source: draft-ietf-httpbis/latest/p1-messaging.xml @ 2348

Last change on this file since 2348 was 2344, checked in by fielding@…, 7 years ago

remove a bit of transport-dependent cruft from p2 definition of Expect, and editorial rephrasing

  • Property svn:eol-style set to native
  • Property svn:mime-type set to text/xml
File size: 236.7 KB
1<?xml version="1.0" encoding="utf-8"?>
2<?xml-stylesheet type='text/xsl' href='../myxml2rfc.xslt'?>
3<!DOCTYPE rfc [
4  <!ENTITY MAY "<bcp14 xmlns=''>MAY</bcp14>">
5  <!ENTITY MUST "<bcp14 xmlns=''>MUST</bcp14>">
6  <!ENTITY MUST-NOT "<bcp14 xmlns=''>MUST NOT</bcp14>">
7  <!ENTITY OPTIONAL "<bcp14 xmlns=''>OPTIONAL</bcp14>">
8  <!ENTITY RECOMMENDED "<bcp14 xmlns=''>RECOMMENDED</bcp14>">
9  <!ENTITY REQUIRED "<bcp14 xmlns=''>REQUIRED</bcp14>">
10  <!ENTITY SHALL "<bcp14 xmlns=''>SHALL</bcp14>">
11  <!ENTITY SHALL-NOT "<bcp14 xmlns=''>SHALL NOT</bcp14>">
12  <!ENTITY SHOULD "<bcp14 xmlns=''>SHOULD</bcp14>">
13  <!ENTITY SHOULD-NOT "<bcp14 xmlns=''>SHOULD NOT</bcp14>">
14  <!ENTITY ID-VERSION "latest">
15  <!ENTITY ID-MONTH "August">
16  <!ENTITY ID-YEAR "2013">
17  <!ENTITY mdash "&#8212;">
18  <!ENTITY Note "<x:h xmlns:x=''>Note:</x:h>">
19  <!ENTITY caching-overview       "<xref target='Part6' x:rel='#caching.overview' xmlns:x=''/>">
20  <!ENTITY cache-incomplete       "<xref target='Part6' x:rel='#response.cacheability' xmlns:x=''/>">
21  <!ENTITY payload                "<xref target='Part2' x:rel='#payload' xmlns:x=''/>">
22  <!ENTITY media-type            "<xref target='Part2' x:rel='#media.type' xmlns:x=''/>">
23  <!ENTITY content-codings        "<xref target='Part2' x:rel='#content.codings' xmlns:x=''/>">
24  <!ENTITY CONNECT                "<xref target='Part2' x:rel='#CONNECT' xmlns:x=''/>">
25  <!ENTITY content.negotiation    "<xref target='Part2' x:rel='#content.negotiation' xmlns:x=''/>">
26  <!ENTITY diff-mime              "<xref target='Part2' x:rel='#differences.between.http.and.mime' xmlns:x=''/>">
27  <!ENTITY representation         "<xref target='Part2' x:rel='#representations' xmlns:x=''/>">
28  <!ENTITY HEAD                   "<xref target='Part2' x:rel='#HEAD' xmlns:x=''/>">
29  <!ENTITY header-allow           "<xref target='Part2' x:rel='#header.allow' xmlns:x=''/>">
30  <!ENTITY header-cache-control   "<xref target='Part6' x:rel='#header.cache-control' xmlns:x=''/>">
31  <!ENTITY header-content-encoding    "<xref target='Part2' x:rel='#header.content-encoding' xmlns:x=''/>">
32  <!ENTITY header-content-location    "<xref target='Part2' x:rel='#header.content-location' xmlns:x=''/>">
33  <!ENTITY header-content-range   "<xref target='Part5' x:rel='#header.content-range' xmlns:x=''/>">
34  <!ENTITY header-content-type    "<xref target='Part2' x:rel='#header.content-type' xmlns:x=''/>">
35  <!ENTITY header-date            "<xref target='Part2' x:rel='' xmlns:x=''/>">
36  <!ENTITY header-etag            "<xref target='Part4' x:rel='#header.etag' xmlns:x=''/>">
37  <!ENTITY header-expires         "<xref target='Part6' x:rel='#header.expires' xmlns:x=''/>">
38  <!ENTITY header-last-modified   "<xref target='Part4' x:rel='#header.last-modified' xmlns:x=''/>">
39  <!ENTITY header-mime-version    "<xref target='Part2' x:rel='#mime-version' xmlns:x=''/>">
40  <!ENTITY header-pragma          "<xref target='Part6' x:rel='#header.pragma' xmlns:x=''/>">
41  <!ENTITY header-proxy-authenticate  "<xref target='Part7' x:rel='#header.proxy-authenticate' xmlns:x=''/>">
42  <!ENTITY header-proxy-authorization "<xref target='Part7' x:rel='#header.proxy-authorization' xmlns:x=''/>">
43  <!ENTITY header-server          "<xref target='Part2' x:rel='#header.server' xmlns:x=''/>">
44  <!ENTITY header-warning         "<xref target='Part6' x:rel='#header.warning' xmlns:x=''/>">
45  <!ENTITY idempotent-methods     "<xref target='Part2' x:rel='#idempotent.methods' xmlns:x=''/>">
46  <!ENTITY safe-methods           "<xref target='Part2' x:rel='#safe.methods' xmlns:x=''/>">
47  <!ENTITY methods                "<xref target='Part2' x:rel='#methods' xmlns:x=''/>">
48  <!ENTITY OPTIONS                "<xref target='Part2' x:rel='#OPTIONS' xmlns:x=''/>">
49  <!ENTITY qvalue                 "<xref target='Part2' x:rel='#quality.values' xmlns:x=''/>">
50  <!ENTITY resource               "<xref target='Part2' x:rel='#resources' xmlns:x=''/>">
51  <!ENTITY status-codes           "<xref target='Part2' x:rel='' xmlns:x=''/>">
52  <!ENTITY status-1xx             "<xref target='Part2' x:rel='#status.1xx' xmlns:x=''/>">
53  <!ENTITY status-203             "<xref target='Part2' x:rel='#status.203' xmlns:x=''/>">
54  <!ENTITY status-3xx             "<xref target='Part2' x:rel='#status.3xx' xmlns:x=''/>">
55  <!ENTITY status-304             "<xref target='Part4' x:rel='#status.304' xmlns:x=''/>">
56  <!ENTITY status-4xx             "<xref target='Part2' x:rel='#status.4xx' xmlns:x=''/>">
57  <!ENTITY status-414             "<xref target='Part2' x:rel='#status.414' xmlns:x=''/>">
58  <!ENTITY iana-header-registry   "<xref target='Part2' x:rel='#header.field.registry' xmlns:x=''/>">
60<?rfc toc="yes" ?>
61<?rfc symrefs="yes" ?>
62<?rfc sortrefs="yes" ?>
63<?rfc compact="yes"?>
64<?rfc subcompact="no" ?>
65<?rfc linkmailto="no" ?>
66<?rfc editing="no" ?>
67<?rfc comments="yes"?>
68<?rfc inline="yes"?>
69<?rfc rfcedstyle="yes"?>
70<?rfc-ext allow-markup-in-artwork="yes" ?>
71<?rfc-ext include-references-in-index="yes" ?>
72<rfc obsoletes="2145,2616" updates="2817,2818" category="std" x:maturity-level="proposed"
73     ipr="pre5378Trust200902" docName="draft-ietf-httpbis-p1-messaging-&ID-VERSION;"
74     xmlns:x=''>
75<x:link rel="next" basename="p2-semantics"/>
76<x:feedback template="{docname},%20%22{section}%22&amp;body=&lt;{ref}&gt;:"/>
79  <title abbrev="HTTP/1.1 Message Syntax and Routing">Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing</title>
81  <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
82    <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
83    <address>
84      <postal>
85        <street>345 Park Ave</street>
86        <city>San Jose</city>
87        <region>CA</region>
88        <code>95110</code>
89        <country>USA</country>
90      </postal>
91      <email></email>
92      <uri></uri>
93    </address>
94  </author>
96  <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
97    <organization abbrev="greenbytes">greenbytes GmbH</organization>
98    <address>
99      <postal>
100        <street>Hafenweg 16</street>
101        <city>Muenster</city><region>NW</region><code>48155</code>
102        <country>Germany</country>
103      </postal>
104      <email></email>
105      <uri></uri>
106    </address>
107  </author>
109  <date month="&ID-MONTH;" year="&ID-YEAR;"/>
110  <workgroup>HTTPbis Working Group</workgroup>
114   The Hypertext Transfer Protocol (HTTP) is an application-level protocol for
115   distributed, collaborative, hypertext information systems. HTTP has been in
116   use by the World Wide Web global information initiative since 1990.
117   This document provides an overview of HTTP architecture and its associated
118   terminology, defines the "http" and "https" Uniform Resource Identifier
119   (URI) schemes, defines the HTTP/1.1 message syntax and parsing requirements,
120   and describes general security concerns for implementations.
124<note title="Editorial Note (To be removed by RFC Editor)">
125  <t>
126    Discussion of this draft takes place on the HTTPBIS working group
127    mailing list (, which is archived at
128    <eref target=""/>.
129  </t>
130  <t>
131    The current issues list is at
132    <eref target=""/> and related
133    documents (including fancy diffs) can be found at
134    <eref target=""/>.
135  </t>
136  <t>
137    The changes in this draft are summarized in <xref target="changes.since.23"/>.
138  </t>
142<section title="Introduction" anchor="introduction">
144   The Hypertext Transfer Protocol (HTTP) is an application-level
145   request/response protocol that uses extensible semantics and self-descriptive
146   message payloads for flexible interaction with network-based hypertext
147   information systems. This document is the first in a series of documents
148   that collectively form the HTTP/1.1 specification:
149   <list style="empty">
150    <t>RFC xxx1: Message Syntax and Routing</t>
151    <t><xref target="Part2" x:fmt="none">RFC xxx2</xref>: Semantics and Content</t>
152    <t><xref target="Part4" x:fmt="none">RFC xxx3</xref>: Conditional Requests</t>
153    <t><xref target="Part5" x:fmt="none">RFC xxx4</xref>: Range Requests</t>
154    <t><xref target="Part6" x:fmt="none">RFC xxx5</xref>: Caching</t>
155    <t><xref target="Part7" x:fmt="none">RFC xxx6</xref>: Authentication</t>
156   </list>
159   This HTTP/1.1 specification obsoletes and moves to historic status
160   <xref target="RFC2616" x:fmt="none">RFC 2616</xref>, its predecessor
161   <xref target="RFC2068" x:fmt="none">RFC 2068</xref>, and
162   <xref target="RFC2145" x:fmt="none">RFC 2145</xref> (on HTTP versioning).
163   This specification also updates the use of CONNECT to establish a tunnel,
164   previously defined in <xref target="RFC2817" x:fmt="none">RFC 2817</xref>,
165   and defines the "https" URI scheme that was described informally in
166   <xref target="RFC2818" x:fmt="none">RFC 2818</xref>.
169   HTTP is a generic interface protocol for information systems. It is
170   designed to hide the details of how a service is implemented by presenting
171   a uniform interface to clients that is independent of the types of
172   resources provided. Likewise, servers do not need to be aware of each
173   client's purpose: an HTTP request can be considered in isolation rather
174   than being associated with a specific type of client or a predetermined
175   sequence of application steps. The result is a protocol that can be used
176   effectively in many different contexts and for which implementations can
177   evolve independently over time.
180   HTTP is also designed for use as an intermediation protocol for translating
181   communication to and from non-HTTP information systems.
182   HTTP proxies and gateways can provide access to alternative information
183   services by translating their diverse protocols into a hypertext
184   format that can be viewed and manipulated by clients in the same way
185   as HTTP services.
188   One consequence of this flexibility is that the protocol cannot be
189   defined in terms of what occurs behind the interface. Instead, we
190   are limited to defining the syntax of communication, the intent
191   of received communication, and the expected behavior of recipients.
192   If the communication is considered in isolation, then successful
193   actions ought to be reflected in corresponding changes to the
194   observable interface provided by servers. However, since multiple
195   clients might act in parallel and perhaps at cross-purposes, we
196   cannot require that such changes be observable beyond the scope
197   of a single response.
200   This document describes the architectural elements that are used or
201   referred to in HTTP, defines the "http" and "https" URI schemes,
202   describes overall network operation and connection management,
203   and defines HTTP message framing and forwarding requirements.
204   Our goal is to define all of the mechanisms necessary for HTTP message
205   handling that are independent of message semantics, thereby defining the
206   complete set of requirements for message parsers and
207   message-forwarding intermediaries.
211<section title="Requirement Notation" anchor="intro.requirements">
213   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
214   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
215   document are to be interpreted as described in <xref target="RFC2119"/>.
218   Conformance criteria and considerations regarding error handling
219   are defined in <xref target="conformance"/>.
223<section title="Syntax Notation" anchor="notation">
224<iref primary="true" item="Grammar" subitem="ALPHA"/>
225<iref primary="true" item="Grammar" subitem="CR"/>
226<iref primary="true" item="Grammar" subitem="CRLF"/>
227<iref primary="true" item="Grammar" subitem="CTL"/>
228<iref primary="true" item="Grammar" subitem="DIGIT"/>
229<iref primary="true" item="Grammar" subitem="DQUOTE"/>
230<iref primary="true" item="Grammar" subitem="HEXDIG"/>
231<iref primary="true" item="Grammar" subitem="HTAB"/>
232<iref primary="true" item="Grammar" subitem="LF"/>
233<iref primary="true" item="Grammar" subitem="OCTET"/>
234<iref primary="true" item="Grammar" subitem="SP"/>
235<iref primary="true" item="Grammar" subitem="VCHAR"/>
237   This specification uses the Augmented Backus-Naur Form (ABNF) notation
238   of <xref target="RFC5234"/> with the list rule extension defined in
239   <xref target="abnf.extension"/>.  <xref target="collected.abnf"/> shows
240   the collected ABNF with the list rule expanded.
242<t anchor="core.rules">
243  <x:anchor-alias value="ALPHA"/>
244  <x:anchor-alias value="CTL"/>
245  <x:anchor-alias value="CR"/>
246  <x:anchor-alias value="CRLF"/>
247  <x:anchor-alias value="DIGIT"/>
248  <x:anchor-alias value="DQUOTE"/>
249  <x:anchor-alias value="HEXDIG"/>
250  <x:anchor-alias value="HTAB"/>
251  <x:anchor-alias value="LF"/>
252  <x:anchor-alias value="OCTET"/>
253  <x:anchor-alias value="SP"/>
254  <x:anchor-alias value="VCHAR"/>
255   The following core rules are included by
256   reference, as defined in <xref target="RFC5234" x:fmt="," x:sec="B.1"/>:
257   ALPHA (letters), CR (carriage return), CRLF (CR LF), CTL (controls),
258   DIGIT (decimal 0-9), DQUOTE (double quote),
259   HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF (line feed),
260   OCTET (any 8-bit sequence of data), SP (space), and
261   VCHAR (any visible <xref target="USASCII"/> character).
264   As a convention, ABNF rule names prefixed with "obs-" denote
265   "obsolete" grammar rules that appear for historical reasons.
270<section title="Architecture" anchor="architecture">
272   HTTP was created for the World Wide Web architecture
273   and has evolved over time to support the scalability needs of a worldwide
274   hypertext system. Much of that architecture is reflected in the terminology
275   and syntax productions used to define HTTP.
278<section title="Client/Server Messaging" anchor="operation">
279<iref primary="true" item="client"/>
280<iref primary="true" item="server"/>
281<iref primary="true" item="connection"/>
283   HTTP is a stateless request/response protocol that operates by exchanging
284   <x:dfn>messages</x:dfn> (<xref target="http.message"/>) across a reliable
285   transport or session-layer
286   "<x:dfn>connection</x:dfn>" (<xref target=""/>).
287   An HTTP "<x:dfn>client</x:dfn>" is a program that establishes a connection
288   to a server for the purpose of sending one or more HTTP requests.
289   An HTTP "<x:dfn>server</x:dfn>" is a program that accepts connections
290   in order to service HTTP requests by sending HTTP responses.
292<iref primary="true" item="user agent"/>
293<iref primary="true" item="origin server"/>
294<iref primary="true" item="browser"/>
295<iref primary="true" item="spider"/>
296<iref primary="true" item="sender"/>
297<iref primary="true" item="recipient"/>
299   The terms client and server refer only to the roles that
300   these programs perform for a particular connection.  The same program
301   might act as a client on some connections and a server on others.
302   We use the term "<x:dfn>user agent</x:dfn>" to refer to any of the various
303   client programs that initiate a request, including (but not limited to)
304   browsers, spiders (web-based robots), command-line tools, native
305   applications, and mobile apps.  The term "<x:dfn>origin server</x:dfn>" is
306   used to refer to the program that can originate authoritative responses to
307   a request. For general requirements, we use the terms
308   "<x:dfn>sender</x:dfn>" and "<x:dfn>recipient</x:dfn>" to refer to any
309   component that sends or receives, respectively, a given message.
312   HTTP relies upon the Uniform Resource Identifier (URI)
313   standard <xref target="RFC3986"/> to indicate the target resource
314   (<xref target="target-resource"/>) and relationships between resources.
315   Messages are passed in a format similar to that used by Internet mail
316   <xref target="RFC5322"/> and the Multipurpose Internet Mail Extensions
317   (MIME) <xref target="RFC2045"/> (see &diff-mime; for the differences
318   between HTTP and MIME messages).
321   Most HTTP communication consists of a retrieval request (GET) for
322   a representation of some resource identified by a URI.  In the
323   simplest case, this might be accomplished via a single bidirectional
324   connection (===) between the user agent (UA) and the origin server (O).
326<figure><artwork type="drawing">
327         request   &gt;
328    <x:highlight>UA</x:highlight> ======================================= <x:highlight>O</x:highlight>
329                                &lt;   response
331<iref primary="true" item="message"/>
332<iref primary="true" item="request"/>
333<iref primary="true" item="response"/>
335   A client sends an HTTP request to a server in the form of a <x:dfn>request</x:dfn>
336   message, beginning with a request-line that includes a method, URI, and
337   protocol version (<xref target="request.line"/>),
338   followed by header fields containing
339   request modifiers, client information, and representation metadata
340   (<xref target="header.fields"/>),
341   an empty line to indicate the end of the header section, and finally
342   a message body containing the payload body (if any,
343   <xref target="message.body"/>).
346   A server responds to a client's request by sending one or more HTTP
347   <x:dfn>response</x:dfn>
348   messages, each beginning with a status line that
349   includes the protocol version, a success or error code, and textual
350   reason phrase (<xref target="status.line"/>),
351   possibly followed by header fields containing server
352   information, resource metadata, and representation metadata
353   (<xref target="header.fields"/>),
354   an empty line to indicate the end of the header section, and finally
355   a message body containing the payload body (if any,
356   <xref target="message.body"/>).
359   A connection might be used for multiple request/response exchanges,
360   as defined in <xref target="persistent.connections"/>.
363   The following example illustrates a typical message exchange for a
364   GET request on the URI "":
367client request:
368</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
369GET /hello.txt HTTP/1.1
370User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3
372Accept-Language: en, mi
376server response:
377</preamble><artwork type="message/http; msgtype=&#34;response&#34;" x:indent-with="  ">
378HTTP/1.1 200 OK
379Date: Mon, 27 Jul 2009 12:28:53 GMT
380Server: Apache
381Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
382ETag: "34aa387-d-1568eb00"
383Accept-Ranges: bytes
384Content-Length: <x:length-of target="exbody"/>
385Vary: Accept-Encoding
386Content-Type: text/plain
388<x:span anchor="exbody">Hello World! My payload includes a trailing CRLF.
393<section title="Implementation Diversity" anchor="implementation-diversity">
395   When considering the design of HTTP, it is easy to fall into a trap of
396   thinking that all user agents are general-purpose browsers and all origin
397   servers are large public websites. That is not the case in practice.
398   Common HTTP user agents include household appliances, stereos, scales,
399   firmware update scripts, command-line programs, mobile apps,
400   and communication devices in a multitude of shapes and sizes.  Likewise,
401   common HTTP origin servers include home automation units, configurable
402   networking components, office machines, autonomous robots, news feeds,
403   traffic cameras, ad selectors, and video delivery platforms.
406   The term "user agent" does not imply that there is a human user directly
407   interacting with the software agent at the time of a request. In many
408   cases, a user agent is installed or configured to run in the background
409   and save its results for later inspection (or save only a subset of those
410   results that might be interesting or erroneous). Spiders, for example, are
411   typically given a start URI and configured to follow certain behavior while
412   crawling the Web as a hypertext graph.
415   The implementation diversity of HTTP means that we cannot assume the
416   user agent can make interactive suggestions to a user or provide adequate
417   warning for security or privacy options.  In the few cases where this
418   specification requires reporting of errors to the user, it is acceptable
419   for such reporting to only be observable in an error console or log file.
420   Likewise, requirements that an automated action be confirmed by the user
421   before proceeding might be met via advance configuration choices,
422   run-time options, or simple avoidance of the unsafe action; confirmation
423   does not imply any specific user interface or interruption of normal
424   processing if the user has already made that choice.
428<section title="Intermediaries" anchor="intermediaries">
429<iref primary="true" item="intermediary"/>
431   HTTP enables the use of intermediaries to satisfy requests through
432   a chain of connections.  There are three common forms of HTTP
433   <x:dfn>intermediary</x:dfn>: proxy, gateway, and tunnel.  In some cases,
434   a single intermediary might act as an origin server, proxy, gateway,
435   or tunnel, switching behavior based on the nature of each request.
437<figure><artwork type="drawing">
438         &gt;             &gt;             &gt;             &gt;
439    <x:highlight>UA</x:highlight> =========== <x:highlight>A</x:highlight> =========== <x:highlight>B</x:highlight> =========== <x:highlight>C</x:highlight> =========== <x:highlight>O</x:highlight>
440               &lt;             &lt;             &lt;             &lt;
443   The figure above shows three intermediaries (A, B, and C) between the
444   user agent and origin server. A request or response message that
445   travels the whole chain will pass through four separate connections.
446   Some HTTP communication options
447   might apply only to the connection with the nearest, non-tunnel
448   neighbor, only to the end-points of the chain, or to all connections
449   along the chain. Although the diagram is linear, each participant might
450   be engaged in multiple, simultaneous communications. For example, B
451   might be receiving requests from many clients other than A, and/or
452   forwarding requests to servers other than C, at the same time that it
453   is handling A's request. Likewise, later requests might be sent through a
454   different path of connections, often based on dynamic configuration for
455   load balancing.   
458<iref primary="true" item="upstream"/><iref primary="true" item="downstream"/>
459<iref primary="true" item="inbound"/><iref primary="true" item="outbound"/>
460   We use the terms "<x:dfn>upstream</x:dfn>" and "<x:dfn>downstream</x:dfn>"
461   to describe various requirements in relation to the directional flow of a
462   message: all messages flow from upstream to downstream.
463   Likewise, we use the terms inbound and outbound to refer to
464   directions in relation to the request path:
465   "<x:dfn>inbound</x:dfn>" means toward the origin server and
466   "<x:dfn>outbound</x:dfn>" means toward the user agent.
