" x:fmt="none">RFC 2068</xref> in 1997,
4490    therefore it is unlikely to cause problems in practice. See also
4491    <xref target="BCP97"/>.
4492  </annotation>-->
4495<reference anchor="Welch">
4496  <front>
4497    <title>A Technique for High Performance Data Compression</title>
4498    <author initials="T.A." surname="Welch" fullname="Terry A. Welch"/>
4499    <date month="June" year="1984"/>
4500  </front>
4501  <seriesInfo name="IEEE Computer" value="17(6)"/>
4506<references title="Informative References">
4508<reference anchor="ISO-8859-1">
4509  <front>
4510    <title>
4511     Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin alphabet No. 1
4512    </title>
4513    <author>
4514      <organization>International Organization for Standardization</organization>
4515    </author>
4516    <date year="1998"/>
4517  </front>
4518  <seriesInfo name="ISO/IEC" value="8859-1:1998"/>
4521<reference anchor='RFC1919'>
4522  <front>
4523    <title>Classical versus Transparent IP Proxies</title>
4524    <author initials='M.' surname='Chatel' fullname='Marc Chatel'>
4525      <address><email></email></address>
4526    </author>
4527    <date year='1996' month='March' />
4528  </front>
4529  <seriesInfo name='RFC' value='1919' />
4532<reference anchor="RFC1945">
4533  <front>
4534    <title abbrev="HTTP/1.0">Hypertext Transfer Protocol -- HTTP/1.0</title>
4535    <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
4536      <organization>MIT, Laboratory for Computer Science</organization>
4537      <address><email></email></address>
4538    </author>
4539    <author initials="R.T." surname="Fielding" fullname="Roy T. Fielding">
4540      <organization>University of California, Irvine, Department of Information and Computer Science</organization>
4541      <address><email></email></address>
4542    </author>
4543    <author initials="H.F." surname="Nielsen" fullname="Henrik Frystyk Nielsen">
4544      <organization>W3 Consortium, MIT Laboratory for Computer Science</organization>
4545      <address><email></email></address>
4546    </author>
4547    <date month="May" year="1996"/>
4548  </front>
4549  <seriesInfo name="RFC" value="1945"/>
4552<reference anchor="RFC2045">
4553  <front>
4554    <title abbrev="Internet Message Bodies">Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies</title>
4555    <author initials="N." surname="Freed" fullname="Ned Freed">
4556      <organization>Innosoft International, Inc.</organization>
4557      <address><email></email></address>
4558    </author>
4559    <author initials="N.S." surname="Borenstein" fullname="Nathaniel S. Borenstein">
4560      <organization>First Virtual Holdings</organization>
4561      <address><email></email></address>
4562    </author>
4563    <date month="November" year="1996"/>
4564  </front>
4565  <seriesInfo name="RFC" value="2045"/>
4568<reference anchor="RFC2047">
4569  <front>
4570    <title abbrev="Message Header Extensions">MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text</title>
4571    <author initials="K." surname="Moore" fullname="Keith Moore">
4572      <organization>University of Tennessee</organization>
4573      <address><email></email></address>
4574    </author>
4575    <date month="November" year="1996"/>
4576  </front>
4577  <seriesInfo name="RFC" value="2047"/>
4580<reference anchor="RFC2068">
4581  <front>
4582    <title>Hypertext Transfer Protocol -- HTTP/1.1</title>
4583    <author initials="R." surname="Fielding" fullname="Roy T. Fielding">
4584      <organization>University of California, Irvine, Department of Information and Computer Science</organization>
4585      <address><email></email></address>
4586    </author>
4587    <author initials="J." surname="Gettys" fullname="Jim Gettys">
4588      <organization>MIT Laboratory for Computer Science</organization>
4589      <address><email></email></address>
4590    </author>
4591    <author initials="J." surname="Mogul" fullname="Jeffrey C. Mogul">
4592      <organization>Digital Equipment Corporation, Western Research Laboratory</organization>
4593      <address><email></email></address>
4594    </author>
4595    <author initials="H." surname="Nielsen" fullname="Henrik Frystyk Nielsen">
4596      <organization>MIT Laboratory for Computer Science</organization>
4597      <address><email></email></address>
4598    </author>
4599    <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
4600      <organization>MIT Laboratory for Computer Science</organization>
4601      <address><email></email></address>
4602    </author>
4603    <date month="January" year="1997"/>
4604  </front>
4605  <seriesInfo name="RFC" value="2068"/>
4608<reference anchor="RFC2145">
4609  <front>
4610    <title abbrev="HTTP Version Numbers">Use and Interpretation of HTTP Version Numbers</title>
4611    <author initials="J.C." surname="Mogul" fullname="Jeffrey C. Mogul">
4612      <organization>Western Research Laboratory</organization>
4613      <address><email></email></address>
4614    </author>
4615    <author initials="R.T." surname="Fielding" fullname="Roy T. Fielding">
4616      <organization>Department of Information and Computer Science</organization>
4617      <address><email></email></address>
4618    </author>
4619    <author initials="J." surname="Gettys" fullname="Jim Gettys">
4620      <organization>MIT Laboratory for Computer Science</organization>
4621      <address><email></email></address>