468<t><iref primary="true" item="proxy"/>
469   A "<x:dfn>proxy</x:dfn>" is a message forwarding agent that is selected by the
470   client, usually via local configuration rules, to receive requests
471   for some type(s) of absolute URI and attempt to satisfy those
472   requests via translation through the HTTP interface.  Some translations
473   are minimal, such as for proxy requests for "http" URIs, whereas
474   other requests might require translation to and from entirely different
475   application-level protocols. Proxies are often used to group an
476   organization's HTTP requests through a common intermediary for the
477   sake of security, annotation services, or shared caching.
480<iref primary="true" item="transforming proxy"/>
481<iref primary="true" item="non-transforming proxy"/>
482   An HTTP-to-HTTP proxy is called a "<x:dfn>transforming proxy</x:dfn>" if it is designed
483   or configured to modify request or response messages in a semantically
484   meaningful way (i.e., modifications, beyond those required by normal
485   HTTP processing, that change the message in a way that would be
486   significant to the original sender or potentially significant to
487   downstream recipients).  For example, a transforming proxy might be
488   acting as a shared annotation server (modifying responses to include
489   references to a local annotation database), a malware filter, a
490   format transcoder, or an intranet-to-Internet privacy filter.  Such
491   transformations are presumed to be desired by the client (or client
492   organization) that selected the proxy and are beyond the scope of
493   this specification.  However, when a proxy is not intended to transform
494   a given message, we use the term "<x:dfn>non-transforming proxy</x:dfn>" to target
495   requirements that preserve HTTP message semantics. See &status-203; and
496   &header-warning; for status and warning codes related to transformations.
498<t><iref primary="true" item="gateway"/><iref primary="true" item="reverse proxy"/>
499<iref primary="true" item="accelerator"/>
500   A "<x:dfn>gateway</x:dfn>" (a.k.a., "<x:dfn>reverse proxy</x:dfn>") is an
501   intermediary that acts as an origin server for the outbound connection, but
502   translates received requests and forwards them inbound to another server or
503   servers. Gateways are often used to encapsulate legacy or untrusted
504   information services, to improve server performance through
505   "<x:dfn>accelerator</x:dfn>" caching, and to enable partitioning or load
506   balancing of HTTP services across multiple machines.
509   All HTTP requirements applicable to an origin server
510   also apply to the outbound communication of a gateway.
511   A gateway communicates with inbound servers using any protocol that
512   it desires, including private extensions to HTTP that are outside
513   the scope of this specification.  However, an HTTP-to-HTTP gateway
514   that wishes to interoperate with third-party HTTP servers ought to conform
515   to user agent requirements on the gateway's inbound connection.
517<t><iref primary="true" item="tunnel"/>
518   A "<x:dfn>tunnel</x:dfn>" acts as a blind relay between two connections
519   without changing the messages. Once active, a tunnel is not
520   considered a party to the HTTP communication, though the tunnel might
521   have been initiated by an HTTP request. A tunnel ceases to exist when
522   both ends of the relayed connection are closed. Tunnels are used to
523   extend a virtual connection through an intermediary, such as when
524   Transport Layer Security (TLS, <xref target="RFC5246"/>) is used to
525   establish confidential communication through a shared firewall proxy.
527<t><iref primary="true" item="interception proxy"/>
528<iref primary="true" item="transparent proxy"/>
529<iref primary="true" item="captive portal"/>
530   The above categories for intermediary only consider those acting as
531   participants in the HTTP communication.  There are also intermediaries
532   that can act on lower layers of the network protocol stack, filtering or
533   redirecting HTTP traffic without the knowledge or permission of message
534   senders. Network intermediaries often introduce security flaws or
535   interoperability problems by violating HTTP semantics.  For example, an
536   "<x:dfn>interception proxy</x:dfn>" <xref target="RFC3040"/> (also commonly
537   known as a "<x:dfn>transparent proxy</x:dfn>" <xref target="RFC1919"/> or
538   "<x:dfn>captive portal</x:dfn>")
539   differs from an HTTP proxy because it is not selected by the client.
540   Instead, an interception proxy filters or redirects outgoing TCP port 80
541   packets (and occasionally other common port traffic).
542   Interception proxies are commonly found on public network access points,
543   as a means of enforcing account subscription prior to allowing use of
544   non-local Internet services, and within corporate firewalls to enforce
545   network usage policies.
546   They are indistinguishable from a man-in-the-middle attack.
549   HTTP is defined as a stateless protocol, meaning that each request message
550   can be understood in isolation.  Many implementations depend on HTTP's
551   stateless design in order to reuse proxied connections or dynamically
552   load-balance requests across multiple servers.  Hence, servers &MUST-NOT;
553   assume that two requests on the same connection are from the same user
554   agent unless the connection is secured and specific to that agent.
555   Some non-standard HTTP extensions (e.g., <xref target="RFC4559"/>) have
556   been known to violate this requirement, resulting in security and
557   interoperability problems.
561<section title="Caches" anchor="caches">
562<iref primary="true" item="cache"/>
564   A "<x:dfn>cache</x:dfn>" is a local store of previous response messages and the
565   subsystem that controls its message storage, retrieval, and deletion.
566   A cache stores cacheable responses in order to reduce the response
567   time and network bandwidth consumption on future, equivalent
568   requests. Any client or server &MAY; employ a cache, though a cache
569   cannot be used by a server while it is acting as a tunnel.
572   The effect of a cache is that the request/response chain is shortened
573   if one of the participants along the chain has a cached response
574   applicable to that request. The following illustrates the resulting
575   chain if B has a cached copy of an earlier response from O (via C)
576   for a request that has not been cached by UA or A.
578<figure><artwork type="drawing">
579            &gt;             &gt;
580       <x:highlight>UA</x:highlight> =========== <x:highlight>A</x:highlight> =========== <x:highlight>B</x:highlight> - - - - - - <x:highlight>C</x:highlight> - - - - - - <x:highlight>O</x:highlight>
581                  &lt;             &lt;
583<t><iref primary="true" item="cacheable"/>
584   A response is "<x:dfn>cacheable</x:dfn>" if a cache is allowed to store a copy of
585   the response message for use in answering subsequent requests.
586   Even when a response is cacheable, there might be additional
587   constraints placed by the client or by the origin server on when
588   that cached response can be used for a particular request. HTTP
589   requirements for cache behavior and cacheable responses are
590   defined in &caching-overview;. 
593   There are a wide variety of architectures and configurations
594   of caches deployed across the World Wide Web and
595   inside large organizations. These include national hierarchies
596   of proxy caches to save transoceanic bandwidth, collaborative systems that
597   broadcast or multicast cache entries, archives of pre-fetched cache
598   entries for use in off-line or high-latency environments, and so on.
602<section title="Conformance and Error Handling" anchor="conformance">
604   This specification targets conformance criteria according to the role of
605   a participant in HTTP communication.  Hence, HTTP requirements are placed
606   on senders, recipients, clients, servers, user agents, intermediaries,
607   origin servers, proxies, gateways, or caches, depending on what behavior
608   is being constrained by the requirement. Additional (social) requirements
609   are placed on implementations, resource owners, and protocol element
610   registrations when they apply beyond the scope of a single communication.
613   The verb "generate" is used instead of "send" where a requirement
614   differentiates between creating a protocol element and merely forwarding a
615   received element downstream.
618   An implementation is considered conformant if it complies with all of the
619   requirements associated with the roles it partakes in HTTP.
622   Conformance includes both the syntax and semantics of HTTP protocol
623   elements. A sender &MUST-NOT; generate protocol elements that convey a
624   meaning that is known by that sender to be false. A sender &MUST-NOT;
625   generate protocol elements that do not match the grammar defined by the
626   corresponding ABNF rules. Within a given message, a sender &MUST-NOT;
627   generate protocol elements or syntax alternatives that are only allowed to
628   be generated by participants in other roles (i.e., a role that the sender
629   does not have for that message).
632   When a received protocol element is parsed, the recipient &MUST; be able to
633   parse any value of reasonable length that is applicable to the recipient's
634   role and matches the grammar defined by the corresponding ABNF rules.
635   Note, however, that some received protocol elements might not be parsed.
636   For example, an intermediary forwarding a message might parse a
637   header-field into generic field-name and field-value components, but then
638   forward the header field without further parsing inside the field-value.
641   HTTP does not have specific length limitations for many of its protocol
642   elements because the lengths that might be appropriate will vary widely,
643   depending on the deployment context and purpose of the implementation.
644   Hence, interoperability between senders and recipients depends on shared
645   expectations regarding what is a reasonable length for each protocol
646   element. Furthermore, what is commonly understood to be a reasonable length
647   for some protocol elements has changed over the course of the past two
648   decades of HTTP use, and is expected to continue changing in the future.
651   At a minimum, a recipient &MUST; be able to parse and process protocol
652   element lengths that are at least as long as the values that it generates
653   for those same protocol elements in other messages. For example, an origin
654   server that publishes very long URI references to its own resources needs
655   to be able to parse and process those same references when received as a
656   request target.
659   A recipient &MUST; interpret a received protocol element according to the
660   semantics defined for it by this specification, including extensions to
661   this specification, unless the recipient has determined (through experience
662   or configuration) that the sender incorrectly implements what is implied by
663   those semantics.
664   For example, an origin server might disregard the contents of a received
665   <x:ref>Accept-Encoding</x:ref> header field if inspection of the
666   <x:ref>User-Agent</x:ref> header field indicates a specific implementation
667   version that is known to fail on receipt of certain content codings.
670   Unless noted otherwise, a recipient &MAY; attempt to recover a usable
671   protocol element from an invalid construct.  HTTP does not define
672   specific error handling mechanisms except when they have a direct impact
673   on security, since different applications of the protocol require
674   different error handling strategies.  For example, a Web browser might
675   wish to transparently recover from a response where the
676   <x:ref>Location</x:ref> header field doesn't parse according to the ABNF,
677   whereas a systems control client might consider any form of error recovery
678   to be dangerous.
682<section title="Protocol Versioning" anchor="http.version">
683  <x:anchor-alias value="HTTP-version"/>
684  <x:anchor-alias value="HTTP-name"/>
686   HTTP uses a "&lt;major&gt;.&lt;minor&gt;" numbering scheme to indicate
687   versions of the protocol. This specification defines version "1.1".
688   The protocol version as a whole indicates the sender's conformance
689   with the set of requirements laid out in that version's corresponding
690   specification of HTTP.
693   The version of an HTTP message is indicated by an HTTP-version field
694   in the first line of the message. HTTP-version is case-sensitive.
696<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="HTTP-version"/><iref primary="true" item="Grammar" subitem="HTTP-name"/>
697  <x:ref>HTTP-version</x:ref>  = <x:ref>HTTP-name</x:ref> "/" <x:ref>DIGIT</x:ref> "." <x:ref>DIGIT</x:ref>
698  <x:ref>HTTP-name</x:ref>     = <x:abnf-char-sequence>"HTTP"</x:abnf-char-sequence> ; "HTTP", case-sensitive
701   The HTTP version number consists of two decimal digits separated by a "."
702   (period or decimal point).  The first digit ("major version") indicates the
703   HTTP messaging syntax, whereas the second digit ("minor version") indicates
704   the highest minor version within that major version to which the sender is
705   conformant and able to understand for future communication.  The minor
706   version advertises the sender's communication capabilities even when the
707   sender is only using a backwards-compatible subset of the protocol,
708   thereby letting the recipient know that more advanced features can
709   be used in response (by servers) or in future requests (by clients).
712   When an HTTP/1.1 message is sent to an HTTP/1.0 recipient
713   <xref target="RFC1945"/> or a recipient whose version is unknown,
714   the HTTP/1.1 message is constructed such that it can be interpreted
715   as a valid HTTP/1.0 message if all of the newer features are ignored.
716   This specification places recipient-version requirements on some
717   new features so that a conformant sender will only use compatible
718   features until it has determined, through configuration or the
719   receipt of a message, that the recipient supports HTTP/1.1.
722   The interpretation of a header field does not change between minor
723   versions of the same major HTTP version, though the default
724   behavior of a recipient in the absence of such a field can change.
725   Unless specified otherwise, header fields defined in HTTP/1.1 are
726   defined for all versions of HTTP/1.x.  In particular, the <x:ref>Host</x:ref>
727   and <x:ref>Connection</x:ref> header fields ought to be implemented by all
728   HTTP/1.x implementations whether or not they advertise conformance with
729   HTTP/1.1.
732   New header fields can be introduced without changing the protocol version
733   if their defined semantics allow them to be safely ignored by recipients
734   that do not recognize them. Header field extensibility is discussed in
735   <xref target="field.extensibility"/>.
738   Intermediaries that process HTTP messages (i.e., all intermediaries
739   other than those acting as tunnels) &MUST; send their own HTTP-version
740   in forwarded messages.  In other words, they &MUST-NOT; blindly
741   forward the first line of an HTTP message without ensuring that the
742   protocol version in that message matches a version to which that
743   intermediary is conformant for both the receiving and
744   sending of messages.  Forwarding an HTTP message without rewriting
745   the HTTP-version might result in communication errors when downstream
746   recipients use the message sender's version to determine what features
747   are safe to use for later communication with that sender.
750   A client &SHOULD; send a request version equal to the highest
751   version to which the client is conformant and
752   whose major version is no higher than the highest version supported
753   by the server, if this is known.  A client &MUST-NOT; send a
754   version to which it is not conformant.
757   A client &MAY; send a lower request version if it is known that
758   the server incorrectly implements the HTTP specification, but only
759   after the client has attempted at least one normal request and determined
760   from the response status or header fields (e.g., <x:ref>Server</x:ref>) that
761   the server improperly handles higher request versions.
764   A server &SHOULD; send a response version equal to the highest
765   version to which the server is conformant and
766   whose major version is less than or equal to the one received in the
767   request.  A server &MUST-NOT; send a version to which it is not
768   conformant.  A server &MAY; send a <x:ref>505 (HTTP Version Not
769   Supported)</x:ref> response if it cannot send a response using the
770   major version used in the client's request.
773   A server &MAY; send an HTTP/1.0 response to a request
774   if it is known or suspected that the client incorrectly implements the
775   HTTP specification and is incapable of correctly processing later
776   version responses, such as when a client fails to parse the version
777   number correctly or when an intermediary is known to blindly forward
778   the HTTP-version even when it doesn't conform to the given minor
779   version of the protocol. Such protocol downgrades &SHOULD-NOT; be
780   performed unless triggered by specific client attributes, such as when
781   one or more of the request header fields (e.g., <x:ref>User-Agent</x:ref>)
782   uniquely match the values sent by a client known to be in error.
785   The intention of HTTP's versioning design is that the major number
786   will only be incremented if an incompatible message syntax is
787   introduced, and that the minor number will only be incremented when
788   changes made to the protocol have the effect of adding to the message
789   semantics or implying additional capabilities of the sender.  However,
790   the minor version was not incremented for the changes introduced between
791   <xref target="RFC2068"/> and <xref target="RFC2616"/>, and this revision
792   has specifically avoided any such changes to the protocol.
795   When an HTTP message is received with a major version number that the
796   recipient implements, but a higher minor version number than what the
797   recipient implements, the recipient &SHOULD; process the message as if it
798   were in the highest minor version within that major version to which the
799   recipient is conformant. A recipient can assume that a message with a
800   higher minor version, when sent to a recipient that has not yet indicated
801   support for that higher version, is sufficiently backwards-compatible to be
802   safely processed by any implementation of the same major version.
806<section title="Uniform Resource Identifiers" anchor="uri">
807<iref primary="true" item="resource"/>
809   Uniform Resource Identifiers (URIs) <xref target="RFC3986"/> are used
810   throughout HTTP as the means for identifying resources (&resource;).
811   URI references are used to target requests, indicate redirects, and define
812   relationships.
814  <x:anchor-alias value="URI-reference"/>
815  <x:anchor-alias value="absolute-URI"/>
816  <x:anchor-alias value="relative-part"/>
817  <x:anchor-alias value="authority"/>
818  <x:anchor-alias value="uri-host"/>
819  <x:anchor-alias value="port"/>
820  <x:anchor-alias value="path-abempty"/>
821  <x:anchor-alias value="segment"/>
822  <x:anchor-alias value="query"/>
823  <x:anchor-alias value="fragment"/>
824  <x:anchor-alias value="absolute-path"/>
825  <x:anchor-alias value="partial-URI"/>
827   This specification adopts the definitions of "URI-reference",
828   "absolute-URI", "relative-part", "authority", "port", "host",
829   "path-abempty", "segment", "query", and "fragment" from the
830   URI generic syntax.
831   In addition, we define an "absolute-path" rule (that differs from
832   RFC 3986's "path-absolute" in that it allows a leading "//")
833   and a "partial-URI" rule for protocol elements
834   that allow a relative URI but not a fragment.
836<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="URI-reference"><!--exported production--></iref><iref primary="true" item="Grammar" subitem="absolute-URI"/><iref primary="true" item="Grammar" subitem="authority"/><iref primary="true" item="Grammar" subitem="absolute-path"/><iref primary="true" item="Grammar" subitem="port"/><iref primary="true" item="Grammar" subitem="query"/><iref primary="true" item="Grammar" subitem="fragment"/><iref primary="true" item="Grammar" subitem="segment"/><iref primary="true" item="Grammar" subitem="uri-host"/><iref primary="true" item="Grammar" subitem="partial-URI"><!--exported production--></iref>
837  <x:ref>URI-reference</x:ref> = &lt;URI-reference, defined in <xref target="RFC3986" x:fmt="," x:sec="4.1"/>&gt;
838  <x:ref>absolute-URI</x:ref>  = &lt;absolute-URI, defined in <xref target="RFC3986" x:fmt="," x:sec="4.3"/>&gt;
839  <x:ref>relative-part</x:ref> = &lt;relative-part, defined in <xref target="RFC3986" x:fmt="," x:sec="4.2"/>&gt;
840  <x:ref>authority</x:ref>     = &lt;authority, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2"/>&gt;
841  <x:ref>uri-host</x:ref>      = &lt;host, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2.2"/>&gt;
842  <x:ref>port</x:ref>          = &lt;port, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2.3"/>&gt;
843  <x:ref>path-abempty</x:ref>  = &lt;path-abempty, defined in <xref target="RFC3986" x:fmt="," x:sec="3.3"/>&gt;
844  <x:ref>segment</x:ref>       = &lt;segment, defined in <xref target="RFC3986" x:fmt="," x:sec="3.3"/>&gt;
845  <x:ref>query</x:ref>         = &lt;query, defined in <xref target="RFC3986" x:fmt="," x:sec="3.4"/>&gt;
846  <x:ref>fragment</x:ref>      = &lt;fragment, defined in <xref target="RFC3986" x:fmt="," x:sec="3.5"/>&gt;
848  <x:ref>absolute-path</x:ref> = 1*( "/" segment )
849  <x:ref>partial-URI</x:ref>   = relative-part [ "?" query ]
852   Each protocol element in HTTP that allows a URI reference will indicate
853   in its ABNF production whether the element allows any form of reference
854   (URI-reference), only a URI in absolute form (absolute-URI), only the
855   path and optional query components, or some combination of the above.
856   Unless otherwise indicated, URI references are parsed
857   relative to the effective request URI
858   (<xref target="effective.request.uri"/>).
861<section title="http URI scheme" anchor="http.uri">
862  <x:anchor-alias value="http-URI"/>
863  <iref item="http URI scheme" primary="true"/>
864  <iref item="URI scheme" subitem="http" primary="true"/>
866   The "http" URI scheme is hereby defined for the purpose of minting
867   identifiers according to their association with the hierarchical
868   namespace governed by a potential HTTP origin server listening for
869   TCP (<xref target="RFC0793"/>) connections on a given port.
871<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="http-URI"><!--terminal production--></iref>
872  <x:ref>http-URI</x:ref> = "http:" "//" <x:ref>authority</x:ref> <x:ref>path-abempty</x:ref> [ "?" <x:ref>query</x:ref> ]
873             [ "#" <x:ref>fragment</x:ref> ]
876   The HTTP origin server is identified by the generic syntax's
877   <x:ref>authority</x:ref> component, which includes a host identifier
878   and optional TCP port (<xref target="RFC3986" x:fmt="," x:sec="3.2.2"/>).
879   The remainder of the URI, consisting of both the hierarchical path
880   component and optional query component, serves as an identifier for
881   a potential resource within that origin server's name space.
884   A sender &MUST-NOT; generate an "http" URI with an empty host identifier.
885   A recipient that processes such a URI reference &MUST; reject it as invalid.
888   If the host identifier is provided as an IP address,
889   then the origin server is any listener on the indicated TCP port at
890   that IP address. If host is a registered name, then that name is
891   considered an indirect identifier and the recipient might use a name
892   resolution service, such as DNS, to find the address of a listener
893   for that host.
894   If the port subcomponent is empty or not given, then TCP port 80 is
895   assumed (the default reserved port for WWW services).
898   Regardless of the form of host identifier, access to that host is not
899   implied by the mere presence of its name or address. The host might or might
900   not exist and, even when it does exist, might or might not be running an
901   HTTP server or listening to the indicated port. The "http" URI scheme
902   makes use of the delegated nature of Internet names and addresses to
903   establish a naming authority (whatever entity has the ability to place
904   an HTTP server at that Internet name or address) and allows that
905   authority to determine which names are valid and how they might be used.
908   When an "http" URI is used within a context that calls for access to the
909   indicated resource, a client &MAY; attempt access by resolving
910   the host to an IP address, establishing a TCP connection to that address
911   on the indicated port, and sending an HTTP request message
912   (<xref target="http.message"/>) containing the URI's identifying data
913   (<xref target="message.routing"/>) to the server.
914   If the server responds to that request with a non-interim HTTP response
915   message, as described in &status-codes;, then that response
916   is considered an authoritative answer to the client's request.
919   Although HTTP is independent of the transport protocol, the "http"
920   scheme is specific to TCP-based services because the name delegation
921   process depends on TCP for establishing authority.
922   An HTTP service based on some other underlying connection protocol
923   would presumably be identified using a different URI scheme, just as
924   the "https" scheme (below) is used for resources that require an
925   end-to-end secured connection. Other protocols might also be used to
926   provide access to "http" identified resources &mdash; it is only the
927   authoritative interface that is specific to TCP.
930   The URI generic syntax for authority also includes a deprecated
931   userinfo subcomponent (<xref target="RFC3986" x:fmt="," x:sec="3.2.1"/>)
932   for including user authentication information in the URI.  Some
933   implementations make use of the userinfo component for internal
934   configuration of authentication information, such as within command
935   invocation options, configuration files, or bookmark lists, even
936   though such usage might expose a user identifier or password.
937   Senders &MUST-NOT; generate the userinfo subcomponent (and its "@"
938   delimiter) when an "http" URI reference is generated within a message as a
939   request target or header field value.
940   Recipients of an "http" URI reference &SHOULD; parse for userinfo and
941   treat its presence as an error, since it is likely being used to obscure
942   the authority for the sake of phishing attacks.
946<section title="https URI scheme" anchor="https.uri">
947   <x:anchor-alias value="https-URI"/>
948   <iref item="https URI scheme"/>
949   <iref item="URI scheme" subitem="https"/>
951   The "https" URI scheme is hereby defined for the purpose of minting
952   identifiers according to their association with the hierarchical
953   namespace governed by a potential HTTP origin server listening to a
954   given TCP port for TLS-secured connections
955   (<xref target="RFC0793"/>, <xref target="RFC5246"/>).
958   All of the requirements listed above for the "http" scheme are also
959   requirements for the "https" scheme, except that a default TCP port
960   of 443 is assumed if the port subcomponent is empty or not given,
961   and the user agent &MUST; ensure that its connection to the origin
962   server is secured through the use of strong encryption, end-to-end,
963   prior to sending the first HTTP request.
965<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="https-URI"><!--terminal production--></iref>
966  <x:ref>https-URI</x:ref> = "https:" "//" <x:ref>authority</x:ref> <x:ref>path-abempty</x:ref> [ "?" <x:ref>query</x:ref> ]
967              [ "#" <x:ref>fragment</x:ref> ]
970   Note that the "https" URI scheme depends on both TLS and TCP for
971   establishing authority.
972   Resources made available via the "https" scheme have no shared
973   identity with the "http" scheme even if their resource identifiers
974   indicate the same authority (the same host listening to the same
975   TCP port).  They are distinct name spaces and are considered to be
976   distinct origin servers.  However, an extension to HTTP that is
977   defined to apply to entire host domains, such as the Cookie protocol
978   <xref target="RFC6265"/>, can allow information
979   set by one service to impact communication with other services
980   within a matching group of host domains.
983   The process for authoritative access to an "https" identified
984   resource is defined in <xref target="RFC2818"/>.
988<section title="http and https URI Normalization and Comparison" anchor="uri.comparison">
990   Since the "http" and "https" schemes conform to the URI generic syntax,
991   such URIs are normalized and compared according to the algorithm defined
992   in <xref target="RFC3986" x:fmt="," x:sec="6"/>, using the defaults
993   described above for each scheme.
996   If the port is equal to the default port for a scheme, the normal form is
997   to omit the port subcomponent. When not being used in absolute form as the
998   request target of an OPTIONS request, an empty path component is equivalent
999   to an absolute path of "/", so the normal form is to provide a path of "/"
1000   instead. The scheme and host are case-insensitive and normally provided in
1001   lowercase; all other components are compared in a case-sensitive manner.
1002   Characters other than those in the "reserved" set are equivalent to their
1003   percent-encoded octets (see <xref target="RFC3986" x:fmt=","
1004   x:sec="2.1"/>): the normal form is to not encode them.
1007   For example, the following three URIs are equivalent:
1009<figure><artwork type="example">
1018<section title="Message Format" anchor="http.message">
1019<x:anchor-alias value="generic-message"/>
1020<x:anchor-alias value="message.types"/>
1021<x:anchor-alias value="HTTP-message"/>
1022<x:anchor-alias value="start-line"/>
1023<iref item="header section"/>
1024<iref item="headers"/>
1025<iref item="header field"/>
1027   All HTTP/1.1 messages consist of a start-line followed by a sequence of
1028   octets in a format similar to the Internet Message Format
1029   <xref target="RFC5322"/>: zero or more header fields (collectively
1030   referred to as the "headers" or the "header section"), an empty line
1031   indicating the end of the header section, and an optional message body.
1033<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="HTTP-message"><!--terminal production--></iref>
1034  <x:ref>HTTP-message</x:ref>   = <x:ref>start-line</x:ref>
1035                   *( <x:ref>header-field</x:ref> <x:ref>CRLF</x:ref> )
1036                   <x:ref>CRLF</x:ref>
1037                   [ <x:ref>message-body</x:ref> ]
1040   The normal procedure for parsing an HTTP message is to read the
1041   start-line into a structure, read each header field into a hash
1042   table by field name until the empty line, and then use the parsed
1043   data to determine if a message body is expected.  If a message body
1044   has been indicated, then it is read as a stream until an amount
1045   of octets equal to the message body length is read or the connection
1046   is closed.
1049   Recipients &MUST; parse an HTTP message as a sequence of octets in an
1050   encoding that is a superset of US-ASCII <xref target="USASCII"/>.
1051   Parsing an HTTP message as a stream of Unicode characters, without regard
1052   for the specific encoding, creates security vulnerabilities due to the
1053   varying ways that string processing libraries handle invalid multibyte
1054   character sequences that contain the octet LF (%x0A).  String-based
1055   parsers can only be safely used within protocol elements after the element
1056   has been extracted from the message, such as within a header field-value
1057   after message parsing has delineated the individual fields.
1060   An HTTP message can be parsed as a stream for incremental processing or
1061   forwarding downstream.  However, recipients cannot rely on incremental
1062   delivery of partial messages, since some implementations will buffer or
1063   delay message forwarding for the sake of network efficiency, security
1064   checks, or payload transformations.
1067   A sender &MUST-NOT; send whitespace between the start-line and
1068   the first header field.
1069   A recipient that receives whitespace between the start-line and
1070   the first header field &MUST; either reject the message as invalid or
1071   consume each whitespace-preceded line without further processing of it
1072   (i.e., ignore the entire line, along with any subsequent lines preceded
1073   by whitespace, until a properly formed header field is received or the
1074   header block is terminated).
1077   The presence of such whitespace in a request
1078   might be an attempt to trick a server into ignoring that field or
1079   processing the line after it as a new request, either of which might
1080   result in a security vulnerability if other implementations within
1081   the request chain interpret the same message differently.
1082   Likewise, the presence of such whitespace in a response might be
1083   ignored by some clients or cause others to cease parsing.
1086<section title="Start Line" anchor="start.line">
1087  <x:anchor-alias value="Start-Line"/>
1089   An HTTP message can either be a request from client to server or a
1090   response from server to client.  Syntactically, the two types of message
1091   differ only in the start-line, which is either a request-line (for requests)
1092   or a status-line (for responses), and in the algorithm for determining
1093   the length of the message body (<xref target="message.body"/>).
1096   In theory, a client could receive requests and a server could receive
1097   responses, distinguishing them by their different start-line formats,
1098   but in practice servers are implemented to only expect a request
1099   (a response is interpreted as an unknown or invalid request method)
1100   and clients are implemented to only expect a response.
1102<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="start-line"/>
1103  <x:ref>start-line</x:ref>     = <x:ref>request-line</x:ref> / <x:ref>status-line</x:ref>
1106<section title="Request Line" anchor="request.line">
1107  <x:anchor-alias value="Request"/>
1108  <x:anchor-alias value="request-line"/>
1110   A request-line begins with a method token, followed by a single
1111   space (SP), the request-target, another single space (SP), the
1112   protocol version, and ending with CRLF.
1114<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="request-line"/>
1115  <x:ref>request-line</x:ref>   = <x:ref>method</x:ref> <x:ref>SP</x:ref> <x:ref>request-target</x:ref> <x:ref>SP</x:ref> <x:ref>HTTP-version</x:ref> <x:ref>CRLF</x:ref>
1117<iref primary="true" item="method"/>
1118<t anchor="method">
1119   The method token indicates the request method to be performed on the
1120   target resource. The request method is case-sensitive.
1122<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="method"/>
1123  <x:ref>method</x:ref>         = <x:ref>token</x:ref>
1126   The methods defined by this specification can be found in
1127   &methods;, along with information regarding the HTTP method registry
1128   and considerations for defining new methods.
1130<iref item="request-target"/>
1132   The request-target identifies the target resource upon which to apply
1133   the request, as defined in <xref target="request-target"/>.
1136   Recipients typically parse the request-line into its component parts by
1137   splitting on whitespace (see <xref target="message.robustness"/>), since
1138   no whitespace is allowed in the three components.
1139   Unfortunately, some user agents fail to properly encode or exclude
1140   whitespace found in hypertext references, resulting in those disallowed
1141   characters being sent in a request-target.
1144   Recipients of an invalid request-line &SHOULD; respond with either a
1145   <x:ref>400 (Bad Request)</x:ref> error or a <x:ref>301 (Moved Permanently)</x:ref>
1146   redirect with the request-target properly encoded.  Recipients &SHOULD-NOT;
1147   attempt to autocorrect and then process the request without a redirect,
1148   since the invalid request-line might be deliberately crafted to bypass
1149   security filters along the request chain.
1152   HTTP does not place a pre-defined limit on the length of a request-line.
1153   A server that receives a method longer than any that it implements
1154   &SHOULD; respond with a <x:ref>501 (Not Implemented)</x:ref> status code.
1155   A server ought to be prepared to receive URIs of unbounded length, as
1156   described in <xref target="conformance"/>, and &MUST; respond with a
1157   <x:ref>414 (URI Too Long)</x:ref> status code if the received
1158   request-target is longer than the server wishes to parse (see &status-414;).
1161   Various ad-hoc limitations on request-line length are found in practice.
1162   It is &RECOMMENDED; that all HTTP senders and recipients support, at a
1163   minimum, request-line lengths of 8000 octets.
1167<section title="Status Line" anchor="status.line">
1168  <x:anchor-alias value="response"/>
1169  <x:anchor-alias value="status-line"/>
1170  <x:anchor-alias value="status-code"/>
1171  <x:anchor-alias value="reason-phrase"/>
1173   The first line of a response message is the status-line, consisting
1174   of the protocol version, a space (SP), the status code, another space,
1175   a possibly-empty textual phrase describing the status code, and
1176   ending with CRLF.
1178<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="status-line"/>
1179  <x:ref>status-line</x:ref> = <x:ref>HTTP-version</x:ref> <x:ref>SP</x:ref> <x:ref>status-code</x:ref> <x:ref>SP</x:ref> <x:ref>reason-phrase</x:ref> <x:ref>CRLF</x:ref>
1182   The status-code element is a 3-digit integer code describing the
1183   result of the server's attempt to understand and satisfy the client's
1184   corresponding request. The rest of the response message is to be
1185   interpreted in light of the semantics defined for that status code.
1186   See &status-codes; for information about the semantics of status codes,
1187   including the classes of status code (indicated by the first digit),
1188   the status codes defined by this specification, considerations for the
1189   definition of new status codes, and the IANA registry.
1191<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="status-code"/>
1192  <x:ref>status-code</x:ref>    = 3<x:ref>DIGIT</x:ref>
1195   The reason-phrase element exists for the sole purpose of providing a
1196   textual description associated with the numeric status code, mostly
1197   out of deference to earlier Internet application protocols that were more
1198   frequently used with interactive text clients. A client &SHOULD; ignore
1199   the reason-phrase content.
1201<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="reason-phrase"/>
1202  <x:ref>reason-phrase</x:ref>  = *( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1207<section title="Header Fields" anchor="header.fields">
1208  <x:anchor-alias value="header-field"/>
1209  <x:anchor-alias value="field-content"/>
1210  <x:anchor-alias value="field-name"/>
1211  <x:anchor-alias value="field-value"/>
1212  <x:anchor-alias value="obs-fold"/>
1214   Each HTTP header field consists of a case-insensitive field name
1215   followed by a colon (":"), optional leading whitespace, the field value,
1216   and optional trailing whitespace.
1218<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="header-field"/><iref primary="true" item="Grammar" subitem="field-name"/><iref primary="true" item="Grammar" subitem="field-value"/><iref primary="true" item="Grammar" subitem="field-content"/><iref primary="true" item="Grammar" subitem="obs-fold"/>
1219  <x:ref>header-field</x:ref>   = <x:ref>field-name</x:ref> ":" <x:ref>OWS</x:ref> <x:ref>field-value</x:ref> <x:ref>OWS</x:ref>
1220  <x:ref>field-name</x:ref>     = <x:ref>token</x:ref>
1221  <x:ref>field-value</x:ref>    = *( <x:ref>field-content</x:ref> / <x:ref>obs-fold</x:ref> )
1222  <x:ref>field-content</x:ref>  = *( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1223  <x:ref>obs-fold</x:ref>       = <x:ref>CRLF</x:ref> ( <x:ref>SP</x:ref> / <x:ref>HTAB</x:ref> )
1224                 ; obsolete line folding
1225                 ; see <xref target="field.parsing"/>
1228   The field-name token labels the corresponding field-value as having the
1229   semantics defined by that header field.  For example, the <x:ref>Date</x:ref>
1230   header field is defined in &header-date; as containing the origination
1231   timestamp for the message in which it appears.
1234<section title="Field Extensibility" anchor="field.extensibility">
1236   Header fields are fully extensible: there is no limit on the
1237   introduction of new field names, each presumably defining new semantics,
1238   nor on the number of header fields used in a given message.  Existing
1239   fields are defined in each part of this specification and in many other
1240   specifications outside the core standard.
1243   New header fields can be defined such that, when they are understood by a
1244   recipient, they might override or enhance the interpretation of previously
1245   defined header fields, define preconditions on request evaluation, or
1246   refine the meaning of responses.
1249   A proxy &MUST; forward unrecognized header fields unless the
1250   field-name is listed in the <x:ref>Connection</x:ref> header field
1251   (<xref target="header.connection"/>) or the proxy is specifically
1252   configured to block, or otherwise transform, such fields.
1253   Other recipients &SHOULD; ignore unrecognized header fields.
1254   These requirements allow HTTP's functionality to be enhanced without
1255   requiring prior update of deployed intermediaries.
1258   All defined header fields ought to be registered with IANA in the
1259   Message Header Field Registry, as described in &iana-header-registry;.
1263<section title="Field Order" anchor="field.order">
1265   The order in which header fields with differing field names are
1266   received is not significant. However, it is "good practice" to send
1267   header fields that contain control data first, such as <x:ref>Host</x:ref>
1268   on requests and <x:ref>Date</x:ref> on responses, so that implementations
1269   can decide when not to handle a message as early as possible.  A server
1270   &MUST; wait until the entire header section is received before interpreting
1271   a request message, since later header fields might include conditionals,
1272   authentication credentials, or deliberately misleading duplicate
1273   header fields that would impact request processing.
1276   A sender &MUST-NOT; generate multiple header fields with the same field
1277   name in a message unless either the entire field value for that
1278   header field is defined as a comma-separated list [i.e., #(values)]
1279   or the header field is a well-known exception (as noted below).
1282   A recipient &MAY; combine multiple header fields with the same field name
1283   into one "field-name: field-value" pair, without changing the semantics of
1284   the message, by appending each subsequent field value to the combined
1285   field value in order, separated by a comma. The order in which
1286   header fields with the same field name are received is therefore
1287   significant to the interpretation of the combined field value;
1288   a proxy &MUST-NOT; change the order of these field values when
1289   forwarding a message.
1292  <t>
1293   &Note; In practice, the "Set-Cookie" header field (<xref target="RFC6265"/>)
1294   often appears multiple times in a response message and does not use the
1295   list syntax, violating the above requirements on multiple header fields
1296   with the same name. Since it cannot be combined into a single field-value,
1297   recipients ought to handle "Set-Cookie" as a special case while processing
1298   header fields. (See Appendix A.2.3 of <xref target="Kri2001"/> for details.)
1299  </t>
1303<section title="Whitespace" anchor="whitespace">
1304<t anchor="rule.LWS">
1305   This specification uses three rules to denote the use of linear
1306   whitespace: OWS (optional whitespace), RWS (required whitespace), and
1307   BWS ("bad" whitespace).
1309<t anchor="rule.OWS">
1310   The OWS rule is used where zero or more linear whitespace octets might
1311   appear. For protocol elements where optional whitespace is preferred to
1312   improve readability, a sender &SHOULD; generate the optional whitespace
1313   as a single SP; otherwise, a sender &SHOULD-NOT; generate optional
1314   whitespace except as needed to white-out invalid or unwanted protocol
1315   elements during in-place message filtering.
1317<t anchor="rule.RWS">
1318   The RWS rule is used when at least one linear whitespace octet is required
1319   to separate field tokens. A sender &SHOULD; generate RWS as a single SP.
1321<t anchor="rule.BWS">
1322   The BWS rule is used where the grammar allows optional whitespace only for
1323   historical reasons. A sender &MUST-NOT; generate BWS in messages.
1324   A recipient &MUST; parse for such bad whitespace and remove it before
1325   interpreting the protocol element.
1327<t anchor="rule.whitespace">
1328  <x:anchor-alias value="BWS"/>
1329  <x:anchor-alias value="OWS"/>
1330  <x:anchor-alias value="RWS"/>
1332<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="OWS"/><iref primary="true" item="Grammar" subitem="RWS"/><iref primary="true" item="Grammar" subitem="BWS"/>
1333  <x:ref>OWS</x:ref>            = *( <x:ref>SP</x:ref> / <x:ref>HTAB</x:ref> )
1334                 ; optional whitespace
1335  <x:ref>RWS</x:ref>            = 1*( <x:ref>SP</x:ref> / <x:ref>HTAB</x:ref> )
1336                 ; required whitespace
1337  <x:ref>BWS</x:ref>            = <x:ref>OWS</x:ref>
1338                 ; "bad" whitespace
1342<section title="Field Parsing" anchor="field.parsing">
1344   No whitespace is allowed between the header field-name and colon.
1345   In the past, differences in the handling of such whitespace have led to
1346   security vulnerabilities in request routing and response handling.
1347   A server &MUST; reject any received request message that contains
1348   whitespace between a header field-name and colon with a response code of
1349   <x:ref>400 (Bad Request)</x:ref>. A proxy &MUST; remove any such whitespace
1350   from a response message before forwarding the message downstream.
1353   A field value is preceded by optional whitespace (OWS); a single SP is
1354   preferred. The field value does not include any leading or trailing white
1355   space: OWS occurring before the first non-whitespace octet of the field
1356   value or after the last non-whitespace octet of the field value ought to be
1357   excluded by parsers when extracting the field value from a header field.
1360   A recipient of field-content containing multiple sequential octets of
1361   optional (OWS) or required (RWS) whitespace &SHOULD; either replace the
1362   sequence with a single SP or transform any non-SP octets in the sequence to
1363   SP octets before interpreting the field value or forwarding the message
1364   downstream.
1367   Historically, HTTP header field values could be extended over multiple
1368   lines by preceding each extra line with at least one space or horizontal
1369   tab (obs-fold). This specification deprecates such line folding except
1370   within the message/http media type
1371   (<xref target=""/>).
1372   Senders &MUST-NOT; generate messages that include line folding
1373   (i.e., that contain any field-value that contains a match to the
1374   <x:ref>obs-fold</x:ref> rule) unless the message is intended for packaging
1375   within the message/http media type.
1378   A server that receives an <x:ref>obs-fold</x:ref> in a request message that
1379   is not within a message/http container &MUST; either reject the message by
1380   sending a <x:ref>400 (Bad Request)</x:ref>, preferably with a
1381   representation explaining that obsolete line folding is unacceptable, or
1382   replace each received <x:ref>obs-fold</x:ref> with one or more
1383   <x:ref>SP</x:ref> octets prior to interpreting the field value or
1384   forwarding the message downstream.
1387   A proxy or gateway that receives an <x:ref>obs-fold</x:ref> in a response
1388   message that is not within a message/http container &MUST; either discard
1389   the message and replace it with a <x:ref>502 (Bad Gateway)</x:ref>
1390   response, preferably with a representation explaining that unacceptable
1391   line folding was received, or replace each received <x:ref>obs-fold</x:ref>
1392   with one or more <x:ref>SP</x:ref> octets prior to interpreting the field
1393   value or forwarding the message downstream.
1396   A user agent that receives an <x:ref>obs-fold</x:ref> in a response message
1397   that is not within a message/http container &MUST; replace each received
1398   <x:ref>obs-fold</x:ref> with one or more <x:ref>SP</x:ref> octets prior to
1399   interpreting the field value.
1402   Historically, HTTP has allowed field content with text in the ISO-8859-1
1403   <xref target="ISO-8859-1"/> charset, supporting other charsets only
1404   through use of <xref target="RFC2047"/> encoding.
1405   In practice, most HTTP header field values use only a subset of the
1406   US-ASCII charset <xref target="USASCII"/>. Newly defined
1407   header fields &SHOULD; limit their field values to US-ASCII octets.
1408   Recipients &SHOULD; treat other octets in field content (obs-text) as
1409   opaque data.
1413<section title="Field Limits" anchor="field.limits">
1415   HTTP does not place a pre-defined limit on the length of each header field
1416   or on the length of the header block as a whole, as described in
1417   <xref target="conformance"/>. Various ad-hoc limitations on individual
1418   header field length are found in practice, often depending on the specific
1419   field semantics.
1422   A server ought to be prepared to receive request header fields of unbounded
1423   length and &MUST; respond with an appropriate
1424   <x:ref>4xx (Client Error)</x:ref> status code if the received header
1425   field(s) are larger than the server wishes to process.
1428   A client ought to be prepared to receive response header fields of
1429   unbounded length.
1430   A client &MAY; discard or truncate received header fields that are larger
1431   than the client wishes to process if the field semantics are such that the
1432   dropped value(s) can be safely ignored without changing the
1433   message framing or response semantics.
1437<section title="Field value components" anchor="field.components">
1438<t anchor="rule.token.separators">
1439  <x:anchor-alias value="tchar"/>
1440  <x:anchor-alias value="token"/>
1441  <x:anchor-alias value="special"/>
1442  <x:anchor-alias value="word"/>
1443   Many HTTP header field values consist of words (token or quoted-string)
1444   separated by whitespace or special characters.
1446<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="word"/><iref primary="true" item="Grammar" subitem="token"/><iref primary="true" item="Grammar" subitem="tchar"/><iref primary="true" item="Grammar" subitem="special"><!--unused production--></iref>
1447  <x:ref>word</x:ref>           = <x:ref>token</x:ref> / <x:ref>quoted-string</x:ref>
1449  <x:ref>token</x:ref>          = 1*<x:ref>tchar</x:ref>
1451  IMPORTANT: when editing "tchar" make sure that "special" is updated accordingly!!!
1452 -->
1453  <x:ref>tchar</x:ref>          = "!" / "#" / "$" / "%" / "&amp;" / "'" / "*"
1454                 / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"
1455                 / <x:ref>DIGIT</x:ref> / <x:ref>ALPHA</x:ref>
1456                 ; any <x:ref>VCHAR</x:ref>, except <x:ref>special</x:ref>
1458  <x:ref>special</x:ref>        = "(" / ")" / "&lt;" / ">" / "@" / ","
1459                 / ";" / ":" / "\" / DQUOTE / "/" / "["
1460                 / "]" / "?" / "=" / "{" / "}"
1462<t anchor="rule.quoted-string">
1463  <x:anchor-alias value="quoted-string"/>
1464  <x:anchor-alias value="qdtext"/>
1465  <x:anchor-alias value="obs-text"/>
1466   A string of text is parsed as a single word if it is quoted using
1467   double-quote marks.
1469<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-string"/><iref primary="true" item="Grammar" subitem="qdtext"/><iref primary="true" item="Grammar" subitem="obs-text"/>
1470  <x:ref>quoted-string</x:ref>  = <x:ref>DQUOTE</x:ref> *( <x:ref>qdtext</x:ref> / <x:ref>quoted-pair</x:ref> ) <x:ref>DQUOTE</x:ref>
1471  <x:ref>qdtext</x:ref>         = <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> /%x21 / %x23-5B / %x5D-7E / <x:ref>obs-text</x:ref>
1472  <x:ref>obs-text</x:ref>       = %x80-FF
1474<t anchor="rule.quoted-pair">
1475  <x:anchor-alias value="quoted-pair"/>
1476   The backslash octet ("\") can be used as a single-octet
1477   quoting mechanism within quoted-string constructs:
1479<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-pair"/>
1480  <x:ref>quoted-pair</x:ref>    = "\" ( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1483   Recipients that process the value of a quoted-string &MUST; handle a
1484   quoted-pair as if it were replaced by the octet following the backslash.