4622    </author>
4623    <author initials="H.F." surname="Nielsen" fullname="Henrik Frystyk Nielsen">
4624      <organization>W3 Consortium</organization>
4625      <address><email></email></address>
4626    </author>
4627    <date month="May" year="1997"/>
4628  </front>
4629  <seriesInfo name="RFC" value="2145"/>
4632<reference anchor="RFC2616">
4633  <front>
4634    <title>Hypertext Transfer Protocol -- HTTP/1.1</title>
4635    <author initials="R." surname="Fielding" fullname="R. Fielding">
4636      <organization>University of California, Irvine</organization>
4637      <address><email></email></address>
4638    </author>
4639    <author initials="J." surname="Gettys" fullname="J. Gettys">
4640      <organization>W3C</organization>
4641      <address><email></email></address>
4642    </author>
4643    <author initials="J." surname="Mogul" fullname="J. Mogul">
4644      <organization>Compaq Computer Corporation</organization>
4645      <address><email></email></address>
4646    </author>
4647    <author initials="H." surname="Frystyk" fullname="H. Frystyk">
4648      <organization>MIT Laboratory for Computer Science</organization>
4649      <address><email></email></address>
4650    </author>
4651    <author initials="L." surname="Masinter" fullname="L. Masinter">
4652      <organization>Xerox Corporation</organization>
4653      <address><email></email></address>
4654    </author>
4655    <author initials="P." surname="Leach" fullname="P. Leach">
4656      <organization>Microsoft Corporation</organization>
4657      <address><email></email></address>
4658    </author>
4659    <author initials="T." surname="Berners-Lee" fullname="T. Berners-Lee">
4660      <organization>W3C</organization>
4661      <address><email></email></address>
4662    </author>
4663    <date month="June" year="1999"/>
4664  </front>
4665  <seriesInfo name="RFC" value="2616"/>
4668<reference anchor='RFC2817'>
4669  <front>
4670    <title>Upgrading to TLS Within HTTP/1.1</title>
4671    <author initials='R.' surname='Khare' fullname='R. Khare'>
4672      <organization>4K Associates / UC Irvine</organization>
4673      <address><email></email></address>
4674    </author>
4675    <author initials='S.' surname='Lawrence' fullname='S. Lawrence'>
4676      <organization>Agranat Systems, Inc.</organization>
4677      <address><email></email></address>
4678    </author>
4679    <date year='2000' month='May' />
4680  </front>
4681  <seriesInfo name='RFC' value='2817' />
4684<reference anchor='RFC2818'>
4685  <front>
4686    <title>HTTP Over TLS</title>
4687    <author initials='E.' surname='Rescorla' fullname='Eric Rescorla'>
4688      <organization>RTFM, Inc.</organization>
4689      <address><email></email></address>
4690    </author>
4691    <date year='2000' month='May' />
4692  </front>
4693  <seriesInfo name='RFC' value='2818' />
4696<reference anchor='RFC3040'>
4697  <front>
4698    <title>Internet Web Replication and Caching Taxonomy</title>
4699    <author initials='I.' surname='Cooper' fullname='I. Cooper'>
4700      <organization>Equinix, Inc.</organization>
4701    </author>
4702    <author initials='I.' surname='Melve' fullname='I. Melve'>
4703      <organization>UNINETT</organization>
4704    </author>
4705    <author initials='G.' surname='Tomlinson' fullname='G. Tomlinson'>
4706      <organization>CacheFlow Inc.</organization>
4707    </author>
4708    <date year='2001' month='January' />
4709  </front>
4710  <seriesInfo name='RFC' value='3040' />
4713<reference anchor='BCP90'>
4714  <front>
4715    <title>Registration Procedures for Message Header Fields</title>
4716    <author initials='G.' surname='Klyne' fullname='G. Klyne'>
4717      <organization>Nine by Nine</organization>
4718      <address><email></email></address>
4719    </author>
4720    <author initials='M.' surname='Nottingham' fullname='M. Nottingham'>
4721      <organization>BEA Systems</organization>
4722      <address><email></email></address>
4723    </author>
4724    <author initials='J.' surname='Mogul' fullname='J. Mogul'>
4725      <organization>HP Labs</organization>
4726      <address><email></email></address>
4727    </author>
4728    <date year='2004' month='September' />
4729  </front>
4730  <seriesInfo name='BCP' value='90' />
4731  <seriesInfo name='RFC' value='3864' />
4734<reference anchor='RFC4033'>
4735  <front>
4736    <title>DNS Security Introduction and Requirements</title>
4737    <author initials='R.' surname='Arends' fullname='R. Arends'/>
4738    <author initials='R.' surname='Austein' fullname='R. Austein'/>
4739    <author initials='M.' surname='Larson' fullname='M. Larson'/>
4740    <author initials='D.' surname='Massey' fullname='D. Massey'/>
4741    <author initials='S.' surname='Rose' fullname='S. Rose'/>
4742    <date year='2005' month='March' />
4743  </front>
4744  <seriesInfo name='RFC' value='4033' />
4747<reference anchor="BCP13">
4748  <front>
4749    <title>Media Type Specifications and Registration Procedures</title>
4750    <author initials="N." surname="Freed" fullname="Ned Freed">
4751      <organization>Oracle</organization>
4752      <address>
4753        <email></email>
4754      </address>
4755    </author>
4756    <author initials="J." surname="Klensin" fullname="John C. Klensin">
4757      <address>
4758        <email></email>
4759      </address>
4760    </author>
4761    <author initials="T." surname="Hansen" fullname="Tony Hansen">