1487   Senders &SHOULD-NOT; generate a quoted-pair in a quoted-string except where
1488   necessary to quote DQUOTE and backslash octets occurring within that string.
1490<t anchor="rule.comment">
1491  <x:anchor-alias value="comment"/>
1492  <x:anchor-alias value="ctext"/>
1493   Comments can be included in some HTTP header fields by surrounding
1494   the comment text with parentheses. Comments are only allowed in
1495   fields containing "comment" as part of their field value definition.
1497<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="comment"/><iref primary="true" item="Grammar" subitem="ctext"/>
1498  <x:ref>comment</x:ref>        = "(" *( <x:ref>ctext</x:ref> / <x:ref>quoted-cpair</x:ref> / <x:ref>comment</x:ref> ) ")"
1499  <x:ref>ctext</x:ref>          = <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / %x21-27 / %x2A-5B / %x5D-7E / <x:ref>obs-text</x:ref>
1501<t anchor="rule.quoted-cpair">
1502  <x:anchor-alias value="quoted-cpair"/>
1503   The backslash octet ("\") can be used as a single-octet
1504   quoting mechanism within comment constructs:
1506<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-cpair"/>
1507  <x:ref>quoted-cpair</x:ref>   = "\" ( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1510   Senders &SHOULD-NOT; escape octets in comments that do not require escaping
1511   (i.e., other than the backslash octet "\" and the parentheses "(" and ")").
1517<section title="Message Body" anchor="message.body">
1518  <x:anchor-alias value="message-body"/>
1520   The message body (if any) of an HTTP message is used to carry the
1521   payload body of that request or response.  The message body is
1522   identical to the payload body unless a transfer coding has been
1523   applied, as described in <xref target="header.transfer-encoding"/>.
1525<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="message-body"/>
1526  <x:ref>message-body</x:ref> = *OCTET
1529   The rules for when a message body is allowed in a message differ for
1530   requests and responses.
1533   The presence of a message body in a request is signaled by a
1534   <x:ref>Content-Length</x:ref> or <x:ref>Transfer-Encoding</x:ref> header
1535   field. Request message framing is independent of method semantics,
1536   even if the method does not define any use for a message body.
1539   The presence of a message body in a response depends on both
1540   the request method to which it is responding and the response
1541   status code (<xref target="status.line"/>).
1542   Responses to the HEAD request method never include a message body
1543   because the associated response header fields (e.g.,
1544   <x:ref>Transfer-Encoding</x:ref>, <x:ref>Content-Length</x:ref>, etc.),
1545   if present, indicate only what their values would have been if the request
1546   method had been GET (&HEAD;).
1547   <x:ref>2xx (Successful)</x:ref> responses to CONNECT switch to tunnel
1548   mode instead of having a message body (&CONNECT;).
1549   All <x:ref>1xx (Informational)</x:ref>, <x:ref>204 (No Content)</x:ref>, and
1550   <x:ref>304 (Not Modified)</x:ref> responses do not include a message body.
1551   All other responses do include a message body, although the body
1552   might be of zero length.
1555<section title="Transfer-Encoding" anchor="header.transfer-encoding">
1556  <iref primary="true" item="Transfer-Encoding header field" x:for-anchor=""/>
1557  <iref item="chunked (Coding Format)"/>
1558  <x:anchor-alias value="Transfer-Encoding"/>
1560   The Transfer-Encoding header field lists the transfer coding names
1561   corresponding to the sequence of transfer codings that have been
1562   (or will be) applied to the payload body in order to form the message body.
1563   Transfer codings are defined in <xref target="transfer.codings"/>.
1565<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Transfer-Encoding"/>
1566  <x:ref>Transfer-Encoding</x:ref> = 1#<x:ref>transfer-coding</x:ref>
1569   Transfer-Encoding is analogous to the Content-Transfer-Encoding field of
1570   MIME, which was designed to enable safe transport of binary data over a
1571   7-bit transport service (<xref target="RFC2045" x:fmt="," x:sec="6"/>).
1572   However, safe transport has a different focus for an 8bit-clean transfer
1573   protocol. In HTTP's case, Transfer-Encoding is primarily intended to
1574   accurately delimit a dynamically generated payload and to distinguish
1575   payload encodings that are only applied for transport efficiency or
1576   security from those that are characteristics of the selected resource.
1579   All HTTP/1.1 recipients &MUST; be able to parse the chunked transfer coding
1580   (<xref target="chunked.encoding"/>) because it plays a crucial role in
1581   framing messages when the payload body size is not known in advance.
1582   A sender &MUST-NOT; apply chunked more than once to a message body
1583   (i.e., chunking an already chunked message is not allowed).
1584   If any transfer coding other than chunked is applied to a request payload
1585   body, the sender &MUST; apply chunked as the final transfer coding to
1586   ensure that the message is properly framed.
1587   If any transfer coding other than chunked is applied to a response payload
1588   body, the sender &MUST; either apply chunked as the final transfer coding
1589   or terminate the message by closing the connection.
1592   For example,
1593</preamble><artwork type="example">
1594  Transfer-Encoding: gzip, chunked
1596   indicates that the payload body has been compressed using the gzip
1597   coding and then chunked using the chunked coding while forming the
1598   message body.
1601   Unlike <x:ref>Content-Encoding</x:ref> (&content-codings;),
1602   Transfer-Encoding is a property of the message, not of the representation, and
1603   any recipient along the request/response chain &MAY; decode the received
1604   transfer coding(s) or apply additional transfer coding(s) to the message
1605   body, assuming that corresponding changes are made to the Transfer-Encoding
1606   field-value. Additional information about the encoding parameters &MAY; be
1607   provided by other header fields not defined by this specification.
1610   Transfer-Encoding &MAY; be sent in a response to a HEAD request or in a
1611   <x:ref>304 (Not Modified)</x:ref> response (&status-304;) to a GET request,
1612   neither of which includes a message body,
1613   to indicate that the origin server would have applied a transfer coding
1614   to the message body if the request had been an unconditional GET.
1615   This indication is not required, however, because any recipient on
1616   the response chain (including the origin server) can remove transfer
1617   codings when they are not needed.
1620   Transfer-Encoding was added in HTTP/1.1.  It is generally assumed that
1621   implementations advertising only HTTP/1.0 support will not understand
1622   how to process a transfer-encoded payload.
1623   A client &MUST-NOT; send a request containing Transfer-Encoding unless it
1624   knows the server will handle HTTP/1.1 (or later) requests; such knowledge
1625   might be in the form of specific user configuration or by remembering the
1626   version of a prior received response.
1627   A server &MUST-NOT; send a response containing Transfer-Encoding unless
1628   the corresponding request indicates HTTP/1.1 (or later).
1631   A server that receives a request message with a transfer coding it does
1632   not understand &SHOULD; respond with <x:ref>501 (Not Implemented)</x:ref>.
1636<section title="Content-Length" anchor="header.content-length">
1637  <iref primary="true" item="Content-Length header field" x:for-anchor=""/>
1638  <x:anchor-alias value="Content-Length"/>
1640   When a message does not have a <x:ref>Transfer-Encoding</x:ref> header
1641   field, a Content-Length header field can provide the anticipated size,
1642   as a decimal number of octets, for a potential payload body.
1643   For messages that do include a payload body, the Content-Length field-value
1644   provides the framing information necessary for determining where the body
1645   (and message) ends.  For messages that do not include a payload body, the
1646   Content-Length indicates the size of the selected representation
1647   (&representation;).
1649<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Content-Length"/>
1650  <x:ref>Content-Length</x:ref> = 1*<x:ref>DIGIT</x:ref>
1653   An example is
1655<figure><artwork type="example">
1656  Content-Length: 3495
1659   A sender &MUST-NOT; send a Content-Length header field in any message that
1660   contains a <x:ref>Transfer-Encoding</x:ref> header field.
1663   A user agent &SHOULD; send a Content-Length in a request message when no
1664   <x:ref>Transfer-Encoding</x:ref> is sent and the request method defines
1665   a meaning for an enclosed payload body. For example, a Content-Length
1666   header field is normally sent in a POST request even when the value is
1667   0 (indicating an empty payload body).  A user agent &SHOULD-NOT; send a
1668   Content-Length header field when the request message does not contain a
1669   payload body and the method semantics do not anticipate such a body.
1672   A server &MAY; send a Content-Length header field in a response to a HEAD
1673   request (&HEAD;); a server &MUST-NOT; send Content-Length in such a
1674   response unless its field-value equals the decimal number of octets that
1675   would have been sent in the payload body of a response if the same
1676   request had used the GET method.
1679   A server &MAY; send a Content-Length header field in a
1680   <x:ref>304 (Not Modified)</x:ref> response to a conditional GET request
1681   (&status-304;); a server &MUST-NOT; send Content-Length in such a
1682   response unless its field-value equals the decimal number of octets that
1683   would have been sent in the payload body of a <x:ref>200 (OK)</x:ref>
1684   response to the same request.
1687   A server &MUST-NOT; send a Content-Length header field in any response
1688   with a status code of
1689   <x:ref>1xx (Informational)</x:ref> or <x:ref>204 (No Content)</x:ref>.
1690   A server &SHOULD-NOT; send a Content-Length header field in any
1691   <x:ref>2xx (Successful)</x:ref> response to a CONNECT request (&CONNECT;).
1694   Aside from the cases defined above, in the absence of Transfer-Encoding,
1695   an origin server &SHOULD; send a Content-Length header field when the
1696   payload body size is known prior to sending the complete header block.
1697   This will allow downstream recipients to measure transfer progress,
1698   know when a received message is complete, and potentially reuse the
1699   connection for additional requests.
1702   Any Content-Length field value greater than or equal to zero is valid.
1703   Since there is no predefined limit to the length of a payload,
1704   recipients &SHOULD; anticipate potentially large decimal numerals and
1705   prevent parsing errors due to integer conversion overflows
1706   (<xref target="attack.protocol.element.size.overflows"/>).
1709   If a message is received that has multiple Content-Length header fields
1710   with field-values consisting of the same decimal value, or a single
1711   Content-Length header field with a field value containing a list of
1712   identical decimal values (e.g., "Content-Length: 42, 42"), indicating that
1713   duplicate Content-Length header fields have been generated or combined by an
1714   upstream message processor, then the recipient &MUST; either reject the
1715   message as invalid or replace the duplicated field-values with a single
1716   valid Content-Length field containing that decimal value prior to
1717   determining the message body length or forwarding the message.
1720  <t>
1721   &Note; HTTP's use of Content-Length for message framing differs
1722   significantly from the same field's use in MIME, where it is an optional
1723   field used only within the "message/external-body" media-type.
1724  </t>
1728<section title="Message Body Length" anchor="message.body.length">
1729  <iref item="chunked (Coding Format)"/>
1731   The length of a message body is determined by one of the following
1732   (in order of precedence):
1735  <list style="numbers">
1736    <x:lt><t>
1737     Any response to a HEAD request and any response with a
1738     <x:ref>1xx (Informational)</x:ref>, <x:ref>204 (No Content)</x:ref>, or
1739     <x:ref>304 (Not Modified)</x:ref> status code is always
1740     terminated by the first empty line after the header fields, regardless of
1741     the header fields present in the message, and thus cannot contain a
1742     message body.
1743    </t></x:lt>
1744    <x:lt><t>
1745     Any <x:ref>2xx (Successful)</x:ref> response to a CONNECT request implies that the
1746     connection will become a tunnel immediately after the empty line that
1747     concludes the header fields.  A client &MUST; ignore any
1748     <x:ref>Content-Length</x:ref> or <x:ref>Transfer-Encoding</x:ref> header
1749     fields received in such a message.
1750    </t></x:lt>
1751    <x:lt><t>
1752     If a <x:ref>Transfer-Encoding</x:ref> header field is present
1753     and the chunked transfer coding (<xref target="chunked.encoding"/>)
1754     is the final encoding, the message body length is determined by reading
1755     and decoding the chunked data until the transfer coding indicates the
1756     data is complete.
1757    </t>
1758    <t>
1759     If a <x:ref>Transfer-Encoding</x:ref> header field is present in a
1760     response and the chunked transfer coding is not the final encoding, the
1761     message body length is determined by reading the connection until it is
1762     closed by the server.
1763     If a <x:ref>Transfer-Encoding</x:ref> header field is present in a request and the
1764     chunked transfer coding is not the final encoding, the message body
1765     length cannot be determined reliably; the server &MUST; respond with
1766     the <x:ref>400 (Bad Request)</x:ref> status code and then close the connection.
1767    </t>
1768    <t>
1769     If a message is received with both a <x:ref>Transfer-Encoding</x:ref>
1770     and a <x:ref>Content-Length</x:ref> header field, the Transfer-Encoding
1771     overrides the Content-Length. Such a message might indicate an attempt
1772     to perform request or response smuggling (bypass of security-related
1773     checks on message routing or content) and thus ought to be handled as
1774     an error.  A sender &MUST; remove the received Content-Length field
1775     prior to forwarding such a message downstream.
1776    </t></x:lt>
1777    <x:lt><t>
1778     If a message is received without <x:ref>Transfer-Encoding</x:ref> and with
1779     either multiple <x:ref>Content-Length</x:ref> header fields having
1780     differing field-values or a single Content-Length header field having an
1781     invalid value, then the message framing is invalid and
1782     the recipient &MUST; treat it as an unrecoverable error to prevent
1783     request or response smuggling.
1784     If this is a request message, the server &MUST; respond with
1785     a <x:ref>400 (Bad Request)</x:ref> status code and then close the connection.
1786     If this is a response message received by a proxy,
1787     the proxy &MUST; close the connection to the server, discard the received
1788     response, and send a <x:ref>502 (Bad Gateway)</x:ref> response to the
1789     client.
1790     If this is a response message received by a user agent,
1791     the user agent &MUST; close the connection to the server and discard the
1792     received response.
1793    </t></x:lt>
1794    <x:lt><t>
1795     If a valid <x:ref>Content-Length</x:ref> header field is present without
1796     <x:ref>Transfer-Encoding</x:ref>, its decimal value defines the
1797     expected message body length in octets.
1798     If the sender closes the connection or the recipient times out before the
1799     indicated number of octets are received, the recipient &MUST; consider
1800     the message to be incomplete and close the connection.
1801    </t></x:lt>
1802    <x:lt><t>
1803     If this is a request message and none of the above are true, then the
1804     message body length is zero (no message body is present).
1805    </t></x:lt>
1806    <x:lt><t>
1807     Otherwise, this is a response message without a declared message body
1808     length, so the message body length is determined by the number of octets
1809     received prior to the server closing the connection.
1810    </t></x:lt>
1811  </list>
1814   Since there is no way to distinguish a successfully completed,
1815   close-delimited message from a partially-received message interrupted
1816   by network failure, a server &SHOULD; use encoding or
1817   length-delimited messages whenever possible.  The close-delimiting
1818   feature exists primarily for backwards compatibility with HTTP/1.0.
1821   A server &MAY; reject a request that contains a message body but
1822   not a <x:ref>Content-Length</x:ref> by responding with
1823   <x:ref>411 (Length Required)</x:ref>.
1826   Unless a transfer coding other than chunked has been applied,
1827   a client that sends a request containing a message body &SHOULD;
1828   use a valid <x:ref>Content-Length</x:ref> header field if the message body
1829   length is known in advance, rather than the chunked transfer coding, since some
1830   existing services respond to chunked with a <x:ref>411 (Length Required)</x:ref>
1831   status code even though they understand the chunked transfer coding.  This
1832   is typically because such services are implemented via a gateway that
1833   requires a content-length in advance of being called and the server
1834   is unable or unwilling to buffer the entire request before processing.
1837   A user agent that sends a request containing a message body &MUST; send a
1838   valid <x:ref>Content-Length</x:ref> header field if it does not know the
1839   server will handle HTTP/1.1 (or later) requests; such knowledge can be in
1840   the form of specific user configuration or by remembering the version of a
1841   prior received response.
1844   If the final response to the last request on a connection has been
1845   completely received and there remains additional data to read, a user agent
1846   &MAY; discard the remaining data or attempt to determine if that data
1847   belongs as part of the prior response body, which might be the case if the
1848   prior message's Content-Length value is incorrect. A client &MUST-NOT;
1849   process, cache, or forward such extra data as a separate response, since
1850   such behavior would be vulnerable to cache poisoning.
1855<section anchor="incomplete.messages" title="Handling Incomplete Messages">
1857   A server that receives an incomplete request message, usually due to a
1858   canceled request or a triggered time-out exception, &MAY; send an error
1859   response prior to closing the connection.
1862   A client that receives an incomplete response message, which can occur
1863   when a connection is closed prematurely or when decoding a supposedly
1864   chunked transfer coding fails, &MUST; record the message as incomplete.
1865   Cache requirements for incomplete responses are defined in
1866   &cache-incomplete;.
1869   If a response terminates in the middle of the header block (before the
1870   empty line is received) and the status code might rely on header fields to
1871   convey the full meaning of the response, then the client cannot assume
1872   that meaning has been conveyed; the client might need to repeat the
1873   request in order to determine what action to take next.
1876   A message body that uses the chunked transfer coding is
1877   incomplete if the zero-sized chunk that terminates the encoding has not
1878   been received.  A message that uses a valid <x:ref>Content-Length</x:ref> is
1879   incomplete if the size of the message body received (in octets) is less than
1880   the value given by Content-Length.  A response that has neither chunked
1881   transfer coding nor Content-Length is terminated by closure of the
1882   connection, and thus is considered complete regardless of the number of
1883   message body octets received, provided that the header block was received
1884   intact.
1888<section title="Message Parsing Robustness" anchor="message.robustness">
1890   Older HTTP/1.0 user agent implementations might send an extra CRLF
1891   after a POST request as a workaround for some early server
1892   applications that failed to read message body content that was
1893   not terminated by a line-ending. An HTTP/1.1 user agent &MUST-NOT;
1894   preface or follow a request with an extra CRLF.  If terminating
1895   the request message body with a line-ending is desired, then the
1896   user agent &MUST; count the terminating CRLF octets as part of the
1897   message body length.
1900   In the interest of robustness, servers &SHOULD; ignore at least one
1901   empty line received where a request-line is expected. In other words, if
1902   a server is reading the protocol stream at the beginning of a
1903   message and receives a CRLF first, the server &SHOULD; ignore the CRLF.
1906   Although the line terminator for the start-line and header
1907   fields is the sequence CRLF, recipients &MAY; recognize a
1908   single LF as a line terminator and ignore any preceding CR.
1911   Although the request-line and status-line grammar rules require that each
1912   of the component elements be separated by a single SP octet, recipients
1913   &MAY; instead parse on whitespace-delimited word boundaries and, aside
1914   from the CRLF terminator, treat any form of whitespace as the SP separator
1915   while ignoring preceding or trailing whitespace;
1916   such whitespace includes one or more of the following octets:
1917   SP, HTAB, VT (%x0B), FF (%x0C), or bare CR.
1920   When a server listening only for HTTP request messages, or processing
1921   what appears from the start-line to be an HTTP request message,
1922   receives a sequence of octets that does not match the HTTP-message
1923   grammar aside from the robustness exceptions listed above, the
1924   server &SHOULD; respond with a <x:ref>400 (Bad Request)</x:ref> response. 
1929<section title="Transfer Codings" anchor="transfer.codings">
1930  <x:anchor-alias value="transfer-coding"/>
1931  <x:anchor-alias value="transfer-extension"/>
1933   Transfer coding names are used to indicate an encoding
1934   transformation that has been, can be, or might need to be applied to a
1935   payload body in order to ensure "safe transport" through the network.
1936   This differs from a content coding in that the transfer coding is a
1937   property of the message rather than a property of the representation
1938   that is being transferred.
1940<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="transfer-coding"/><iref primary="true" item="Grammar" subitem="transfer-extension"/>
1941  <x:ref>transfer-coding</x:ref>    = "chunked" ; <xref target="chunked.encoding"/>
1942                     / "compress" ; <xref target="compress.coding"/>
1943                     / "deflate" ; <xref target="deflate.coding"/>
1944                     / "gzip" ; <xref target="gzip.coding"/>
1945                     / <x:ref>transfer-extension</x:ref>
1946  <x:ref>transfer-extension</x:ref> = <x:ref>token</x:ref> *( <x:ref>OWS</x:ref> ";" <x:ref>OWS</x:ref> <x:ref>transfer-parameter</x:ref> )
1948<t anchor="rule.parameter">
1949  <x:anchor-alias value="attribute"/>
1950  <x:anchor-alias value="transfer-parameter"/>
1951  <x:anchor-alias value="value"/>
1952   Parameters are in the form of attribute/value pairs.
1954<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="transfer-parameter"/><iref primary="true" item="Grammar" subitem="attribute"/><iref primary="true" item="Grammar" subitem="value"/><iref primary="true" item="Grammar" subitem="date2"/><iref primary="true" item="Grammar" subitem="date3"/>
1955  <x:ref>transfer-parameter</x:ref> = <x:ref>attribute</x:ref> <x:ref>BWS</x:ref> "=" <x:ref>BWS</x:ref> <x:ref>value</x:ref>
1956  <x:ref>attribute</x:ref>          = <x:ref>token</x:ref>
1957  <x:ref>value</x:ref>              = <x:ref>word</x:ref>
1960   All transfer-coding names are case-insensitive and ought to be registered
1961   within the HTTP Transfer Coding registry, as defined in
1962   <xref target="transfer.coding.registry"/>.
1963   They are used in the <x:ref>TE</x:ref> (<xref target="header.te"/>) and
1964   <x:ref>Transfer-Encoding</x:ref> (<xref target="header.transfer-encoding"/>)
1965   header fields.
1968<section title="Chunked Transfer Coding" anchor="chunked.encoding">
1969  <iref primary="true" item="chunked (Coding Format)"/>
1970  <x:anchor-alias value="chunk"/>
1971  <x:anchor-alias value="chunked-body"/>
1972  <x:anchor-alias value="chunk-data"/>
1973  <x:anchor-alias value="chunk-ext"/>
1974  <x:anchor-alias value="chunk-ext-name"/>
1975  <x:anchor-alias value="chunk-ext-val"/>
1976  <x:anchor-alias value="chunk-size"/>
1977  <x:anchor-alias value="last-chunk"/>
1978  <x:anchor-alias value="quoted-str-nf"/>
1979  <x:anchor-alias value="qdtext-nf"/>
1981   The chunked transfer coding modifies the body of a message in order to
1982   transfer it as a series of chunks, each with its own size indicator,
1983   followed by an &OPTIONAL; trailer containing header fields. This
1984   allows dynamically generated content to be transferred along with the
1985   information necessary for the recipient to verify that it has
1986   received the full message.