4762      <organization>AT&amp;T Laboratories</organization>
4763      <address>
4764        <email></email>
4765      </address>
4766    </author>
4767    <date year="2013" month="January"/>
4768  </front>
4769  <seriesInfo name="BCP" value="13"/>
4770  <seriesInfo name="RFC" value="6838"/>
4773<reference anchor='BCP115'>
4774  <front>
4775    <title>Guidelines and Registration Procedures for New URI Schemes</title>
4776    <author initials='T.' surname='Hansen' fullname='T. Hansen'>
4777      <organization>AT&amp;T Laboratories</organization>
4778      <address>
4779        <email></email>
4780      </address>
4781    </author>
4782    <author initials='T.' surname='Hardie' fullname='T. Hardie'>
4783      <organization>Qualcomm, Inc.</organization>
4784      <address>
4785        <email></email>
4786      </address>
4787    </author>
4788    <author initials='L.' surname='Masinter' fullname='L. Masinter'>
4789      <organization>Adobe Systems</organization>
4790      <address>
4791        <email></email>
4792      </address>
4793    </author>
4794    <date year='2006' month='February' />
4795  </front>
4796  <seriesInfo name='BCP' value='115' />
4797  <seriesInfo name='RFC' value='4395' />
4800<reference anchor='RFC4559'>
4801  <front>
4802    <title>SPNEGO-based Kerberos and NTLM HTTP Authentication in Microsoft Windows</title>
4803    <author initials='K.' surname='Jaganathan' fullname='K. Jaganathan'/>
4804    <author initials='L.' surname='Zhu' fullname='L. Zhu'/>
4805    <author initials='J.' surname='Brezak' fullname='J. Brezak'/>
4806    <date year='2006' month='June' />
4807  </front>
4808  <seriesInfo name='RFC' value='4559' />
4811<reference anchor='RFC5226'>
4812  <front>
4813    <title>Guidelines for Writing an IANA Considerations Section in RFCs</title>
4814    <author initials='T.' surname='Narten' fullname='T. Narten'>
4815      <organization>IBM</organization>
4816      <address><email></email></address>
4817    </author>
4818    <author initials='H.' surname='Alvestrand' fullname='H. Alvestrand'>
4819      <organization>Google</organization>
4820      <address><email></email></address>
4821    </author>
4822    <date year='2008' month='May' />
4823  </front>
4824  <seriesInfo name='BCP' value='26' />
4825  <seriesInfo name='RFC' value='5226' />
4828<reference anchor='RFC5246'>
4829   <front>
4830      <title>The Transport Layer Security (TLS) Protocol Version 1.2</title>
4831      <author initials='T.' surname='Dierks' fullname='T. Dierks'>
4832         <organization />
4833      </author>
4834      <author initials='E.' surname='Rescorla' fullname='E. Rescorla'>
4835         <organization>RTFM, Inc.</organization>
4836      </author>
4837      <date year='2008' month='August' />
4838   </front>
4839   <seriesInfo name='RFC' value='5246' />
4842<reference anchor="RFC5322">
4843  <front>
4844    <title>Internet Message Format</title>
4845    <author initials="P." surname="Resnick" fullname="P. Resnick">
4846      <organization>Qualcomm Incorporated</organization>
4847    </author>
4848    <date year="2008" month="October"/>
4849  </front>
4850  <seriesInfo name="RFC" value="5322"/>
4853<reference anchor="RFC6265">
4854  <front>
4855    <title>HTTP State Management Mechanism</title>
4856    <author initials="A." surname="Barth" fullname="Adam Barth">
4857      <organization abbrev="U.C. Berkeley">
4858        University of California, Berkeley
4859      </organization>
4860      <address><email></email></address>
4861    </author>
4862    <date year="2011" month="April" />
4863  </front>
4864  <seriesInfo name="RFC" value="6265"/>
4867<reference anchor='RFC6585'>
4868  <front>
4869    <title>Additional HTTP Status Codes</title>
4870    <author initials='M.' surname='Nottingham' fullname='M. Nottingham'>
4871      <organization>Rackspace</organization>
4872    </author>
4873    <author initials='R.' surname='Fielding' fullname='R. Fielding'>
4874      <organization>Adobe</organization>
4875    </author>
4876    <date year='2012' month='April' />
4877   </front>
4878   <seriesInfo name='RFC' value='6585' />
4881<!--<reference anchor='BCP97'>
4882  <front>
4883    <title>Handling Normative References to Standards-Track Documents</title>
4884    <author initials='J.' surname='Klensin' fullname='J. Klensin'>
4885      <address>
4886        <email></email>
4887      </address>
4888    </author>
4889    <author initials='S.' surname='Hartman' fullname='S. Hartman'>
4890      <organization>MIT</organization>
4891      <address>
4892        <email></email>
4893      </address>
4894    </author>
4895    <date year='2007' month='June' />
4896  </front>
4897  <seriesInfo name='BCP' value='97' />
4898  <seriesInfo name='RFC' value='4897' />
4901<reference anchor="Kri2001" target="">
4902  <front>
4903    <title>HTTP Cookies: Standards, Privacy, and Politics</title>
4904    <author initials="D." surname="Kristol" fullname="David M. Kristol"/>
4905    <date year="2001" month="November"/>
4906  </front>
4907  <seriesInfo name="ACM Transactions on Internet Technology" value="1(2)"/>
4913<section title="HTTP Version History" anchor="compatibility">
4915   HTTP has been in use by the World-Wide Web global information initiative
4916   since 1990. The first version of HTTP, later referred to as HTTP/0.9,
4917   was a simple protocol for hypertext data transfer across the Internet
4918   with only a single request method (GET) and no metadata.