1988<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="chunked-body"><!--terminal production--></iref><iref primary="true" item="Grammar" subitem="chunk"/><iref primary="true" item="Grammar" subitem="chunk-size"/><iref primary="true" item="Grammar" subitem="last-chunk"/><iref primary="true" item="Grammar" subitem="chunk-ext"/><iref primary="true" item="Grammar" subitem="chunk-ext-name"/><iref primary="true" item="Grammar" subitem="chunk-ext-val"/><iref primary="true" item="Grammar" subitem="chunk-data"/><iref primary="false" item="Grammar" subitem="trailer-part"/><iref primary="true" item="Grammar" subitem="quoted-str-nf"/><iref primary="true" item="Grammar" subitem="qdtext-nf"/>
1989  <x:ref>chunked-body</x:ref>   = *<x:ref>chunk</x:ref>
1990                   <x:ref>last-chunk</x:ref>
1991                   <x:ref>trailer-part</x:ref>
1992                   <x:ref>CRLF</x:ref>
1994  <x:ref>chunk</x:ref>          = <x:ref>chunk-size</x:ref> [ <x:ref>chunk-ext</x:ref> ] <x:ref>CRLF</x:ref>
1995                   <x:ref>chunk-data</x:ref> <x:ref>CRLF</x:ref>
1996  <x:ref>chunk-size</x:ref>     = 1*<x:ref>HEXDIG</x:ref>
1997  <x:ref>last-chunk</x:ref>     = 1*("0") [ <x:ref>chunk-ext</x:ref> ] <x:ref>CRLF</x:ref>
1999  <x:ref>chunk-ext</x:ref>      = *( ";" <x:ref>chunk-ext-name</x:ref> [ "=" <x:ref>chunk-ext-val</x:ref> ] )
2000  <x:ref>chunk-ext-name</x:ref> = <x:ref>token</x:ref>
2001  <x:ref>chunk-ext-val</x:ref>  = <x:ref>token</x:ref> / <x:ref>quoted-str-nf</x:ref>
2002  <x:ref>chunk-data</x:ref>     = 1*<x:ref>OCTET</x:ref> ; a sequence of chunk-size octets
2004  <x:ref>quoted-str-nf</x:ref>  = <x:ref>DQUOTE</x:ref> *( <x:ref>qdtext-nf</x:ref> / <x:ref>quoted-pair</x:ref> ) <x:ref>DQUOTE</x:ref>
2005                 ; like <x:ref>quoted-string</x:ref>, but disallowing line folding
2006  <x:ref>qdtext-nf</x:ref>      = <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / %x21 / %x23-5B / %x5D-7E / <x:ref>obs-text</x:ref>
2009   Chunk extensions within the chunked transfer coding are deprecated.
2010   Senders &SHOULD-NOT; send chunk-ext.
2011   Definition of new chunk extensions is discouraged.
2014   The chunk-size field is a string of hex digits indicating the size of
2015   the chunk-data in octets. The chunked transfer coding is complete when a
2016   chunk with a chunk-size of zero is received, possibly followed by a
2017   trailer, and finally terminated by an empty line.
2020<section title="Chunked Trailer Part" anchor="chunked.trailer.part">
2021  <x:anchor-alias value="trailer-part"/>
2023   A trailer allows the sender to include additional fields at the end of a
2024   chunked message in order to supply metadata that might be dynamically
2025   generated while the message body is sent, such as a message integrity
2026   check, digital signature, or post-processing status. The trailer fields are
2027   identical to header fields, except they are sent in a chunked trailer
2028   instead of the message header block.
2030<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="trailer-part"/>
2031  <x:ref>trailer-part</x:ref>   = *( <x:ref>header-field</x:ref> <x:ref>CRLF</x:ref> )
2034   A sender &MUST-NOT; generate a trailer that contains a field which needs to
2035   be known by the recipient before it can begin processing the message body.
2036   For example, most recipients need to know the values of
2037   <x:ref>Content-Encoding</x:ref> and <x:ref>Content-Type</x:ref> in order to
2038   select a content handler, so placing those fields in a trailer would force
2039   the recipient to buffer the entire body before it could begin, greatly
2040   increasing user-perceived latency and defeating one of the main advantages
2041   of using chunked to send data streams of unknown length.
2042   A sender &MUST-NOT; generate a trailer containing a
2043   <x:ref>Transfer-Encoding</x:ref>,
2044   <x:ref>Content-Length</x:ref>, or
2045   <x:ref>Trailer</x:ref> field.
2048   A server &MUST; generate an empty trailer with the chunked transfer coding
2049   unless at least one of the following is true:
2050  <list style="numbers">
2051    <t>the request included a <x:ref>TE</x:ref> header field that indicates
2052    "trailers" is acceptable in the transfer coding of the response, as
2053    described in <xref target="header.te"/>; or,</t>
2055    <t>the trailer fields consist entirely of optional metadata and the
2056    recipient could use the message (in a manner acceptable to the generating
2057    server) without receiving that metadata. In other words, the generating
2058    server is willing to accept the possibility that the trailer fields might
2059    be silently discarded along the path to the client.</t>
2060  </list>
2063   The above requirement prevents the need for an infinite buffer when a
2064   message is being received by an HTTP/1.1 (or later) proxy and forwarded to
2065   an HTTP/1.0 recipient.
2069<section title="Decoding Chunked" anchor="decoding.chunked">
2071   A process for decoding the chunked transfer coding
2072   can be represented in pseudo-code as:
2074<figure><artwork type="code">
2075  length := 0
2076  read chunk-size, chunk-ext (if any), and CRLF
2077  while (chunk-size &gt; 0) {
2078     read chunk-data and CRLF
2079     append chunk-data to decoded-body
2080     length := length + chunk-size
2081     read chunk-size, chunk-ext (if any), and CRLF
2082  }
2083  read header-field
2084  while (header-field not empty) {
2085     append header-field to existing header fields
2086     read header-field
2087  }
2088  Content-Length := length
2089  Remove "chunked" from Transfer-Encoding
2090  Remove Trailer from existing header fields
2093   All recipients &MUST; be able to parse and decode the
2094   chunked transfer coding and &MUST; ignore chunk-ext extensions
2095   they do not understand.
2100<section title="Compression Codings" anchor="compression.codings">
2102   The codings defined below can be used to compress the payload of a
2103   message.
2106<section title="Compress Coding" anchor="compress.coding">
2107<iref item="compress (Coding Format)"/>
2109   The "compress" coding is an adaptive Lempel-Ziv-Welch (LZW) coding
2110   <xref target="Welch"/> that is commonly produced by the UNIX file
2111   compression program "compress".
2112   Recipients &SHOULD; consider "x-compress" to be equivalent to "compress".
2116<section title="Deflate Coding" anchor="deflate.coding">
2117<iref item="deflate (Coding Format)"/>
2119   The "deflate" coding is a "zlib" data format <xref target="RFC1950"/>
2120   containing a "deflate" compressed data stream <xref target="RFC1951"/>
2121   that uses a combination of the Lempel-Ziv (LZ77) compression algorithm and
2122   Huffman coding.
2125  <t>
2126    &Note; Some incorrect implementations send the "deflate"
2127    compressed data without the zlib wrapper.
2128   </t>
2132<section title="Gzip Coding" anchor="gzip.coding">
2133<iref item="gzip (Coding Format)"/>
2135   The "gzip" coding is an LZ77 coding with a 32 bit CRC that is commonly
2136   produced by the gzip file compression program <xref target="RFC1952"/>.
2137   Recipients &SHOULD; consider "x-gzip" to be equivalent to "gzip".
2143<section title="TE" anchor="header.te">
2144  <iref primary="true" item="TE header field" x:for-anchor=""/>
2145  <x:anchor-alias value="TE"/>
2146  <x:anchor-alias value="t-codings"/>
2147  <x:anchor-alias value="t-ranking"/>
2148  <x:anchor-alias value="rank"/>
2150   The "TE" header field in a request indicates what transfer codings,
2151   besides chunked, the client is willing to accept in response, and
2152   whether or not the client is willing to accept trailer fields in a
2153   chunked transfer coding.
2156   The TE field-value consists of a comma-separated list of transfer coding
2157   names, each allowing for optional parameters (as described in
2158   <xref target="transfer.codings"/>), and/or the keyword "trailers".
2159   Clients &MUST-NOT; send the chunked transfer coding name in TE;
2160   chunked is always acceptable for HTTP/1.1 recipients.
2162<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="TE"/><iref primary="true" item="Grammar" subitem="t-codings"/><iref primary="true" item="Grammar" subitem="t-ranking"/><iref primary="true" item="Grammar" subitem="rank"/>
2163  <x:ref>TE</x:ref>        = #<x:ref>t-codings</x:ref>
2164  <x:ref>t-codings</x:ref> = "trailers" / ( <x:ref>transfer-coding</x:ref> [ <x:ref>t-ranking</x:ref> ] )
2165  <x:ref>t-ranking</x:ref> = <x:ref>OWS</x:ref> ";" <x:ref>OWS</x:ref> "q=" <x:ref>rank</x:ref>
2166  <x:ref>rank</x:ref>      = ( "0" [ "." 0*3<x:ref>DIGIT</x:ref> ] )
2167             / ( "1" [ "." 0*3("0") ] )
2170   Three examples of TE use are below.
2172<figure><artwork type="example">
2173  TE: deflate
2174  TE:
2175  TE: trailers, deflate;q=0.5
2178   The presence of the keyword "trailers" indicates that the client is willing
2179   to accept trailer fields in a chunked transfer coding, as defined in
2180   <xref target="chunked.trailer.part"/>, on behalf of itself and any downstream
2181   clients. For requests from an intermediary, this implies that either:
2182   (a) all downstream clients are willing to accept trailer fields in the
2183   forwarded response; or,
2184   (b) the intermediary will attempt to buffer the response on behalf of
2185   downstream recipients.
2186   Note that HTTP/1.1 does not define any means to limit the size of a
2187   chunked response such that an intermediary can be assured of buffering the
2188   entire response.
2191   When multiple transfer codings are acceptable, the client &MAY; rank the
2192   codings by preference using a case-insensitive "q" parameter (similar to
2193   the qvalues used in content negotiation fields, &qvalue;). The rank value
2194   is a real number in the range 0 through 1, where 0.001 is the least
2195   preferred and 1 is the most preferred; a value of 0 means "not acceptable".
2198   If the TE field-value is empty or if no TE field is present, the only
2199   acceptable transfer coding is chunked. A message with no transfer coding
2200   is always acceptable.
2203   Since the TE header field only applies to the immediate connection,
2204   a sender of TE &MUST; also send a "TE" connection option within the
2205   <x:ref>Connection</x:ref> header field (<xref target="header.connection"/>)
2206   in order to prevent the TE field from being forwarded by intermediaries
2207   that do not support its semantics.
2211<section title="Trailer" anchor="header.trailer">
2212  <iref primary="true" item="Trailer header field" x:for-anchor=""/>
2213  <x:anchor-alias value="Trailer"/>
2215   When a message includes a message body encoded with the chunked
2216   transfer coding and the sender desires to send metadata in the form of
2217   trailer fields at the end of the message, the sender &SHOULD; generate a
2218   <x:ref>Trailer</x:ref> header field before the message body to indicate
2219   which fields will be present in the trailers. This allows the recipient
2220   to prepare for receipt of that metadata before it starts processing the body,
2221   which is useful if the message is being streamed and the recipient wishes
2222   to confirm an integrity check on the fly.
2224<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Trailer"/>
2225  <x:ref>Trailer</x:ref> = 1#<x:ref>field-name</x:ref>
2230<section title="Message Routing" anchor="message.routing">
2232   HTTP request message routing is determined by each client based on the
2233   target resource, the client's proxy configuration, and
2234   establishment or reuse of an inbound connection.  The corresponding
2235   response routing follows the same connection chain back to the client.
2238<section title="Identifying a Target Resource" anchor="target-resource">
2239  <iref primary="true" item="target resource"/>
2240  <iref primary="true" item="target URI"/>
2241  <x:anchor-alias value="target resource"/>
2242  <x:anchor-alias value="target URI"/>
2244   HTTP is used in a wide variety of applications, ranging from
2245   general-purpose computers to home appliances.  In some cases,
2246   communication options are hard-coded in a client's configuration.
2247   However, most HTTP clients rely on the same resource identification
2248   mechanism and configuration techniques as general-purpose Web browsers.
2251   HTTP communication is initiated by a user agent for some purpose.
2252   The purpose is a combination of request semantics, which are defined in
2253   <xref target="Part2"/>, and a target resource upon which to apply those
2254   semantics.  A URI reference (<xref target="uri"/>) is typically used as
2255   an identifier for the "<x:dfn>target resource</x:dfn>", which a user agent
2256   would resolve to its absolute form in order to obtain the
2257   "<x:dfn>target URI</x:dfn>".  The target URI
2258   excludes the reference's fragment component, if any,
2259   since fragment identifiers are reserved for client-side processing
2260   (<xref target="RFC3986" x:fmt="," x:sec="3.5"/>).
2264<section title="Connecting Inbound" anchor="connecting.inbound">
2266   Once the target URI is determined, a client needs to decide whether
2267   a network request is necessary to accomplish the desired semantics and,
2268   if so, where that request is to be directed.
2271   If the client has a cache <xref target="Part6"/> and the request can be
2272   satisfied by it, then the request is
2273   usually directed there first.
2276   If the request is not satisfied by a cache, then a typical client will
2277   check its configuration to determine whether a proxy is to be used to
2278   satisfy the request.  Proxy configuration is implementation-dependent,
2279   but is often based on URI prefix matching, selective authority matching,
2280   or both, and the proxy itself is usually identified by an "http" or
2281   "https" URI.  If a proxy is applicable, the client connects inbound by
2282   establishing (or reusing) a connection to that proxy.
2285   If no proxy is applicable, a typical client will invoke a handler routine,
2286   usually specific to the target URI's scheme, to connect directly
2287   to an authority for the target resource.  How that is accomplished is
2288   dependent on the target URI scheme and defined by its associated
2289   specification, similar to how this specification defines origin server
2290   access for resolution of the "http" (<xref target="http.uri"/>) and
2291   "https" (<xref target="https.uri"/>) schemes.
2294   HTTP requirements regarding connection management are defined in
2295   <xref target=""/>.
2299<section title="Request Target" anchor="request-target">
2301   Once an inbound connection is obtained,
2302   the client sends an HTTP request message (<xref target="http.message"/>)
2303   with a request-target derived from the target URI.
2304   There are four distinct formats for the request-target, depending on both
2305   the method being requested and whether the request is to a proxy.
2307<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="request-target"/><iref primary="true" item="Grammar" subitem="origin-form"/><iref primary="true" item="Grammar" subitem="absolute-form"/><iref primary="true" item="Grammar" subitem="authority-form"/><iref primary="true" item="Grammar" subitem="asterisk-form"/>
2308  <x:ref>request-target</x:ref> = <x:ref>origin-form</x:ref>
2309                 / <x:ref>absolute-form</x:ref>
2310                 / <x:ref>authority-form</x:ref>
2311                 / <x:ref>asterisk-form</x:ref>
2313  <x:ref>origin-form</x:ref>    = <x:ref>absolute-path</x:ref> [ "?" <x:ref>query</x:ref> ]
2314  <x:ref>absolute-form</x:ref>  = <x:ref>absolute-URI</x:ref>
2315  <x:ref>authority-form</x:ref> = <x:ref>authority</x:ref>
2316  <x:ref>asterisk-form</x:ref>  = "*"
2318<t anchor="origin-form"><iref item="origin-form (of request-target)"/>
2319  <x:h>origin-form</x:h>
2322   The most common form of request-target is the <x:dfn>origin-form</x:dfn>.
2323   When making a request directly to an origin server, other than a CONNECT
2324   or server-wide OPTIONS request (as detailed below),
2325   a client &MUST; send only the absolute path and query components of
2326   the target URI as the request-target.
2327   If the target URI's path component is empty, then the client &MUST; send
2328   "/" as the path within the origin-form of request-target.
2329   A <x:ref>Host</x:ref> header field is also sent, as defined in
2330   <xref target=""/>.
2333   For example, a client wishing to retrieve a representation of the resource
2334   identified as
2336<figure><artwork x:indent-with="  " type="example">
2340   directly from the origin server would open (or reuse) a TCP connection
2341   to port 80 of the host "" and send the lines:
2343<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2344GET /where?q=now HTTP/1.1
2348   followed by the remainder of the request message.
2350<t anchor="absolute-form"><iref item="absolute-form (of request-target)"/>
2351  <x:h>absolute-form</x:h>
2354   When making a request to a proxy, other than a CONNECT or server-wide
2355   OPTIONS request (as detailed below), a client &MUST; send the target URI
2356   in <x:dfn>absolute-form</x:dfn> as the request-target.
2357   The proxy is requested to either service that request from a valid cache,
2358   if possible, or make the same request on the client's behalf to either
2359   the next inbound proxy server or directly to the origin server indicated
2360   by the request-target.  Requirements on such "forwarding" of messages are
2361   defined in <xref target="message.forwarding"/>.
2364   An example absolute-form of request-line would be:
2366<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2367GET HTTP/1.1
2370   To allow for transition to the absolute-form for all requests in some
2371   future version of HTTP, HTTP/1.1 servers &MUST; accept the absolute-form
2372   in requests, even though HTTP/1.1 clients will only send them in requests
2373   to proxies.
2375<t anchor="authority-form"><iref item="authority-form (of request-target)"/>
2376  <x:h>authority-form</x:h>
2379   The <x:dfn>authority-form</x:dfn> of request-target is only used for
2380   CONNECT requests (&CONNECT;). When making a CONNECT request to establish a
2381   tunnel through one or more proxies, a client &MUST; send only the target
2382   URI's authority component (excluding any userinfo and its "@" delimiter) as
2383   the request-target. For example,
2385<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2388<t anchor="asterisk-form"><iref item="asterisk-form (of request-target)"/>
2389  <x:h>asterisk-form</x:h>
2392   The <x:dfn>asterisk-form</x:dfn> of request-target is only used for a server-wide
2393   OPTIONS request (&OPTIONS;).  When a client wishes to request OPTIONS
2394   for the server as a whole, as opposed to a specific named resource of
2395   that server, the client &MUST; send only "*" (%x2A) as the request-target.
2396   For example,
2398<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2399OPTIONS * HTTP/1.1
2402   If a proxy receives an OPTIONS request with an absolute-form of
2403   request-target in which the URI has an empty path and no query component,
2404   then the last proxy on the request chain &MUST; send a request-target
2405   of "*" when it forwards the request to the indicated origin server.
2408   For example, the request
2409</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2413  would be forwarded by the final proxy as
2414</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2415OPTIONS * HTTP/1.1
2419   after connecting to port 8001 of host "".
2424<section title="Host" anchor="">
2425  <iref primary="true" item="Host header field" x:for-anchor=""/>
2426  <x:anchor-alias value="Host"/>
2428   The "Host" header field in a request provides the host and port
2429   information from the target URI, enabling the origin
2430   server to distinguish among resources while servicing requests
2431   for multiple host names on a single IP address.
2433<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Host"/>
2434  <x:ref>Host</x:ref> = <x:ref>uri-host</x:ref> [ ":" <x:ref>port</x:ref> ] ; <xref target="http.uri"/>
2437   A client &MUST; send a Host header field in all HTTP/1.1 request messages.
2438   If the target URI includes an authority component, then a client &MUST;
2439   send a field-value for Host that is identical to that authority
2440   component, excluding any userinfo subcomponent and its "@" delimiter
2441   (<xref target="http.uri"/>).
2442   If the authority component is missing or undefined for the target URI,
2443   then a client &MUST; send a Host header field with an empty field-value.
2446   Since the Host field-value is critical information for handling a request,
2447   a user agent &SHOULD; generate Host as the first header field following the
2448   request-line.
2451   For example, a GET request to the origin server for
2452   &lt;; would begin with:
2454<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2455GET /pub/WWW/ HTTP/1.1
2459   A client &MUST; send a Host header field in an HTTP/1.1 request even
2460   if the request-target is in the absolute-form, since this
2461   allows the Host information to be forwarded through ancient HTTP/1.0
2462   proxies that might not have implemented Host.
2465   When a proxy receives a request with an absolute-form of
2466   request-target, the proxy &MUST; ignore the received
2467   Host header field (if any) and instead replace it with the host
2468   information of the request-target.  A proxy that forwards such a request
2469   &MUST; generate a new Host field-value based on the received
2470   request-target rather than forward the received Host field-value.
2473   Since the Host header field acts as an application-level routing
2474   mechanism, it is a frequent target for malware seeking to poison
2475   a shared cache or redirect a request to an unintended server.
2476   An interception proxy is particularly vulnerable if it relies on
2477   the Host field-value for redirecting requests to internal
2478   servers, or for use as a cache key in a shared cache, without
2479   first verifying that the intercepted connection is targeting a
2480   valid IP address for that host.
2483   A server &MUST; respond with a <x:ref>400 (Bad Request)</x:ref> status code
2484   to any HTTP/1.1 request message that lacks a Host header field and
2485   to any request message that contains more than one Host header field
2486   or a Host header field with an invalid field-value.
2490<section title="Effective Request URI" anchor="effective.request.uri">
2491  <iref primary="true" item="effective request URI"/>
2492  <x:anchor-alias value="effective request URI"/>
2494   A server that receives an HTTP request message &MUST; reconstruct
2495   the user agent's original target URI, based on the pieces of information
2496   learned from the request-target, <x:ref>Host</x:ref> header field, and
2497   connection context, in order to identify the intended target resource and
2498   properly service the request. The URI derived from this reconstruction
2499   process is referred to as the "<x:dfn>effective request URI</x:dfn>".
2502   For a user agent, the effective request URI is the target URI.
2505   If the request-target is in absolute-form, then the effective request URI
2506   is the same as the request-target.  Otherwise, the effective request URI
2507   is constructed as follows.
2510   If the request is received over a TLS-secured TCP connection,
2511   then the effective request URI's scheme is "https"; otherwise, the
2512   scheme is "http".
2515   If the request-target is in authority-form, then the effective
2516   request URI's authority component is the same as the request-target.
2517   Otherwise, if a <x:ref>Host</x:ref> header field is supplied with a
2518   non-empty field-value, then the authority component is the same as the
2519   Host field-value. Otherwise, the authority component is the concatenation of
2520   the default host name configured for the server, a colon (":"), and the
2521   connection's incoming TCP port number in decimal form.
2524   If the request-target is in authority-form or asterisk-form, then the
2525   effective request URI's combined path and query component is empty.
2526   Otherwise, the combined path and query component is the same as the
2527   request-target.
2530   The components of the effective request URI, once determined as above,
2531   can be combined into absolute-URI form by concatenating the scheme,
2532   "://", authority, and combined path and query component.
2536   Example 1: the following message received over an insecure TCP connection
2538<artwork type="example" x:indent-with="  ">
2539GET /pub/WWW/TheProject.html HTTP/1.1
2545  has an effective request URI of
2547<artwork type="example" x:indent-with="  ">
2553   Example 2: the following message received over a TLS-secured TCP connection
2555<artwork type="example" x:indent-with="  ">
2556OPTIONS * HTTP/1.1
2562  has an effective request URI of
2564<artwork type="example" x:indent-with="  ">
2569   An origin server that does not allow resources to differ by requested
2570   host &MAY; ignore the <x:ref>Host</x:ref> field-value and instead replace it
2571   with a configured server name when constructing the effective request URI.
2574   Recipients of an HTTP/1.0 request that lacks a <x:ref>Host</x:ref> header
2575   field &MAY; attempt to use heuristics (e.g., examination of the URI path for
2576   something unique to a particular host) in order to guess the
2577   effective request URI's authority component.
2581<section title="Associating a Response to a Request" anchor="">
2583   HTTP does not include a request identifier for associating a given
2584   request message with its corresponding one or more response messages.
2585   Hence, it relies on the order of response arrival to correspond exactly
2586   to the order in which requests are made on the same connection.
2587   More than one response message per request only occurs when one or more
2588   informational responses (<x:ref>1xx</x:ref>, see &status-1xx;) precede a
2589   final response to the same request.
2592   A client that has more than one outstanding request on a connection &MUST;
2593   maintain a list of outstanding requests in the order sent and &MUST;
2594   associate each received response message on that connection to the highest
2595   ordered request that has not yet received a final (non-<x:ref>1xx</x:ref>)
2596   response.
2600<section title="Message Forwarding" anchor="message.forwarding">
2602   As described in <xref target="intermediaries"/>, intermediaries can serve
2603   a variety of roles in the processing of HTTP requests and responses.
2604   Some intermediaries are used to improve performance or availability.
2605   Others are used for access control or to filter content.
2606   Since an HTTP stream has characteristics similar to a pipe-and-filter
2607   architecture, there are no inherent limits to the extent an intermediary
2608   can enhance (or interfere) with either direction of the stream.
2611   An intermediary not acting as a tunnel &MUST; implement the
2612   <x:ref>Connection</x:ref> header field, as specified in
2613   <xref target="header.connection"/>, and exclude fields from being forwarded
2614   that are only intended for the incoming connection.
2617   An intermediary &MUST-NOT; forward a message to itself unless it is
2618   protected from an infinite request loop. In general, an intermediary ought
2619   to recognize its own server names, including any aliases, local variations,
2620   or literal IP addresses, and respond to such requests directly.
2623<section title="Via" anchor="header.via">
2624  <iref primary="true" item="Via header field" x:for-anchor=""/>
2625  <x:anchor-alias value="pseudonym"/>
2626  <x:anchor-alias value="received-by"/>
2627  <x:anchor-alias value="received-protocol"/>
2628  <x:anchor-alias value="Via"/>
2630   The "Via" header field indicates the presence of intermediate protocols and
2631   recipients between the user agent and the server (on requests) or between
2632   the origin server and the client (on responses), similar to the
2633   "Received" header field in email
2634   (<xref target="RFC5322" x:fmt="of" x:sec="3.6.7"/>).
2635   Via can be used for tracking message forwards,
2636   avoiding request loops, and identifying the protocol capabilities of
2637   senders along the request/response chain.
2639<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Via"/><iref primary="true" item="Grammar" subitem="received-protocol"/><iref primary="true" item="Grammar" subitem="protocol-name"/><iref primary="true" item="Grammar" subitem="protocol-version"/><iref primary="true" item="Grammar" subitem="received-by"/><iref primary="true" item="Grammar" subitem="pseudonym"/>
2640  <x:ref>Via</x:ref> = 1#( <x:ref>received-protocol</x:ref> <x:ref>RWS</x:ref> <x:ref>received-by</x:ref> [ <x:ref>RWS</x:ref> <x:ref>comment</x:ref> ] )
2642  <x:ref>received-protocol</x:ref> = [ <x:ref>protocol-name</x:ref> "/" ] <x:ref>protocol-version</x:ref>
2643                      ; see <xref target="header.upgrade"/>
2644  <x:ref>received-by</x:ref>       = ( <x:ref>uri-host</x:ref> [ ":" <x:ref>port</x:ref> ] ) / <x:ref>pseudonym</x:ref>
2645  <x:ref>pseudonym</x:ref>         = <x:ref>token</x:ref>
2648   Multiple Via field values represent each proxy or gateway that has
2649   forwarded the message. Each intermediary appends its own information
2650   about how the message was received, such that the end result is ordered
2651   according to the sequence of forwarding recipients.
2654   A proxy &MUST; send an appropriate Via header field, as described below, in
2655   each message that it forwards.
2656   An HTTP-to-HTTP gateway &MUST; send an appropriate Via header field in
2657   each inbound request message and &MAY; send a Via header field in
2658   forwarded response messages.
2661   For each intermediary, the received-protocol indicates the protocol and
2662   protocol version used by the upstream sender of the message. Hence, the
2663   Via field value records the advertised protocol capabilities of the
2664   request/response chain such that they remain visible to downstream
2665   recipients; this can be useful for determining what backwards-incompatible
2666   features might be safe to use in response, or within a later request, as
2667   described in <xref target="http.version"/>. For brevity, the protocol-name
2668   is omitted when the received protocol is HTTP.
2671   The received-by field is normally the host and optional port number of a
2672   recipient server or client that subsequently forwarded the message.
2673   However, if the real host is considered to be sensitive information, a
2674   sender &MAY; replace it with a pseudonym. If a port is not provided,
2675   a recipient &MAY; interpret that as meaning it was received on the default
2676   TCP port, if any, for the received-protocol.
2679   A sender &MAY; generate comments in the Via header field to identify the
2680   software of each recipient, analogous to the <x:ref>User-Agent</x:ref> and
2681   <x:ref>Server</x:ref> header fields. However, all comments in the Via field
2682   are optional and a recipient &MAY; remove them prior to forwarding the
2683   message.
2686   For example, a request message could be sent from an HTTP/1.0 user
2687   agent to an internal proxy code-named "fred", which uses HTTP/1.1 to
2688   forward the request to a public proxy at, which completes
2689   the request by forwarding it to the origin server at
2690   The request received by would then have the following
2691   Via header field:
2693<figure><artwork type="example">
2694  Via: 1.0 fred, 1.1
2697   An intermediary used as a portal through a network firewall
2698   &SHOULD-NOT; forward the names and ports of hosts within the firewall
2699   region unless it is explicitly enabled to do so. If not enabled, such an
2700   intermediary &SHOULD; replace each received-by host of any host behind the
2701   firewall by an appropriate pseudonym for that host.
2704   An intermediary &MAY; combine an ordered subsequence of Via header
2705   field entries into a single such entry if the entries have identical
2706   received-protocol values. For example,
2708<figure><artwork type="example">
2709  Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy
2712  could be collapsed to
2714<figure><artwork type="example">
2715  Via: 1.0 ricky, 1.1 mertz, 1.0 lucy
2718   Senders &SHOULD-NOT; combine multiple entries unless they are all
2719   under the same organizational control and the hosts have already been
2720   replaced by pseudonyms. Senders &MUST-NOT; combine entries that
2721   have different received-protocol values.
2725<section title="Transformations" anchor="message.transformations">
2727   Some intermediaries include features for transforming messages and their
2728   payloads.  A transforming proxy might, for example, convert between image
2729   formats in order to save cache space or to reduce the amount of traffic on
2730   a slow link. However, operational problems might occur when these
2731   transformations are applied to payloads intended for critical applications,
2732   such as medical imaging or scientific data analysis, particularly when
2733   integrity checks or digital signatures are used to ensure that the payload
2734   received is identical to the original.
2737   If a proxy receives a request-target with a host name that is not a
2738   fully qualified domain name, it &MAY; add its own domain to the host name
2739   it received when forwarding the request.  A proxy &MUST-NOT; change the
2740   host name if it is a fully qualified domain name.
2743   A proxy &MUST-NOT; modify the "absolute-path" and "query" parts of the
2744   received request-target when forwarding it to the next inbound server,
2745   except as noted above to replace an empty path with "/" or "*".
2748   A proxy &MUST-NOT; modify header fields that provide information about the
2749   end points of the communication chain, the resource state, or the selected
2750   representation. A proxy &MAY; change the message body through application
2751   or removal of a transfer coding (<xref target="transfer.codings"/>).
2754   A non-transforming proxy &MUST-NOT; modify the message payload (&payload;).
2755   A transforming proxy &MUST-NOT; modify the payload of a message that
2756   contains the no-transform cache-control directive.
2759   A transforming proxy &MAY; transform the payload of a message
2760   that does not contain the no-transform cache-control directive;
2761   if the payload is transformed, the transforming proxy &MUST; add a
2762   Warning header field with the warn-code of 214 ("Transformation Applied")
2763   if one does not already appear in the message (see &header-warning;).
2764   If the payload of a <x:ref>200 (OK)</x:ref> response is transformed, the
2765   transforming proxy can also inform downstream recipients that a
2766   transformation has been applied by changing the response status code to
2767   <x:ref>203 (Non-Authoritative Information)</x:ref> (&status-203;).
2773<section title="Connection Management" anchor="">
2775   HTTP messaging is independent of the underlying transport or
2776   session-layer connection protocol(s).  HTTP only presumes a reliable
2777   transport with in-order delivery of requests and the corresponding
2778   in-order delivery of responses.  The mapping of HTTP request and
2779   response structures onto the data units of an underlying transport
2780   protocol is outside the scope of this specification.
2783   As described in <xref target="connecting.inbound"/>, the specific
2784   connection protocols to be used for an HTTP interaction are determined by
2785   client configuration and the <x:ref>target URI</x:ref>.
2786   For example, the "http" URI scheme
2787   (<xref target="http.uri"/>) indicates a default connection of TCP
2788   over IP, with a default TCP port of 80, but the client might be
2789   configured to use a proxy via some other connection, port, or protocol.
2792   HTTP implementations are expected to engage in connection management,
2793   which includes maintaining the state of current connections,
2794   establishing a new connection or reusing an existing connection,
2795   processing messages received on a connection, detecting connection
2796   failures, and closing each connection.
2797   Most clients maintain multiple connections in parallel, including
2798   more than one connection per server endpoint.
2799   Most servers are designed to maintain thousands of concurrent connections,
2800   while controlling request queues to enable fair use and detect
2801   denial of service attacks.
2804<section title="Connection" anchor="header.connection">
2805  <iref primary="true" item="Connection header field" x:for-anchor=""/>
2806  <iref primary="true" item="close" x:for-anchor=""/>
2807  <x:anchor-alias value="Connection"/>
2808  <x:anchor-alias value="connection-option"/>
2809  <x:anchor-alias value="close"/>
2811   The "Connection" header field allows the sender to indicate desired
2812   control options for the current connection.  In order to avoid confusing
2813   downstream recipients, a proxy or gateway &MUST; remove or replace any
2814   received connection options before forwarding the message.
2817   When a header field aside from Connection is used to supply control
2818   information for or about the current connection, the sender &MUST; list
2819   the corresponding field-name within the "Connection" header field.
2820   A proxy or gateway &MUST; parse a received Connection
2821   header field before a message is forwarded and, for each
2822   connection-option in this field, remove any header field(s) from
2823   the message with the same name as the connection-option, and then
2824   remove the Connection header field itself (or replace it with the
2825   intermediary's own connection options for the forwarded message).
2828   Hence, the Connection header field provides a declarative way of
2829   distinguishing header fields that are only intended for the
2830   immediate recipient ("hop-by-hop") from those fields that are
2831   intended for all recipients on the chain ("end-to-end"), enabling the
2832   message to be self-descriptive and allowing future connection-specific
2833   extensions to be deployed without fear that they will be blindly
2834   forwarded by older intermediaries.
2837   The Connection header field's value has the following grammar:
2839<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Connection"/><iref primary="true" item="Grammar" subitem="connection-option"/>
2840  <x:ref>Connection</x:ref>        = 1#<x:ref>connection-option</x:ref>
2841  <x:ref>connection-option</x:ref> = <x:ref>token</x:ref>
2844   Connection options are case-insensitive.
2847   A sender &MUST-NOT; send a connection option corresponding to a header
2848   field that is intended for all recipients of the payload.
2849   For example, <x:ref>Cache-Control</x:ref> is never appropriate as a
2850   connection option (&header-cache-control;).
2853   The connection options do not have to correspond to a header field
2854   present in the message, since a connection-specific header field
2855   might not be needed if there are no parameters associated with that
2856   connection option.  Recipients that trigger certain connection
2857   behavior based on the presence of connection options &MUST; do so
2858   based on the presence of the connection-option rather than only the
2859   presence of the optional header field.  In other words, if the
2860   connection option is received as a header field but not indicated
2861   within the Connection field-value, then the recipient &MUST; ignore
2862   the connection-specific header field because it has likely been
2863   forwarded by an intermediary that is only partially conformant.
2866   When defining new connection options, specifications ought to
2867   carefully consider existing deployed header fields and ensure
2868   that the new connection option does not share the same name as
2869   an unrelated header field that might already be deployed.
2870   Defining a new connection option essentially reserves that potential
2871   field-name for carrying additional information related to the
2872   connection option, since it would be unwise for senders to use
2873   that field-name for anything else.
2876   The "<x:dfn>close</x:dfn>" connection option is defined for a
2877   sender to signal that this connection will be closed after completion of
2878   the response. For example,
2880<figure><artwork type="example">
2881  Connection: close
2884   in either the request or the response header fields indicates that the
2885   sender is going to close the connection after the current request/response
2886   is complete (<xref target="persistent.tear-down"/>).
2889   A client that does not support <x:ref>persistent connections</x:ref> &MUST;
2890   send the "close" connection option in every request message.
2893   A server that does not support <x:ref>persistent connections</x:ref> &MUST;
2894   send the "close" connection option in every response message that
2895   does not have a <x:ref>1xx (Informational)</x:ref> status code.
2899<section title="Establishment" anchor="persistent.establishment">
2901   It is beyond the scope of this specification to describe how connections
2902   are established via various transport or session-layer protocols.
2903   Each connection applies to only one transport link.
2907<section title="Persistence" anchor="persistent.connections">
2908   <x:anchor-alias value="persistent connections"/>
2910   HTTP/1.1 defaults to the use of "<x:dfn>persistent connections</x:dfn>",
2911   allowing multiple requests and responses to be carried over a single
2912   connection. The "<x:ref>close</x:ref>" connection-option is used to signal
2913   that a connection will not persist after the current request/response.
2914   HTTP implementations &SHOULD; support persistent connections.
2917   A recipient determines whether a connection is persistent or not based on
2918   the most recently received message's protocol version and
2919   <x:ref>Connection</x:ref> header field (if any):
2920   <list style="symbols">
2921     <t>If the <x:ref>close</x:ref> connection option is present, the
2922        connection will not persist after the current response; else,</t>
2923     <t>If the received protocol is HTTP/1.1 (or later), the connection will
2924        persist after the current response; else,</t>
2925     <t>If the received protocol is HTTP/1.0, the "keep-alive"
2926        connection option is present, the recipient is not a proxy, and
2927        the recipient wishes to honor the HTTP/1.0 "keep-alive" mechanism,
2928        the connection will persist after the current response; otherwise,</t>
2929     <t>The connection will close after the current response.</t>
2930   </list>
2933   A server &MAY; assume that an HTTP/1.1 client intends to maintain a
2934   persistent connection until a <x:ref>close</x:ref> connection option
2935   is received in a request.
2938   A client &MAY; reuse a persistent connection until it sends or receives
2939   a <x:ref>close</x:ref> connection option or receives an HTTP/1.0 response
2940   without a "keep-alive" connection option.
2943   In order to remain persistent, all messages on a connection need to
2944   have a self-defined message length (i.e., one not defined by closure
2945   of the connection), as described in <xref target="message.body"/>.
2946   A server &MUST; read the entire request message body or close
2947   the connection after sending its response, since otherwise the
2948   remaining data on a persistent connection would be misinterpreted
2949   as the next request.  Likewise,
2950   a client &MUST; read the entire response message body if it intends
2951   to reuse the same connection for a subsequent request.
2954   A proxy server &MUST-NOT; maintain a persistent connection with an
2955   HTTP/1.0 client (see <xref x:sec="19.7.1" x:fmt="of" target="RFC2068"/> for
2956   information and discussion of the problems with the Keep-Alive header field
2957   implemented by many HTTP/1.0 clients).
2960   Clients and servers &SHOULD-NOT; assume that a persistent connection is
2961   maintained for HTTP versions less than 1.1 unless it is explicitly
2962   signaled.
2963   See <xref target="compatibility.with.http.1.0.persistent.connections"/>
2964   for more information on backward compatibility with HTTP/1.0 clients.
2967<section title="Retrying Requests" anchor="persistent.retrying.requests">
2969   Connections can be closed at any time, with or without intention.
2970   Implementations ought to anticipate the need to recover
2971   from asynchronous close events.
2974   When an inbound connection is closed prematurely, a client &MAY; open a new
2975   connection and automatically retransmit an aborted sequence of requests if
2976   all of those requests have idempotent methods (&idempotent-methods;).
2977   A proxy &MUST-NOT; automatically retry non-idempotent requests.
2980   A user agent &MUST-NOT; automatically retry a request with a non-idempotent
2981   method unless it has some means to know that the request semantics are
2982   actually idempotent, regardless of the method, or some means to detect that
2983   the original request was never applied. For example, a user agent that
2984   knows (through design or configuration) that a POST request to a given
2985   resource is safe can repeat that request automatically.
2986   Likewise, a user agent designed specifically to operate on a version
2987   control repository might be able to recover from partial failure conditions
2988   by checking the target resource revision(s) after a failed connection,
2989   reverting or fixing any changes that were partially applied, and then
2990   automatically retrying the requests that failed.
2993   A client &SHOULD-NOT; automatically retry a failed automatic retry.
2997<section title="Pipelining" anchor="pipelining">
2998   <x:anchor-alias value="pipeline"/>
3000   A client that supports persistent connections &MAY; "<x:dfn>pipeline</x:dfn>"
3001   its requests (i.e., send multiple requests without waiting for each
3002   response). A server &MAY; process a sequence of pipelined requests in
3003   parallel if they all have safe methods (&safe-methods;), but &MUST; send
3004   the corresponding responses in the same order that the requests were
3005   received.
3008   A client that pipelines requests &SHOULD; retry unanswered requests if the
3009   connection closes before it receives all of the corresponding responses.
3010   When retrying pipelined requests after a failed connection (a connection
3011   not explicitly closed by the server in its last complete response), a
3012   client &MUST-NOT; pipeline immediately after connection establishment,
3013   since the first remaining request in the prior pipeline might have caused
3014   an error response that can be lost again if multiple requests are sent on a
3015   prematurely closed connection (see the TCP reset problem described in
3016   <xref target="persistent.tear-down"/>).
3019   Idempotent methods (&idempotent-methods;) are significant to pipelining
3020   because they can be automatically retried after a connection failure.
3021   A user agent &SHOULD-NOT; pipeline requests after a non-idempotent method,
3022   until the final response status code for that method has been received,
3023   unless the user agent has a means to detect and recover from partial
3024   failure conditions involving the pipelined sequence.
3027   An intermediary that receives pipelined requests &MAY; pipeline those
3028   requests when forwarding them inbound, since it can rely on the outbound
3029   user agent(s) to determine what requests can be safely pipelined. If the
3030   inbound connection fails before receiving a response, the pipelining
3031   intermediary &MAY; attempt to retry a sequence of requests that have yet
3032   to receive a response if the requests all have idempotent methods;
3033   otherwise, the pipelining intermediary &SHOULD; forward any received
3034   responses and then close the corresponding outbound connection(s) so that
3035   the outbound user agent(s) can recover accordingly.
3040<section title="Concurrency" anchor="persistent.concurrency">
3042   Clients &SHOULD; limit the number of simultaneous
3043   connections that they maintain to a given server.
3046   Previous revisions of HTTP gave a specific number of connections as a
3047   ceiling, but this was found to be impractical for many applications. As a
3048   result, this specification does not mandate a particular maximum number of
3049   connections, but instead encourages clients to be conservative when opening
3050   multiple connections.
3053   Multiple connections are typically used to avoid the "head-of-line
3054   blocking" problem, wherein a request that takes significant server-side
3055   processing and/or has a large payload blocks subsequent requests on the
3056   same connection. However, each connection consumes server resources.
3057   Furthermore, using multiple connections can cause undesirable side effects
3058   in congested networks.
3061   Note that servers might reject traffic that they deem abusive, including an
3062   excessive number of connections from a client.
3066<section title="Failures and Time-outs" anchor="persistent.failures">
3068   Servers will usually have some time-out value beyond which they will
3069   no longer maintain an inactive connection. Proxy servers might make
3070   this a higher value since it is likely that the client will be making
3071   more connections through the same server. The use of persistent
3072   connections places no requirements on the length (or existence) of
3073   this time-out for either the client or the server.
3076   A client or server that wishes to time-out &SHOULD; issue a graceful close
3077   on the connection. Implementations &SHOULD; constantly monitor open
3078   connections for a received closure signal and respond to it as appropriate,
3079   since prompt closure of both sides of a connection enables allocated system
3080   resources to be reclaimed.
3083   A client, server, or proxy &MAY; close the transport connection at any
3084   time. For example, a client might have started to send a new request
3085   at the same time that the server has decided to close the "idle"
3086   connection. From the server's point of view, the connection is being
3087   closed while it was idle, but from the client's point of view, a
3088   request is in progress.
3091   Servers &SHOULD; maintain persistent connections and allow the underlying
3092   transport's flow control mechanisms to resolve temporary overloads, rather
3093   than terminate connections with the expectation that clients will retry.
3094   The latter technique can exacerbate network congestion.
3097   A client sending a message body &SHOULD; monitor
3098   the network connection for an error response while it is transmitting
3099   the request. If the client sees an error response, it &SHOULD;
3100   immediately cease transmitting the body and close the connection.
3104<section title="Tear-down" anchor="persistent.tear-down">
3105  <iref primary="false" item="Connection header field" x:for-anchor=""/>
3106  <iref primary="false" item="close" x:for-anchor=""/>
3108   The <x:ref>Connection</x:ref> header field
3109   (<xref target="header.connection"/>) provides a "<x:ref>close</x:ref>"
3110   connection option that a sender &SHOULD; send when it wishes to close
3111   the connection after the current request/response pair.
3114   A client that sends a <x:ref>close</x:ref> connection option &MUST-NOT;
3115   send further requests on that connection (after the one containing
3116   <x:ref>close</x:ref>) and &MUST; close the connection after reading the
3117   final response message corresponding to this request.
3120   A server that receives a <x:ref>close</x:ref> connection option &MUST;
3121   initiate a close of the connection (see below) after it sends the
3122   final response to the request that contained <x:ref>close</x:ref>.
3123   The server &SHOULD; send a <x:ref>close</x:ref> connection option
3124   in its final response on that connection. The server &MUST-NOT; process
3125   any further requests received on that connection.
3128   A server that sends a <x:ref>close</x:ref> connection option &MUST;
3129   initiate a close of the connection (see below) after it sends the
3130   response containing <x:ref>close</x:ref>. The server &MUST-NOT; process
3131   any further requests received on that connection.
3134   A client that receives a <x:ref>close</x:ref> connection option &MUST;
3135   cease sending requests on that connection and close the connection
3136   after reading the response message containing the close; if additional
3137   pipelined requests had been sent on the connection, the client &SHOULD-NOT;
3138   assume that they will be processed by the server.
3141   If a server performs an immediate close of a TCP connection, there is a
3142   significant risk that the client will not be able to read the last HTTP
3143   response.  If the server receives additional data from the client on a
3144   fully-closed connection, such as another request that was sent by the
3145   client before receiving the server's response, the server's TCP stack will
3146   send a reset packet to the client; unfortunately, the reset packet might
3147   erase the client's unacknowledged input buffers before they can be read
3148   and interpreted by the client's HTTP parser.
3151   To avoid the TCP reset problem, servers typically close a connection in
3152   stages. First, the server performs a half-close by closing only the write
3153   side of the read/write connection. The server then continues to read from
3154   the connection until it receives a corresponding close by the client, or
3155   until the server is reasonably certain that its own TCP stack has received
3156   the client's acknowledgement of the packet(s) containing the server's last
3157   response. Finally, the server fully closes the connection.
3160   It is unknown whether the reset problem is exclusive to TCP or might also
3161   be found in other transport connection protocols.