4919   HTTP/1.0, as defined by <xref target="RFC1945"/>, added a range of request
4920   methods and MIME-like messaging that could include metadata about the data
4921   transferred and modifiers on the request/response semantics. However,
4922   HTTP/1.0 did not sufficiently take into consideration the effects of
4923   hierarchical proxies, caching, the need for persistent connections, or
4924   name-based virtual hosts. The proliferation of incompletely-implemented
4925   applications calling themselves "HTTP/1.0" further necessitated a
4926   protocol version change in order for two communicating applications
4927   to determine each other's true capabilities.
4930   HTTP/1.1 remains compatible with HTTP/1.0 by including more stringent
4931   requirements that enable reliable implementations, adding only
4932   those new features that will either be safely ignored by an HTTP/1.0
4933   recipient or only sent when communicating with a party advertising
4934   conformance with HTTP/1.1.
4937   It is beyond the scope of a protocol specification to mandate
4938   conformance with previous versions. HTTP/1.1 was deliberately
4939   designed, however, to make supporting previous versions easy.
4940   We would expect a general-purpose HTTP/1.1 server to understand
4941   any valid request in the format of HTTP/1.0 and respond appropriately
4942   with an HTTP/1.1 message that only uses features understood (or
4943   safely ignored) by HTTP/1.0 clients.  Likewise, we would expect
4944   an HTTP/1.1 client to understand any valid HTTP/1.0 response.
4947   Since HTTP/0.9 did not support header fields in a request,
4948   there is no mechanism for it to support name-based virtual
4949   hosts (selection of resource by inspection of the <x:ref>Host</x:ref> header
4950   field).  Any server that implements name-based virtual hosts
4951   ought to disable support for HTTP/0.9.  Most requests that
4952   appear to be HTTP/0.9 are, in fact, badly constructed HTTP/1.x
4953   requests wherein a buggy client failed to properly encode
4954   linear whitespace found in a URI reference and placed in
4955   the request-target.
4958<section title="Changes from HTTP/1.0" anchor="changes.from.1.0">
4960   This section summarizes major differences between versions HTTP/1.0
4961   and HTTP/1.1.
4964<section title="Multi-homed Web Servers" anchor="">
4966   The requirements that clients and servers support the <x:ref>Host</x:ref>
4967   header field (<xref target=""/>), report an error if it is
4968   missing from an HTTP/1.1 request, and accept absolute URIs (<xref target="request-target"/>)
4969   are among the most important changes defined by HTTP/1.1.
4972   Older HTTP/1.0 clients assumed a one-to-one relationship of IP
4973   addresses and servers; there was no other established mechanism for
4974   distinguishing the intended server of a request than the IP address
4975   to which that request was directed. The <x:ref>Host</x:ref> header field was
4976   introduced during the development of HTTP/1.1 and, though it was
4977   quickly implemented by most HTTP/1.0 browsers, additional requirements
4978   were placed on all HTTP/1.1 requests in order to ensure complete
4979   adoption.  At the time of this writing, most HTTP-based services
4980   are dependent upon the Host header field for targeting requests.
4984<section title="Keep-Alive Connections" anchor="compatibility.with.http.1.0.persistent.connections">
4986   In HTTP/1.0, each connection is established by the client prior to the
4987   request and closed by the server after sending the response. However, some
4988   implementations implement the explicitly negotiated ("Keep-Alive") version
4989   of persistent connections described in <xref x:sec="19.7.1" x:fmt="of"
4990   target="RFC2068"/>.
4993   Some clients and servers might wish to be compatible with these previous
4994   approaches to persistent connections, by explicitly negotiating for them
4995   with a "Connection: keep-alive" request header field. However, some
4996   experimental implementations of HTTP/1.0 persistent connections are faulty;
4997   for example, if an HTTP/1.0 proxy server doesn't understand
4998   <x:ref>Connection</x:ref>, it will erroneously forward that header field
4999   to the next inbound server, which would result in a hung connection.