3165<section title="Upgrade" anchor="header.upgrade">
3166  <iref primary="true" item="Upgrade header field" x:for-anchor=""/>
3167  <x:anchor-alias value="Upgrade"/>
3168  <x:anchor-alias value="protocol"/>
3169  <x:anchor-alias value="protocol-name"/>
3170  <x:anchor-alias value="protocol-version"/>
3172   The "Upgrade" header field is intended to provide a simple mechanism
3173   for transitioning from HTTP/1.1 to some other protocol on the same
3174   connection.  A client &MAY; send a list of protocols in the Upgrade
3175   header field of a request to invite the server to switch to one or
3176   more of those protocols, in order of descending preference, before sending
3177   the final response. A server &MAY; ignore a received Upgrade header field
3178   if it wishes to continue using the current protocol on that connection.
3180<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Upgrade"/>
3181  <x:ref>Upgrade</x:ref>          = 1#<x:ref>protocol</x:ref>
3183  <x:ref>protocol</x:ref>         = <x:ref>protocol-name</x:ref> ["/" <x:ref>protocol-version</x:ref>]
3184  <x:ref>protocol-name</x:ref>    = <x:ref>token</x:ref>
3185  <x:ref>protocol-version</x:ref> = <x:ref>token</x:ref>
3188   A server that sends a <x:ref>101 (Switching Protocols)</x:ref> response
3189   &MUST; send an Upgrade header field to indicate the new protocol(s) to
3190   which the connection is being switched; if multiple protocol layers are
3191   being switched, the sender &MUST; list the protocols in layer-ascending
3192   order. A server &MUST-NOT; switch to a protocol that was not indicated by
3193   the client in the corresponding request's Upgrade header field.
3194   A server &MAY; choose to ignore the order of preference indicated by the
3195   client and select the new protocol(s) based on other factors, such as the
3196   nature of the request or the current load on the server.
3199   A server that sends a <x:ref>426 (Upgrade Required)</x:ref> response
3200   &MUST; send an Upgrade header field to indicate the acceptable protocols,
3201   in order of descending preference.
3204   A server &MAY; send an Upgrade header field in any other response to
3205   advertise that it implements support for upgrading to the listed protocols,
3206   in order of descending preference, when appropriate for a future request.
3209   The following is a hypothetical example sent by a client:
3210</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
3211GET /hello.txt HTTP/1.1
3213Connection: upgrade
3214Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11
3218   Upgrade cannot be used to insist on a protocol change; its acceptance and
3219   use by the server is optional. The capabilities and nature of the
3220   application-level communication after the protocol change is entirely
3221   dependent upon the new protocol(s) chosen. However, immediately after
3222   sending the 101 response, the server is expected to continue responding to
3223   the original request as if it had received its equivalent within the new
3224   protocol (i.e., the server still has an outstanding request to satisfy
3225   after the protocol has been changed, and is expected to do so without
3226   requiring the request to be repeated).
3229   For example, if the Upgrade header field is received in a GET request
3230   and the server decides to switch protocols, it first responds
3231   with a <x:ref>101 (Switching Protocols)</x:ref> message in HTTP/1.1 and
3232   then immediately follows that with the new protocol's equivalent of a
3233   response to a GET on the target resource.  This allows a connection to be
3234   upgraded to protocols with the same semantics as HTTP without the
3235   latency cost of an additional round-trip.  A server &MUST-NOT; switch
3236   protocols unless the received message semantics can be honored by the new
3237   protocol; an OPTIONS request can be honored by any protocol.
3240   The following is an example response to the above hypothetical request:
3241</preamble><artwork type="message/http; msgtype=&#34;response&#34;" x:indent-with="  ">
3242HTTP/1.1 101 Switching Protocols
3243Connection: upgrade
3244Upgrade: HTTP/2.0
3246[... data stream switches to HTTP/2.0 with an appropriate response
3247(as defined by new protocol) to the "GET /hello.txt" request ...]
3250   When Upgrade is sent, the sender &MUST; also send a
3251   <x:ref>Connection</x:ref> header field (<xref target="header.connection"/>)
3252   that contains an "upgrade" connection option, in order to prevent Upgrade
3253   from being accidentally forwarded by intermediaries that might not implement
3254   the listed protocols.  A server &MUST; ignore an Upgrade header field that
3255   is received in an HTTP/1.0 request.
3258   The Upgrade header field only applies to switching protocols on top of the
3259   existing connection; it cannot be used to switch the underlying connection
3260   (transport) protocol, nor to switch the existing communication to a
3261   different connection. For those purposes, it is more appropriate to use a
3262   <x:ref>3xx (Redirection)</x:ref> response (&status-3xx;).
3265   This specification only defines the protocol name "HTTP" for use by
3266   the family of Hypertext Transfer Protocols, as defined by the HTTP
3267   version rules of <xref target="http.version"/> and future updates to this
3268   specification. Additional tokens ought to be registered with IANA using the
3269   registration procedure defined in <xref target="upgrade.token.registry"/>.
3274<section title="IANA Considerations" anchor="IANA.considerations">
3276<section title="Header Field Registration" anchor="header.field.registration">
3278   HTTP header fields are registered within the Message Header Field Registry
3279   maintained at
3280   <eref target=""/>.
3283   This document defines the following HTTP header fields, so their
3284   associated registry entries shall be updated according to the permanent
3285   registrations below (see <xref target="BCP90"/>):
3287<?BEGININC p1-messaging.iana-headers ?>
3288<!--AUTOGENERATED FROM extract-header-defs.xslt, do not edit manually-->
3289<texttable align="left" suppress-title="true" anchor="iana.header.registration.table">
3290   <ttcol>Header Field Name</ttcol>
3291   <ttcol>Protocol</ttcol>
3292   <ttcol>Status</ttcol>
3293   <ttcol>Reference</ttcol>
3295   <c>Connection</c>
3296   <c>http</c>
3297   <c>standard</c>
3298   <c>
3299      <xref target="header.connection"/>
3300   </c>
3301   <c>Content-Length</c>
3302   <c>http</c>
3303   <c>standard</c>
3304   <c>
3305      <xref target="header.content-length"/>
3306   </c>
3307   <c>Host</c>
3308   <c>http</c>
3309   <c>standard</c>
3310   <c>
3311      <xref target=""/>
3312   </c>
3313   <c>TE</c>
3314   <c>http</c>
3315   <c>standard</c>
3316   <c>
3317      <xref target="header.te"/>
3318   </c>
3319   <c>Trailer</c>
3320   <c>http</c>
3321   <c>standard</c>
3322   <c>
3323      <xref target="header.trailer"/>
3324   </c>
3325   <c>Transfer-Encoding</c>
3326   <c>http</c>
3327   <c>standard</c>
3328   <c>
3329      <xref target="header.transfer-encoding"/>
3330   </c>
3331   <c>Upgrade</c>
3332   <c>http</c>
3333   <c>standard</c>
3334   <c>
3335      <xref target="header.upgrade"/>
3336   </c>
3337   <c>Via</c>
3338   <c>http</c>
3339   <c>standard</c>
3340   <c>
3341      <xref target="header.via"/>
3342   </c>
3345<?ENDINC p1-messaging.iana-headers ?>
3347   Furthermore, the header field-name "Close" shall be registered as
3348   "reserved", since using that name as an HTTP header field might
3349   conflict with the "close" connection option of the "<x:ref>Connection</x:ref>"
3350   header field (<xref target="header.connection"/>).
3352<texttable align="left" suppress-title="true">
3353   <ttcol>Header Field Name</ttcol>
3354   <ttcol>Protocol</ttcol>
3355   <ttcol>Status</ttcol>
3356   <ttcol>Reference</ttcol>
3358   <c>Close</c>
3359   <c>http</c>
3360   <c>reserved</c>
3361   <c>
3362      <xref target="header.field.registration"/>
3363   </c>
3366   The change controller is: "IETF ( - Internet Engineering Task Force".
3370<section title="URI Scheme Registration" anchor="uri.scheme.registration">
3372   IANA maintains the registry of URI Schemes <xref target="BCP115"/> at
3373   <eref target=""/>.
3376   This document defines the following URI schemes, so their
3377   associated registry entries shall be updated according to the permanent
3378   registrations below:
3380<texttable align="left" suppress-title="true">
3381   <ttcol>URI Scheme</ttcol>
3382   <ttcol>Description</ttcol>
3383   <ttcol>Reference</ttcol>
3385   <c>http</c>
3386   <c>Hypertext Transfer Protocol</c>
3387   <c><xref target="http.uri"/></c>
3389   <c>https</c>
3390   <c>Hypertext Transfer Protocol Secure</c>
3391   <c><xref target="https.uri"/></c>
3395<section title="Internet Media Type Registration" anchor="">
3397   This document serves as the specification for the Internet media types
3398   "message/http" and "application/http". The following is to be registered with
3399   IANA (see <xref target="BCP13"/>).
3401<section title="Internet Media Type message/http" anchor="">
3402<iref item="Media Type" subitem="message/http" primary="true"/>
3403<iref item="message/http Media Type" primary="true"/>
3405   The message/http type can be used to enclose a single HTTP request or
3406   response message, provided that it obeys the MIME restrictions for all
3407   "message" types regarding line length and encodings.
3410  <list style="hanging" x:indent="12em">
3411    <t hangText="Type name:">
3412      message
3413    </t>
3414    <t hangText="Subtype name:">
3415      http
3416    </t>
3417    <t hangText="Required parameters:">
3418      none
3419    </t>
3420    <t hangText="Optional parameters:">
3421      version, msgtype
3422      <list style="hanging">
3423        <t hangText="version:">
3424          The HTTP-version number of the enclosed message
3425          (e.g., "1.1"). If not present, the version can be
3426          determined from the first line of the body.
3427        </t>
3428        <t hangText="msgtype:">
3429          The message type &mdash; "request" or "response". If not
3430          present, the type can be determined from the first
3431          line of the body.
3432        </t>
3433      </list>
3434    </t>
3435    <t hangText="Encoding considerations:">
3436      only "7bit", "8bit", or "binary" are permitted
3437    </t>
3438    <t hangText="Security considerations:">
3439      none
3440    </t>
3441    <t hangText="Interoperability considerations:">
3442      none
3443    </t>
3444    <t hangText="Published specification:">
3445      This specification (see <xref target=""/>).
3446    </t>
3447    <t hangText="Applications that use this media type:">
3448    </t>
3449    <t hangText="Additional information:">
3450      <list style="hanging">
3451        <t hangText="Magic number(s):">none</t>
3452        <t hangText="File extension(s):">none</t>
3453        <t hangText="Macintosh file type code(s):">none</t>
3454      </list>
3455    </t>
3456    <t hangText="Person and email address to contact for further information:">
3457      See Authors Section.
3458    </t>
3459    <t hangText="Intended usage:">
3460      COMMON
3461    </t>
3462    <t hangText="Restrictions on usage:">
3463      none
3464    </t>
3465    <t hangText="Author:">
3466      See Authors Section.
3467    </t>
3468    <t hangText="Change controller:">
3469      IESG
3470    </t>
3471  </list>
3474<section title="Internet Media Type application/http" anchor="">
3475<iref item="Media Type" subitem="application/http" primary="true"/>
3476<iref item="application/http Media Type" primary="true"/>
3478   The application/http type can be used to enclose a pipeline of one or more
3479   HTTP request or response messages (not intermixed).
3482  <list style="hanging" x:indent="12em">
3483    <t hangText="Type name:">
3484      application
3485    </t>
3486    <t hangText="Subtype name:">
3487      http
3488    </t>
3489    <t hangText="Required parameters:">
3490      none
3491    </t>
3492    <t hangText="Optional parameters:">
3493      version, msgtype
3494      <list style="hanging">
3495        <t hangText="version:">
3496          The HTTP-version number of the enclosed messages
3497          (e.g., "1.1"). If not present, the version can be
3498          determined from the first line of the body.
3499        </t>
3500        <t hangText="msgtype:">
3501          The message type &mdash; "request" or "response". If not
3502          present, the type can be determined from the first
3503          line of the body.
3504        </t>
3505      </list>
3506    </t>
3507    <t hangText="Encoding considerations:">
3508      HTTP messages enclosed by this type
3509      are in "binary" format; use of an appropriate
3510      Content-Transfer-Encoding is required when
3511      transmitted via E-mail.
3512    </t>
3513    <t hangText="Security considerations:">
3514      none
3515    </t>
3516    <t hangText="Interoperability considerations:">
3517      none
3518    </t>
3519    <t hangText="Published specification:">
3520      This specification (see <xref target=""/>).
3521    </t>
3522    <t hangText="Applications that use this media type:">
3523    </t>
3524    <t hangText="Additional information:">
3525      <list style="hanging">
3526        <t hangText="Magic number(s):">none</t>
3527        <t hangText="File extension(s):">none</t>
3528        <t hangText="Macintosh file type code(s):">none</t>
3529      </list>
3530    </t>
3531    <t hangText="Person and email address to contact for further information:">
3532      See Authors Section.
3533    </t>
3534    <t hangText="Intended usage:">
3535      COMMON
3536    </t>
3537    <t hangText="Restrictions on usage:">
3538      none
3539    </t>
3540    <t hangText="Author:">
3541      See Authors Section.
3542    </t>
3543    <t hangText="Change controller:">
3544      IESG
3545    </t>
3546  </list>
3551<section title="Transfer Coding Registry" anchor="transfer.coding.registry">
3553   The HTTP Transfer Coding Registry defines the name space for transfer
3554   coding names. It is maintained at <eref target=""/>.
3557<section title="Procedure" anchor="transfer.coding.registry.procedure">
3559   Registrations &MUST; include the following fields:
3560   <list style="symbols">
3561     <t>Name</t>
3562     <t>Description</t>
3563     <t>Pointer to specification text</t>
3564   </list>
3567   Names of transfer codings &MUST-NOT; overlap with names of content codings
3568   (&content-codings;) unless the encoding transformation is identical, as
3569   is the case for the compression codings defined in
3570   <xref target="compression.codings"/>.
3573   Values to be added to this name space require IETF Review (see
3574   <xref target="RFC5226" x:fmt="of" x:sec="4.1"/>), and &MUST;
3575   conform to the purpose of transfer coding defined in this specification.
3578   Use of program names for the identification of encoding formats
3579   is not desirable and is discouraged for future encodings.
3583<section title="Registration" anchor="transfer.coding.registration">
3585   The HTTP Transfer Coding Registry shall be updated with the registrations
3586   below:
3588<texttable align="left" suppress-title="true" anchor="iana.transfer.coding.registration.table">
3589   <ttcol>Name</ttcol>
3590   <ttcol>Description</ttcol>
3591   <ttcol>Reference</ttcol>
3592   <c>chunked</c>
3593   <c>Transfer in a series of chunks</c>
3594   <c>
3595      <xref target="chunked.encoding"/>
3596   </c>
3597   <c>compress</c>
3598   <c>UNIX "compress" data format <xref target="Welch"/></c>
3599   <c>
3600      <xref target="compress.coding"/>
3601   </c>
3602   <c>deflate</c>
3603   <c>"deflate" compressed data (<xref target="RFC1951"/>) inside
3604   the "zlib" data format (<xref target="RFC1950"/>)
3605   </c>
3606   <c>
3607      <xref target="deflate.coding"/>
3608   </c>
3609   <c>gzip</c>
3610   <c>GZIP file format <xref target="RFC1952"/></c>
3611   <c>
3612      <xref target="gzip.coding"/>
3613   </c>
3614   <c>x-compress</c>
3615   <c>Deprecated (alias for compress)</c>
3616   <c>
3617      <xref target="compress.coding"/>
3618   </c>
3619   <c>x-gzip</c>
3620   <c>Deprecated (alias for gzip)</c>
3621   <c>
3622      <xref target="gzip.coding"/>
3623   </c>
3628<section title="Upgrade Token Registry" anchor="upgrade.token.registry">
3630   The HTTP Upgrade Token Registry defines the name space for protocol-name
3631   tokens used to identify protocols in the <x:ref>Upgrade</x:ref> header
3632   field. The registry is maintained at <eref target=""/>.
3635<section title="Procedure" anchor="upgrade.token.registry.procedure">  
3637   Each registered protocol name is associated with contact information
3638   and an optional set of specifications that details how the connection
3639   will be processed after it has been upgraded.
3642   Registrations happen on a "First Come First Served" basis (see
3643   <xref target="RFC5226" x:sec="4.1" x:fmt="of"/>) and are subject to the
3644   following rules:
3645  <list style="numbers">
3646    <t>A protocol-name token, once registered, stays registered forever.</t>
3647    <t>The registration &MUST; name a responsible party for the
3648       registration.</t>
3649    <t>The registration &MUST; name a point of contact.</t>
3650    <t>The registration &MAY; name a set of specifications associated with
3651       that token. Such specifications need not be publicly available.</t>
3652    <t>The registration &SHOULD; name a set of expected "protocol-version"
3653       tokens associated with that token at the time of registration.</t>
3654    <t>The responsible party &MAY; change the registration at any time.
3655       The IANA will keep a record of all such changes, and make them
3656       available upon request.</t>
3657    <t>The IESG &MAY; reassign responsibility for a protocol token.
3658       This will normally only be used in the case when a
3659       responsible party cannot be contacted.</t>
3660  </list>
3663   This registration procedure for HTTP Upgrade Tokens replaces that
3664   previously defined in <xref target="RFC2817" x:fmt="of" x:sec="7.2"/>.
3668<section title="Upgrade Token Registration" anchor="upgrade.token.registration">
3670   The HTTP Upgrade Token Registry shall be updated with the registration
3671   below:
3673<texttable align="left" suppress-title="true">
3674   <ttcol>Value</ttcol>
3675   <ttcol>Description</ttcol>
3676   <ttcol>Expected Version Tokens</ttcol>
3677   <ttcol>Reference</ttcol>
3679   <c>HTTP</c>
3680   <c>Hypertext Transfer Protocol</c>
3681   <c>any DIGIT.DIGIT (e.g, "2.0")</c>
3682   <c><xref target="http.version"/></c>
3685   The responsible party is: "IETF ( - Internet Engineering Task Force".
3692<section title="Security Considerations" anchor="security.considerations">
3694   This section is meant to inform developers, information providers, and
3695   users of known security concerns relevant to HTTP/1.1 message syntax,
3696   parsing, and routing.
3699<section title="DNS-related Attacks" anchor="dns.related.attacks">
3701   HTTP clients rely heavily on the Domain Name Service (DNS), and are thus
3702   generally prone to security attacks based on the deliberate misassociation
3703   of IP addresses and DNS names not protected by DNSSEC. Clients need to be
3704   cautious in assuming the validity of an IP number/DNS name association unless
3705   the response is protected by DNSSEC (<xref target="RFC4033"/>).
3709<section title="Intermediaries and Caching" anchor="attack.intermediaries">
3711   By their very nature, HTTP intermediaries are men-in-the-middle, and
3712   represent an opportunity for man-in-the-middle attacks. Compromise of
3713   the systems on which the intermediaries run can result in serious security
3714   and privacy problems. Intermediaries have access to security-related
3715   information, personal information about individual users and
3716   organizations, and proprietary information belonging to users and
3717   content providers. A compromised intermediary, or an intermediary
3718   implemented or configured without regard to security and privacy
3719   considerations, might be used in the commission of a wide range of
3720   potential attacks.
3723   Intermediaries that contain a shared cache are especially vulnerable
3724   to cache poisoning attacks.
3727   Implementers need to consider the privacy and security
3728   implications of their design and coding decisions, and of the
3729   configuration options they provide to operators (especially the
3730   default configuration).
3733   Users need to be aware that intermediaries are no more trustworthy than
3734   the people who run them; HTTP itself cannot solve this problem.
3738<section title="Buffer Overflows" anchor="attack.protocol.element.size.overflows">
3740   Because HTTP uses mostly textual, character-delimited fields, attackers can
3741   overflow buffers in implementations, and/or perform a Denial of Service
3742   against implementations that accept fields with unlimited lengths.
3745   To promote interoperability, this specification makes specific
3746   recommendations for minimum size limits on request-line
3747   (<xref target="request.line"/>)
3748   and blocks of header fields (<xref target="header.fields"/>). These are
3749   minimum recommendations, chosen to be supportable even by implementations
3750   with limited resources; it is expected that most implementations will
3751   choose substantially higher limits.
3754   This specification also provides a way for servers to reject messages that
3755   have request-targets that are too long (&status-414;) or request entities
3756   that are too large (&status-4xx;). Additional status codes related to
3757   capacity limits have been defined by extensions to HTTP
3758   <xref target="RFC6585"/>.
3761   Recipients &SHOULD; carefully limit the extent to which they read other
3762   fields, including (but not limited to) request methods, response status
3763   phrases, header field-names, and body chunks, so as to avoid denial of
3764   service attacks without impeding interoperability.
3768<section title="Message Integrity" anchor="message.integrity">
3770   HTTP does not define a specific mechanism for ensuring message integrity,
3771   instead relying on the error-detection ability of underlying transport
3772   protocols and the use of length or chunk-delimited framing to detect
3773   completeness. Additional integrity mechanisms, such as hash functions or
3774   digital signatures applied to the content, can be selectively added to
3775   messages via extensible metadata header fields. Historically, the lack of
3776   a single integrity mechanism has been justified by the informal nature of
3777   most HTTP communication.  However, the prevalence of HTTP as an information
3778   access mechanism has resulted in its increasing use within environments
3779   where verification of message integrity is crucial.
3782   User agents are encouraged to implement configurable means for detecting
3783   and reporting failures of message integrity such that those means can be
3784   enabled within environments for which integrity is necessary. For example,
3785   a browser being used to view medical history or drug interaction
3786   information needs to indicate to the user when such information is detected
3787   by the protocol to be incomplete, expired, or corrupted during transfer.
3788   Such mechanisms might be selectively enabled via user agent extensions or
3789   the presence of message integrity metadata in a response.
3790   At a minimum, user agents ought to provide some indication that allows a
3791   user to distinguish between a complete and incomplete response message
3792   (<xref target="incomplete.messages"/>) when such verification is desired.
3796<section title="Server Log Information" anchor="abuse.of.server.log.information">
3798   A server is in the position to save personal data about a user's requests
3799   over time, which might identify their reading patterns or subjects of
3800   interest.  In particular, log information gathered at an intermediary
3801   often contains a history of user agent interaction, across a multitude
3802   of sites, that can be traced to individual users.
3805   HTTP log information is confidential in nature; its handling is often
3806   constrained by laws and regulations.  Log information needs to be securely
3807   stored and appropriate guidelines followed for its analysis.
3808   Anonymization of personal information within individual entries helps,
3809   but is generally not sufficient to prevent real log traces from being
3810   re-identified based on correlation with other access characteristics.
3811   As such, access traces that are keyed to a specific client should not
3812   be published even if the key is pseudonymous.
3815   To minimize the risk of theft or accidental publication, log information
3816   should be purged of personally identifiable information, including
3817   user identifiers, IP addresses, and user-provided query parameters,
3818   as soon as that information is no longer necessary to support operational
3819   needs for security, auditing, or fraud control.