5002   One attempted solution was the introduction of a Proxy-Connection header
5003   field, targeted specifically at proxies. In practice, this was also
5004   unworkable, because proxies are often deployed in multiple layers, bringing
5005   about the same problem discussed above.
5008   As a result, clients are encouraged not to send the Proxy-Connection header
5009   field in any requests.
5012   Clients are also encouraged to consider the use of Connection: keep-alive
5013   in requests carefully; while they can enable persistent connections with
5014   HTTP/1.0 servers, clients using them will need to monitor the
5015   connection for "hung" requests (which indicate that the client ought stop
5016   sending the header field), and this mechanism ought not be used by clients
5017   at all when a proxy is being used.
5021<section title="Introduction of Transfer-Encoding" anchor="introduction.of.transfer-encoding">
5023   HTTP/1.1 introduces the <x:ref>Transfer-Encoding</x:ref> header field
5024   (<xref target="header.transfer-encoding"/>).
5025   Transfer codings need to be decoded prior to forwarding an HTTP message
5026   over a MIME-compliant protocol.
5032<section title="Changes from RFC 2616" anchor="changes.from.rfc.2616">
5034  HTTP's approach to error handling has been explained.
5035  (<xref target="conformance" />)
5038  The HTTP-version ABNF production has been clarified to be case-sensitive.
5039  Additionally, version numbers has been restricted to single digits, due
5040  to the fact that implementations are known to handle multi-digit version
5041  numbers incorrectly.
5042  (<xref target="http.version"/>)
5045  Userinfo (i.e., username and password) are now disallowed in HTTP and
5046  HTTPS URIs, because of security issues related to their transmission on the
5047  wire.
5048  (<xref target="http.uri" />)
5051  The HTTPS URI scheme is now defined by this specification; previously,
5052  it was done in  <xref target="RFC2818" x:fmt="of" x:sec="2.4"/>.
5053  Furthermore, it implies end-to-end security.
5054  (<xref target="https.uri"/>)
5057  HTTP messages can be (and often are) buffered by implementations; despite
5058  it sometimes being available as a stream, HTTP is fundamentally a
5059  message-oriented protocol.
5060  Minimum supported sizes for various protocol elements have been
5061  suggested, to improve interoperability.
5062  (<xref target="http.message" />)
5065  Invalid whitespace around field-names is now required to be rejected,
5066  because accepting it represents a security vulnerability.
5067  The ABNF productions defining header fields now only list the field value.
5068  (<xref target="header.fields"/>)
5071  Rules about implicit linear whitespace between certain grammar productions
5072  have been removed; now whitespace is only allowed where specifically
5073  defined in the ABNF.
5074  (<xref target="whitespace"/>)
5077  Header fields that span multiple lines ("line folding") are deprecated.
5078  (<xref target="field.parsing" />)
5081  The NUL octet is no longer allowed in comment and quoted-string text, and
5082  handling of backslash-escaping in them has been clarified.
5083  The quoted-pair rule no longer allows escaping control characters other than
5084  HTAB.
5085  Non-ASCII content in header fields and the reason phrase has been obsoleted
5086  and made opaque (the TEXT rule was removed).
5087  (<xref target="field.components"/>)
5090  Bogus "<x:ref>Content-Length</x:ref>" header fields are now required to be
5091  handled as errors by recipients.
5092  (<xref target="header.content-length"/>)
5095  The algorithm for determining the message body length has been clarified
5096  to indicate all of the special cases (e.g., driven by methods or status
5097  codes) that affect it, and that new protocol elements cannot define such
5098  special cases.
5099  CONNECT is a new, special case in determining message body length.
5100  "multipart/byteranges" is no longer a way of determining message body length
5101  detection.
5102  (<xref target="message.body.length"/>)
5105  The "identity" transfer coding token has been removed.
5106  (Sections <xref format="counter" target="message.body"/> and
5107  <xref format="counter" target="transfer.codings"/>)
5110  Chunk length does not include the count of the octets in the
5111  chunk header and trailer.
5112  Use of chunk extensions is deprecated, and line folding in them is
5113  disallowed.
5114  (<xref target="chunked.encoding"/>)
5117  The meaning of the "deflate" content coding has been clarified.
5118  (<xref target="deflate.coding" />)
5121  The segment + query components of RFC 3986 have been used to define the
5122  request-target, instead of abs_path from RFC 1808.
5123  The asterisk-form of the request-target is only allowed in the OPTIONS
5124  method.
5125  (<xref target="request-target"/>)
5128  The term "Effective Request URI" has been introduced.
5129  (<xref target="effective.request.uri" />)
5132  Gateways do not need to generate <x:ref>Via</x:ref> header fields anymore.
5133  (<xref target="header.via"/>)
5136  Exactly when "close" connection options have to be sent has been clarified.
5137  Also, "hop-by-hop" header fields are required to appear in the Connection header
5138  field; just because they're defined as hop-by-hop in this specification
5139  doesn't exempt them.
5140  (<xref target="header.connection"/>)
5143  The limit of two connections per server has been removed.
5144  An idempotent sequence of requests is no longer required to be retried.
5145  The requirement to retry requests under certain circumstances when the
5146  server prematurely closes the connection has been removed.
5147  Also, some extraneous requirements about when servers are allowed to close
5148  connections prematurely have been removed.
5149  (<xref target="persistent.connections"/>)
5152  The semantics of the <x:ref>Upgrade</x:ref> header field is now defined in
5153  responses other than 101 (this was incorporated from <xref
5154  target="RFC2817"/>). Furthermore, the ordering in the field value is now
5155  significant.
5156  (<xref target="header.upgrade"/>)
5159  Empty list elements in list productions (e.g., a list header field containing
5160  ", ,") have been deprecated.
5161  (<xref target="abnf.extension"/>)
5164  Registration of Transfer Codings now requires IETF Review
5165  (<xref target="transfer.coding.registry"/>)
5168  This specification now defines the Upgrade Token Registry, previously
5169  defined in <xref target="RFC2817" x:fmt="of" x:sec="7.2"/>.
5170  (<xref target="upgrade.token.registry"/>)
5173  The expectation to support HTTP/0.9 requests has been removed.
5174  (<xref target="compatibility"/>)
5177  Issues with the Keep-Alive and Proxy-Connection header fields in requests
5178  are pointed out, with use of the latter being discouraged altogether.
5179  (<xref target="compatibility.with.http.1.0.persistent.connections" />)
5184<?BEGININC p1-messaging.abnf-appendix ?>
5185<section xmlns:x="" title="Collected ABNF" anchor="collected.abnf">
5187<artwork type="abnf" name="p1-messaging.parsed-abnf">
5188<x:ref>BWS</x:ref> = OWS
5190<x:ref>Connection</x:ref> = *( "," OWS ) connection-option *( OWS "," [ OWS
5191 connection-option ] )
5192<x:ref>Content-Length</x:ref> = 1*DIGIT
5194<x:ref>HTTP-message</x:ref> = start-line *( header-field CRLF ) CRLF [ message-body
5195 ]
5196<x:ref>HTTP-name</x:ref> = %x48.54.54.50 ; HTTP
5197<x:ref>HTTP-version</x:ref> = HTTP-name "/" DIGIT "." DIGIT
5198<x:ref>Host</x:ref> = uri-host [ ":" port ]
5200<x:ref>OWS</x:ref> = *( SP / HTAB )
5202<x:ref>RWS</x:ref> = 1*( SP / HTAB )
5204<x:ref>TE</x:ref> = [ ( "," / t-codings ) *( OWS "," [ OWS t-codings ] ) ]
5205<x:ref>Trailer</x:ref> = *( "," OWS ) field-name *( OWS "," [ OWS field-name ] )
5206<x:ref>Transfer-Encoding</x:ref> = *( "," OWS ) transfer-coding *( OWS "," [ OWS
5207 transfer-coding ] )
5209<x:ref>URI-reference</x:ref> = &lt;URI-reference, defined in [RFC3986], Section 4.1&gt;
5210<x:ref>Upgrade</x:ref> = *( "," OWS ) protocol *( OWS "," [ OWS protocol ] )
5212<x:ref>Via</x:ref> = *( "," OWS ) ( received-protocol RWS received-by [ RWS comment
5213 ] ) *( OWS "," [ OWS ( received-protocol RWS received-by [ RWS
5214 comment ] ) ] )
5216<x:ref>absolute-URI</x:ref> = &lt;absolute-URI, defined in [RFC3986], Section 4.3&gt;
5217<x:ref>absolute-form</x:ref> = absolute-URI
5218<x:ref>absolute-path</x:ref> = 1*( "/" segment )
5219<x:ref>asterisk-form</x:ref> = "*"
5220<x:ref>attribute</x:ref> = token
5221<x:ref>authority</x:ref> = &lt;authority, defined in [RFC3986], Section 3.2&gt;
5222<x:ref>authority-form</x:ref> = authority
5224<x:ref>chunk</x:ref> = chunk-size [ chunk-ext ] CRLF chunk-data CRLF
5225<x:ref>chunk-data</x:ref> = 1*OCTET
5226<x:ref>chunk-ext</x:ref> = *( ";" chunk-ext-name [ "=" chunk-ext-val ] )
5227<x:ref>chunk-ext-name</x:ref> = token
5228<x:ref>chunk-ext-val</x:ref> = token / quoted-str-nf
5229<x:ref>chunk-size</x:ref> = 1*HEXDIG
5230<x:ref>chunked-body</x:ref> = *chunk last-chunk trailer-part CRLF
5231<x:ref>comment</x:ref> = "(" *( ctext / quoted-cpair / comment ) ")"
5232<x:ref>connection-option</x:ref> = token
5233<x:ref>ctext</x:ref> = HTAB / SP / %x21-27 ; '!'-'''
5234 / %x2A-5B ; '*'-'['
5235 / %x5D-7E ; ']'-'~'
5236 / obs-text
5238<x:ref>field-content</x:ref> = *( HTAB / SP / VCHAR / obs-text )
5239<x:ref>field-name</x:ref> = token
5240<x:ref>field-value</x:ref> = *( field-content / obs-fold )
5241<x:ref>fragment</x:ref> = &lt;fragment, defined in [RFC3986], Section 3.5&gt;
5243<x:ref>header-field</x:ref> = field-name ":" OWS field-value OWS
5244<x:ref>http-URI</x:ref> = "http://" authority path-abempty [ "?" query ] [ "#"
5245 fragment ]
5246<x:ref>https-URI</x:ref> = "https://" authority path-abempty [ "?" query ] [ "#"
5247 fragment ]
5249<x:ref>last-chunk</x:ref> = 1*"0" [ chunk-ext ] CRLF
5251<x:ref>message-body</x:ref> = *OCTET
5252<x:ref>method</x:ref> = token
5254<x:ref>obs-fold</x:ref> = CRLF ( SP / HTAB )
5255<x:ref>obs-text</x:ref> = %x80-FF
5256<x:ref>origin-form</x:ref> = absolute-path [ "?" query ]
5258<x:ref>partial-URI</x:ref> = relative-part [ "?" query ]
5259<x:ref>path-abempty</x:ref> = &lt;path-abempty, defined in [RFC3986], Section 3.3&gt;
5260<x:ref>port</x:ref> = &lt;port, defined in [RFC3986], Section 3.2.3&gt;
5261<x:ref>protocol</x:ref> = protocol-name [ "/" protocol-version ]
5262<x:ref>protocol-name</x:ref> = token
5263<x:ref>protocol-version</x:ref> = token
5264<x:ref>pseudonym</x:ref> = token
5266<x:ref>qdtext</x:ref> = HTAB / SP / "!" / %x23-5B ; '#'-'['
5267 / %x5D-7E ; ']'-'~'
5268 / obs-text
5269<x:ref>qdtext-nf</x:ref> = HTAB / SP / "!" / %x23-5B ; '#'-'['
5270 / %x5D-7E ; ']'-'~'
5271 / obs-text
5272<x:ref>query</x:ref> = &lt;query, defined in [RFC3986], Section 3.4&gt;
5273<x:ref>quoted-cpair</x:ref> = "\" ( HTAB / SP / VCHAR / obs-text )
5274<x:ref>quoted-pair</x:ref> = "\" ( HTAB / SP / VCHAR / obs-text )
5275<x:ref>quoted-str-nf</x:ref> = DQUOTE *( qdtext-nf / quoted-pair ) DQUOTE
5276<x:ref>quoted-string</x:ref> = DQUOTE *( qdtext / quoted-pair ) DQUOTE
5278<x:ref>rank</x:ref> = ( "0" [ "." *3DIGIT ] ) / ( "1" [ "." *3"0" ] )
5279<x:ref>reason-phrase</x:ref> = *( HTAB / SP / VCHAR / obs-text )
5280<x:ref>received-by</x:ref> = ( uri-host [ ":" port ] ) / pseudonym
5281<x:ref>received-protocol</x:ref> = [ protocol-name "/" ] protocol-version
5282<x:ref>relative-part</x:ref> = &lt;relative-part, defined in [RFC3986], Section 4.2&gt;
5283<x:ref>request-line</x:ref> = method SP request-target SP HTTP-version CRLF
5284<x:ref>request-target</x:ref> = origin-form / absolute-form / authority-form /
5285 asterisk-form
5287<x:ref>segment</x:ref> = &lt;segment, defined in [RFC3986], Section 3.3&gt;
5288<x:ref>special</x:ref> = "(" / ")" / "&lt;" / "&gt;" / "@" / "," / ";" / ":" / "\" /
5289 DQUOTE / "/" / "[" / "]" / "?" / "=" / "{" / "}"
5290<x:ref>start-line</x:ref> = request-line / status-line
5291<x:ref>status-code</x:ref> = 3DIGIT
5292<x:ref>status-line</x:ref> = HTTP-version SP status-code SP reason-phrase CRLF
5294<x:ref>t-codings</x:ref> = "trailers" / ( transfer-coding [ t-ranking ] )
5295<x:ref>t-ranking</x:ref> = OWS ";" OWS "q=" rank
5296<x:ref>tchar</x:ref> = "!" / "#" / "$" / "%" / "&amp;" / "'" / "*" / "+" / "-" / "." /
5297 "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
5298<x:ref>token</x:ref> = 1*tchar
5299<x:ref>trailer-part</x:ref> = *( header-field CRLF )
5300<x:ref>transfer-coding</x:ref> = "chunked" / "compress" / "deflate" / "gzip" /
5301 transfer-extension
5302<x:ref>transfer-extension</x:ref> = token *( OWS ";" OWS transfer-parameter )
5303<x:ref>transfer-parameter</x:ref> = attribute BWS "=" BWS value
5305<x:ref>uri-host</x:ref> = &lt;host, defined in [RFC3986], Section 3.2.2&gt;
5307<x:ref>value</x:ref> = word
5309<x:ref>word</x:ref> = token / quoted-string
5313<?ENDINC p1-messaging.abnf-appendix ?>
5315<section title="Change Log (to be removed by RFC Editor before publication)" anchor="change.log">
5317<section title="Since RFC 2616">
5319  Changes up to the first Working Group Last Call draft are summarized
5320  in <eref target=""/>.
5324<section title="Since draft-ietf-httpbis-p1-messaging-21" anchor="changes.since.21">
5326  Closed issues:
5327  <list style="symbols">
5328    <t>
5329      <eref target=""/>:
5330      "Cite HTTPS URI scheme definition" (the spec now includes the HTTPs
5331      scheme definition and thus updates RFC 2818)
5332    </t>
5333    <t>
5334      <eref target=""/>:
5335      "mention of 'proxies' in section about caches"
5336    </t>
5337    <t>
5338      <eref target=""/>:
5339      "use of ABNF terms from RFC 3986"
5340    </t>
5341    <t>
5342      <eref target=""/>:
5343      "transferring URIs with userinfo in payload"
5344    </t>
5345    <t>
5346      <eref target=""/>:
5347      "editorial improvements to message length definition"
5348    </t>
5349    <t>
5350      <eref target=""/>:
5351      "Connection header field MUST vs SHOULD"
5352    </t>
5353    <t>
5354      <eref target=""/>:
5355      "editorial improvements to persistent connections section"
5356    </t>
5357    <t>
5358      <eref target=""/>:
5359      "URI normalization vs empty path"
5360    </t>
5361    <t>
5362      <eref target=""/>:
5363      "p1 feedback"
5364    </t>
5365    <t>
5366      <eref target=""/>:
5367      "is parsing OBS-FOLD mandatory?"
5368    </t>
5369    <t>
5370      <eref target=""/>:
5371      "HTTPS and Shared Caching"
5372    </t>
5373    <t>
5374      <eref target=""/>:
5375      "Requirements for recipients of ws between start-line and first header field"
5376    </t>
5377    <t>
5378      <eref target=""/>:
5379      "SP and HT when being tolerant"
5380    </t>
5381    <t>
5382      <eref target=""/>:
5383      "Message Parsing Strictness"
5384    </t>
5385    <t>
5386      <eref target=""/>:
5387      "'Render'"
5388    </t>
5389    <t>
5390      <eref target=""/>:
5391      "No-Transform"
5392    </t>
5393    <t>
5394      <eref target=""/>:
5395      "p2 editorial feedback"
5396    </t>
5397    <t>
5398      <eref target=""/>:
5399      "Content-Length SHOULD be sent"
5400    </t>
5401    <t>
5402      <eref target=""/>:
5403      "origin-form does not allow path starting with "//""
5404    </t>
5405    <t>
5406      <eref target=""/>:
5407      "ambiguity in part 1 example"
5408    </t>
5409  </list>
5413<section title="Since draft-ietf-httpbis-p1-messaging-22" anchor="changes.since.22">
5415  Closed issues:
5416  <list style="symbols">
5417    <t>
5418      <eref target=""/>:
5419      "Part1 should have a reference to TCP (RFC 793)"
5420    </t>
5421    <t>
5422      <eref target=""/>:
5423      "media type registration template issues"
5424    </t>
5425    <t>
5426      <eref target=""/>:
5427      P1 editorial nits
5428    </t>
5429    <t>
5430      <eref target=""/>:
5431      "BWS" (vs conformance)
5432    </t>
5433    <t>
5434      <eref target=""/>:
5435      "obs-fold language"
5436    </t>
5437    <t>
5438      <eref target=""/>:
5439      "Ordering in Upgrade"
5440    </t>
5441    <t>
5442      <eref target=""/>:
5443      "p1 editorial feedback"
5444    </t>
5445    <t>
5446      <eref target=""/>:
5447      "HTTP and TCP name delegation"
5448    </t>
5449    <t>
5450      <eref target=""/>:
5451      "Receiving a higher minor HTTP version number"
5452    </t>
5453    <t>
5454      <eref target=""/>:
5455      "HTTP(S) URIs and fragids"
5456    </t>
5457    <t>
5458      <eref target=""/>:
5459      "Registering x-gzip and x-deflate"
5460    </t>
5461    <t>
5462      <eref target=""/>:
5463      "Via and gateways"
5464    </t>
5465    <t>
5466      <eref target=""/>:
5467      "Mention 203 Non-Authoritative Information in p1"
5468    </t>
5469    <t>
5470      <eref target=""/>:
5471      "SHOULD and conformance"
5472    </t>
5473    <t>
5474      <eref target=""/>:
5475      "Pipelining language"
5476    </t>
5477    <t>
5478      <eref target=""/>:
5479      "proxy handling of a really bad Content-Length"
5480    </t>
5481  </list>
5485<section title="Since draft-ietf-httpbis-p1-messaging-23" anchor="changes.since.23">
5487  Closed issues:
5488  <list style="symbols">
5489    <t>
5490      <eref target=""/>:
5491      "MUST fix Content-Length?"
5492    </t>
5493    <t>
5494      <eref target=""/>:
5495      "list notation defined in appendix"
5496    </t>
5497  </list>
Note: See TracBrowser for help on using the repository browser.