3824<section title="Acknowledgments" anchor="acks">
3826   This edition of HTTP/1.1 builds on the many contributions that went into
3827   <xref target="RFC1945" format="none">RFC 1945</xref>,
3828   <xref target="RFC2068" format="none">RFC 2068</xref>,
3829   <xref target="RFC2145" format="none">RFC 2145</xref>, and
3830   <xref target="RFC2616" format="none">RFC 2616</xref>, including
3831   substantial contributions made by the previous authors, editors, and
3832   working group chairs: Tim Berners-Lee, Ari Luotonen, Roy T. Fielding,
3833   Henrik Frystyk Nielsen, Jim Gettys, Jeffrey C. Mogul, Larry Masinter,
3834   and Paul J. Leach. Mark Nottingham oversaw this effort as working group chair.
3837   Since 1999, the following contributors have helped improve the HTTP
3838   specification by reporting bugs, asking smart questions, drafting or
3839   reviewing text, and evaluating open issues:
3841<?BEGININC acks ?>
3842<t>Adam Barth,
3843Adam Roach,
3844Addison Phillips,
3845Adrian Chadd,
3846Adrien W. de Croy,
3847Alan Ford,
3848Alan Ruttenberg,
3849Albert Lunde,
3850Alek Storm,
3851Alex Rousskov,
3852Alexandre Morgaut,
3853Alexey Melnikov,
3854Alisha Smith,
3855Amichai Rothman,
3856Amit Klein,
3857Amos Jeffries,
3858Andreas Maier,
3859Andreas Petersson,
3860Anil Sharma,
3861Anne van Kesteren,
3862Anthony Bryan,
3863Asbjorn Ulsberg,
3864Ashok Kumar,
3865Balachander Krishnamurthy,
3866Barry Leiba,
3867Ben Laurie,
3868Benjamin Carlyle,
3869Benjamin Niven-Jenkins,
3870Bil Corry,
3871Bill Burke,
3872Bjoern Hoehrmann,
3873Bob Scheifler,
3874Boris Zbarsky,
3875Brett Slatkin,
3876Brian Kell,
3877Brian McBarron,
3878Brian Pane,
3879Brian Raymor,
3880Brian Smith,
3881Bryce Nesbitt,
3882Cameron Heavon-Jones,
3883Carl Kugler,
3884Carsten Bormann,
3885Charles Fry,
3886Chris Newman,
3887Cyrus Daboo,
3888Dale Robert Anderson,
3889Dan Wing,
3890Dan Winship,
3891Daniel Stenberg,
3892Darrel Miller,
3893Dave Cridland,
3894Dave Crocker,
3895Dave Kristol,
3896Dave Thaler,
3897David Booth,
3898David Singer,
3899David W. Morris,
3900Diwakar Shetty,
3901Dmitry Kurochkin,
3902Drummond Reed,
3903Duane Wessels,
3904Edward Lee,
3905Eitan Adler,
3906Eliot Lear,
3907Eran Hammer-Lahav,
3908Eric D. Williams,
3909Eric J. Bowman,
3910Eric Lawrence,
3911Eric Rescorla,
3912Erik Aronesty,
3913Evan Prodromou,
3914Felix Geisendoerfer,
3915Florian Weimer,
3916Frank Ellermann,
3917Fred Akalin,
3918Fred Bohle,
3919Frederic Kayser,
3920Gabor Molnar,
3921Gabriel Montenegro,
3922Geoffrey Sneddon,
3923Gervase Markham,
3924Gili Tzabari,
3925Grahame Grieve,
3926Greg Wilkins,
3927Grzegorz Calkowski,
3928Harald Tveit Alvestrand,
3929Harry Halpin,
3930Helge Hess,
3931Henrik Nordstrom,
3932Henry S. Thompson,
3933Henry Story,
3934Herbert van de Sompel,
3935Herve Ruellan,
3936Howard Melman,
3937Hugo Haas,
3938Ian Fette,
3939Ian Hickson,
3940Ido Safruti,
3941Ilari Liusvaara,
3942Ilya Grigorik,
3943Ingo Struck,
3944J. Ross Nicoll,
3945James Cloos,
3946James H. Manger,
3947James Lacey,
3948James M. Snell,
3949Jamie Lokier,
3950Jan Algermissen,
3951Jeff Hodges (who came up with the term 'effective Request-URI'),
3952Jeff Pinner,
3953Jeff Walden,
3954Jim Luther,
3955Jitu Padhye,
3956Joe D. Williams,
3957Joe Gregorio,
3958Joe Orton,
3959John C. Klensin,
3960John C. Mallery,
3961John Cowan,
3962John Kemp,
3963John Panzer,
3964John Schneider,
3965John Stracke,
3966John Sullivan,
3967Jonas Sicking,
3968Jonathan A. Rees,
3969Jonathan Billington,
3970Jonathan Moore,
3971Jonathan Silvera,
3972Jordi Ros,
3973Joris Dobbelsteen,
3974Josh Cohen,
3975Julien Pierre,
3976Jungshik Shin,
3977Justin Chapweske,
3978Justin Erenkrantz,
3979Justin James,
3980Kalvinder Singh,
3981Karl Dubost,
3982Keith Hoffman,
3983Keith Moore,
3984Ken Murchison,
3985Koen Holtman,
3986Konstantin Voronkov,
3987Kris Zyp,
3988Lisa Dusseault,
3989Maciej Stachowiak,
3990Manu Sporny,
3991Marc Schneider,
3992Marc Slemko,
3993Mark Baker,
3994Mark Pauley,
3995Mark Watson,
3996Markus Isomaki,
3997Markus Lanthaler,
3998Martin J. Duerst,
3999Martin Musatov,
4000Martin Nilsson,
4001Martin Thomson,
4002Matt Lynch,
4003Matthew Cox,
4004Max Clark,
4005Michael Burrows,
4006Michael Hausenblas,
4007Michael Sweet,
4008Mike Amundsen,
4009Mike Belshe,
4010Mike Bishop,
4011Mike Kelly,
4012Mike Schinkel,
4013Miles Sabin,
4014Murray S. Kucherawy,
4015Mykyta Yevstifeyev,
4016Nathan Rixham,
4017Nicholas Shanks,
4018Nico Williams,
4019Nicolas Alvarez,
4020Nicolas Mailhot,
4021Noah Slater,
4022Osama Mazahir,
4023Pablo Castro,
4024Pat Hayes,
4025Patrick R. McManus,
4026Paul E. Jones,
4027Paul Hoffman,
4028Paul Marquess,
4029Peter Lepeska,
4030Peter Occil,
4031Peter Saint-Andre,
4032Peter Watkins,
4033Phil Archer,
4034Philippe Mougin,
4035Phillip Hallam-Baker,
4036Piotr Dobrogost,
4037Poul-Henning Kamp,
4038Preethi Natarajan,
4039Rajeev Bector,
4040Ray Polk,
4041Reto Bachmann-Gmuer,
4042Richard Cyganiak,
4043Robby Simpson,
4044Robert Brewer,
4045Robert Collins,
4046Robert Mattson,
4047Robert O'Callahan,
4048Robert Olofsson,
4049Robert Sayre,
4050Robert Siemer,
4051Robert de Wilde,
4052Roberto Javier Godoy,
4053Roberto Peon,
4054Roland Zink,
4055Ronny Widjaja,
4056S. Mike Dierken,
4057Salvatore Loreto,
4058Sam Johnston,
4059Sam Pullara,
4060Sam Ruby,
4061Scott Lawrence (who maintained the original issues list),
4062Sean B. Palmer,
4063Shane McCarron,
4064Shigeki Ohtsu,
4065Stefan Eissing,
4066Stefan Tilkov,
4067Stefanos Harhalakis,
4068Stephane Bortzmeyer,
4069Stephen Farrell,
4070Stephen Ludin,
4071Stuart Williams,
4072Subbu Allamaraju,
4073Sylvain Hellegouarch,
4074Tapan Divekar,
4075Tatsuhiro Tsujikawa,
4076Tatsuya Hayashi,
4077Ted Hardie,
4078Thomas Broyer,
4079Thomas Fossati,
4080Thomas Maslen,
4081Thomas Nordin,
4082Thomas Roessler,
4083Tim Bray,
4084Tim Morgan,
4085Tim Olsen,
4086Tom Zhou,
4087Travis Snoozy,
4088Tyler Close,
4089Vincent Murphy,
4090Wenbo Zhu,
4091Werner Baumann,
4092Wilbur Streett,
4093Wilfredo Sanchez Vega,
4094William A. Rowe Jr.,
4095William Chan,
4096Willy Tarreau,
4097Xiaoshu Wang,
4098Yaron Goland,
4099Yngve Nysaeter Pettersen,
4100Yoav Nir,
4101Yogesh Bang,
4102Yuchung Cheng,
4103Yutaka Oiwa,
4104Yves Lafon (long-time member of the editor team),
4105Zed A. Shaw, and
4106Zhong Yu.
4108<?ENDINC acks ?>
4110   See <xref target="RFC2616" x:fmt="of" x:sec="16"/> for additional
4111   acknowledgements from prior revisions.
4118<references title="Normative References">
4120<reference anchor="Part2">
4121  <front>
4122    <title>Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content</title>
4123    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4124      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4125      <address><email></email></address>
4126    </author>
4127    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4128      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4129      <address><email></email></address>
4130    </author>
4131    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4132  </front>
4133  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p2-semantics-&ID-VERSION;"/>
4134  <x:source href="p2-semantics.xml" basename="p2-semantics">
4135    <x:defines>1xx (Informational)</x:defines>
4136    <x:defines>1xx</x:defines>
4137    <x:defines>100 (Continue)</x:defines>
4138    <x:defines>101 (Switching Protocols)</x:defines>
4139    <x:defines>2xx (Successful)</x:defines>
4140    <x:defines>2xx</x:defines>
4141    <x:defines>200 (OK)</x:defines>
4142    <x:defines>203 (Non-Authoritative Information)</x:defines>
4143    <x:defines>204 (No Content)</x:defines>
4144    <x:defines>3xx (Redirection)</x:defines>
4145    <x:defines>3xx</x:defines>
4146    <x:defines>301 (Moved Permanently)</x:defines>
4147    <x:defines>4xx (Client Error)</x:defines>
4148    <x:defines>4xx</x:defines>
4149    <x:defines>400 (Bad Request)</x:defines>
4150    <x:defines>411 (Length Required)</x:defines>
4151    <x:defines>414 (URI Too Long)</x:defines>
4152    <x:defines>417 (Expectation Failed)</x:defines>
4153    <x:defines>426 (Upgrade Required)</x:defines>
4154    <x:defines>501 (Not Implemented)</x:defines>
4155    <x:defines>502 (Bad Gateway)</x:defines>
4156    <x:defines>505 (HTTP Version Not Supported)</x:defines>
4157    <x:defines>Accept-Encoding</x:defines>
4158    <x:defines>Allow</x:defines>
4159    <x:defines>Content-Encoding</x:defines>
4160    <x:defines>Content-Location</x:defines>
4161    <x:defines>Content-Type</x:defines>
4162    <x:defines>Date</x:defines>
4163    <x:defines>Expect</x:defines>
4164    <x:defines>Location</x:defines>
4165    <x:defines>Server</x:defines>
4166    <x:defines>User-Agent</x:defines>
4167  </x:source>
4170<reference anchor="Part4">
4171  <front>
4172    <title>Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests</title>
4173    <author fullname="Roy T. Fielding" initials="R." role="editor" surname="Fielding">
4174      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4175      <address><email></email></address>
4176    </author>
4177    <author fullname="Julian F. Reschke" initials="J. F." role="editor" surname="Reschke">
4178      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4179      <address><email></email></address>
4180    </author>
4181    <date month="&ID-MONTH;" year="&ID-YEAR;" />
4182  </front>
4183  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p4-conditional-&ID-VERSION;" />
4184  <x:source basename="p4-conditional" href="p4-conditional.xml">
4185    <x:defines>304 (Not Modified)</x:defines>
4186    <x:defines>ETag</x:defines>
4187    <x:defines>Last-Modified</x:defines>
4188  </x:source>
4191<reference anchor="Part5">
4192  <front>
4193    <title>Hypertext Transfer Protocol (HTTP/1.1): Range Requests</title>
4194    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4195      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4196      <address><email></email></address>
4197    </author>
4198    <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
4199      <organization abbrev="W3C">World Wide Web Consortium</organization>
4200      <address><email></email></address>
4201    </author>
4202    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4203      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4204      <address><email></email></address>
4205    </author>
4206    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4207  </front>
4208  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p5-range-&ID-VERSION;"/>
4209  <x:source href="p5-range.xml" basename="p5-range">
4210    <x:defines>Content-Range</x:defines>
4211  </x:source>
4214<reference anchor="Part6">
4215  <front>
4216    <title>Hypertext Transfer Protocol (HTTP/1.1): Caching</title>
4217    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4218      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4219      <address><email></email></address>
4220    </author>
4221    <author initials="M." surname="Nottingham" fullname="Mark Nottingham" role="editor">
4222      <organization>Akamai</organization>
4223      <address><email></email></address>
4224    </author>
4225    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4226      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4227      <address><email></email></address>
4228    </author>
4229    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4230  </front>
4231  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p6-cache-&ID-VERSION;"/>
4232  <x:source href="p6-cache.xml" basename="p6-cache">
4233    <x:defines>Cache-Control</x:defines>
4234    <x:defines>Expires</x:defines>
4235  </x:source>
4238<reference anchor="Part7">
4239  <front>
4240    <title>Hypertext Transfer Protocol (HTTP/1.1): Authentication</title>
4241    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4242      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4243      <address><email></email></address>
4244    </author>
4245    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4246      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4247      <address><email></email></address>
4248    </author>
4249    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4250  </front>
4251  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p7-auth-&ID-VERSION;"/>
4252  <x:source href="p7-auth.xml" basename="p7-auth">
4253    <x:defines>Proxy-Authenticate</x:defines>
4254    <x:defines>Proxy-Authorization</x:defines>
4255  </x:source>
4258<reference anchor="RFC5234">
4259  <front>
4260    <title abbrev="ABNF for Syntax Specifications">Augmented BNF for Syntax Specifications: ABNF</title>
4261    <author initials="D." surname="Crocker" fullname="Dave Crocker" role="editor">
4262      <organization>Brandenburg InternetWorking</organization>
4263      <address>
4264        <email></email>
4265      </address> 
4266    </author>
4267    <author initials="P." surname="Overell" fullname="Paul Overell">
4268      <organization>THUS plc.</organization>
4269      <address>
4270        <email></email>
4271      </address>
4272    </author>
4273    <date month="January" year="2008"/>
4274  </front>
4275  <seriesInfo name="STD" value="68"/>
4276  <seriesInfo name="RFC" value="5234"/>
4279<reference anchor="RFC2119">
4280  <front>
4281    <title>Key words for use in RFCs to Indicate Requirement Levels</title>
4282    <author initials="S." surname="Bradner" fullname="Scott Bradner">
4283      <organization>Harvard University</organization>
4284      <address><email></email></address>
4285    </author>
4286    <date month="March" year="1997"/>
4287  </front>
4288  <seriesInfo name="BCP" value="14"/>
4289  <seriesInfo name="RFC" value="2119"/>
4292<reference anchor="RFC3986">
4293 <front>
4294  <title abbrev='URI Generic Syntax'>Uniform Resource Identifier (URI): Generic Syntax</title>
4295  <author initials='T.' surname='Berners-Lee' fullname='Tim Berners-Lee'>
4296    <organization abbrev="W3C/MIT">World Wide Web Consortium</organization>
4297    <address>
4298       <email></email>
4299       <uri></uri>
4300    </address>
4301  </author>
4302  <author initials='R.' surname='Fielding' fullname='Roy T. Fielding'>
4303    <organization abbrev="Day Software">Day Software</organization>
4304    <address>
4305      <email></email>
4306      <uri></uri>
4307    </address>
4308  </author>
4309  <author initials='L.' surname='Masinter' fullname='Larry Masinter'>
4310    <organization abbrev="Adobe Systems">Adobe Systems Incorporated</organization>
4311    <address>
4312      <email></email>
4313      <uri></uri>
4314    </address>
4315  </author>
4316  <date month='January' year='2005'></date>
4317 </front>
4318 <seriesInfo name="STD" value="66"/>
4319 <seriesInfo name="RFC" value="3986"/>
4322<reference anchor="RFC0793">
4323  <front>
4324    <title>Transmission Control Protocol</title>
4325    <author initials='J.' surname='Postel' fullname='Jon Postel'>
4326      <organization>University of Southern California (USC)/Information Sciences Institute</organization>
4327    </author>
4328    <date year='1981' month='September' />
4329  </front>
4330  <seriesInfo name='STD' value='7' />
4331  <seriesInfo name='RFC' value='793' />
4334<reference anchor="USASCII">
4335  <front>
4336    <title>Coded Character Set -- 7-bit American Standard Code for Information Interchange</title>
4337    <author>
4338      <organization>American National Standards Institute</organization>
4339    </author>
4340    <date year="1986"/>
4341  </front>
4342  <seriesInfo name="ANSI" value="X3.4"/>
4345<reference anchor="RFC1950">
4346  <front>
4347    <title>ZLIB Compressed Data Format Specification version 3.3</title>
4348    <author initials="L.P." surname="Deutsch" fullname="L. Peter Deutsch">
4349      <organization>Aladdin Enterprises</organization>
4350      <address><email></email></address>
4351    </author>
4352    <author initials="J-L." surname="Gailly" fullname="Jean-Loup Gailly"/>
4353    <date month="May" year="1996"/>
4354  </front>
4355  <seriesInfo name="RFC" value="1950"/>
4356  <!--<annotation>
4357    RFC 1950 is an Informational RFC, thus it might be less stable than
4358    this specification. On the other hand, this downward reference was
4359    present since the publication of <xref target="RFC2068" x:fmt="none">RFC 2068</xref> in 1997,
4360    therefore it is unlikely to cause problems in practice. See also
4361    <xref target="BCP97"/>.
4362  </annotation>-->
4365<reference anchor="RFC1951">
4366  <front>
4367    <title>DEFLATE Compressed Data Format Specification version 1.3</title>
4368    <author initials="P." surname="Deutsch" fullname="L. Peter Deutsch">
4369      <organization>Aladdin Enterprises</organization>
4370      <address><email></email></address>
4371    </author>
4372    <date month="May" year="1996"/>
4373  </front>
4374  <seriesInfo name="RFC" value="1951"/>
4375  <!--<annotation>
4376    RFC 1951 is an Informational RFC, thus it might be less stable than
4377    this specification. On the other hand, this downward reference was
4378    present since the publication of <xref target="RFC2068" x:fmt="none">RFC 2068</xref> in 1997,
4379    therefore it is unlikely to cause problems in practice. See also
4380    <xref target="BCP97"/>.
4381  </annotation>-->
4384<reference anchor="RFC1952">
4385  <front>
4386    <title>GZIP file format specification version 4.3</title>
4387    <author initials="P." surname="Deutsch" fullname="L. Peter Deutsch">
4388      <organization>Aladdin Enterprises</organization>
4389      <address><email></email></address>
4390    </author>
4391    <author initials="J-L." surname="Gailly" fullname="Jean-Loup Gailly">
4392      <address><email></email></address>
4393    </author>
4394    <author initials="M." surname="Adler" fullname="Mark Adler">
4395      <address><email></email></address>
4396    </author>
4397    <author initials="L.P." surname="Deutsch" fullname="L. Peter Deutsch">
4398      <address><email></email></address>
4399    </author>
4400    <author initials="G." surname="Randers-Pehrson" fullname="Glenn Randers-Pehrson">
4401      <address><email></email></address>
4402    </author>
4403    <date month="May" year="1996"/>
4404  </front>
4405  <seriesInfo name="RFC" value="1952"/>
4406  <!--<annotation>
4407    RFC 1952 is an Informational RFC, thus it might be less stable than
4408    this specification. On the other hand, this downward reference was
4409    present since the publication of <xref target="RFC2068" x:fmt="none">RFC 2068</xref> in 1997,
4410    therefore it is unlikely to cause problems in practice. See also
4411    <xref target="BCP97"/>.
4412  </annotation>-->
4415<reference anchor="Welch">
4416  <front>
4417    <title>A Technique for High Performance Data Compression</title>
4418    <author initials="T.A." surname="Welch" fullname="Terry A. Welch"/>
4419    <date month="June" year="1984"/>
4420  </front>
4421  <seriesInfo name="IEEE Computer" value="17(6)"/>
4426<references title="Informative References">
4428<reference anchor="ISO-8859-1">
4429  <front>
4430    <title>
4431     Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin alphabet No. 1
4432    </title>
4433    <author>
4434      <organization>International Organization for Standardization</organization>
4435    </author>
4436    <date year="1998"/>
4437  </front>
4438  <seriesInfo name="ISO/IEC" value="8859-1:1998"/>
4441<reference anchor='RFC1919'>
4442  <front>
4443    <title>Classical versus Transparent IP Proxies</title>
4444    <author initials='M.' surname='Chatel' fullname='Marc Chatel'>
4445      <address><email></email></address>
4446    </author>
4447    <date year='1996' month='March' />
4448  </front>
4449  <seriesInfo name='RFC' value='1919' />
4452<reference anchor="RFC1945">
4453  <front>
4454    <title abbrev="HTTP/1.0">Hypertext Transfer Protocol -- HTTP/1.0</title>
4455    <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
4456      <organization>MIT, Laboratory for Computer Science</organization>
4457      <address><email></email></address>
4458    </author>
4459    <author initials="R.T." surname="Fielding" fullname="Roy T. Fielding">
4460      <organization>University of California, Irvine, Department of Information and Computer Science</organization>
4461      <address><email></email></address>
4462    </author>
4463    <author initials="H.F." surname="Nielsen" fullname="Henrik Frystyk Nielsen">
4464      <organization>W3 Consortium, MIT Laboratory for Computer Science</organization>
4465      <address><email></email></address>
4466    </author>
4467    <date month="May" year="1996"/>
4468  </front>
4469  <seriesInfo name="RFC" value="1945"/>
4472<reference anchor="RFC2045">
4473  <front>
4474    <title abbrev="Internet Message Bodies">Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies</title>
4475    <author initials="N." surname="Freed" fullname="Ned Freed">
4476      <organization>Innosoft International, Inc.</organization>
4477      <address><email></email></address>
4478    </author>
4479    <author initials="N.S." surname="Borenstein" fullname="Nathaniel S. Borenstein">
4480      <organization>First Virtual Holdings</organization>
4481      <address><email></email></address>
4482    </author>
4483    <date month="November" year="1996"/>
4484  </front>
4485  <seriesInfo name="RFC" value="2045"/>
4488<reference anchor="RFC2047">
4489  <front>
4490    <title abbrev="Message Header Extensions">MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text</title>
4491    <author initials="K." surname="Moore" fullname="Keith Moore">
4492      <organization>University of Tennessee</organization>
4493      <address><email></email></address>
4494    </author>
4495    <date month="November" year="1996"/>
4496  </front>
4497  <seriesInfo name="RFC" value="2047"/>
4500<reference anchor="RFC2068">
4501  <front>
4502    <title>Hypertext Transfer Protocol -- HTTP/1.1</title>
4503    <author initials="R." surname="Fielding" fullname="Roy T. Fielding">
4504      <organization>University of California, Irvine, Department of Information and Computer Science</organization>
4505      <address><email></email></address>
4506    </author>
4507    <author initials="J." surname="Gettys" fullname="Jim Gettys">
4508      <organization>MIT Laboratory for Computer Science</organization>
4509      <address><email></email></address>
4510    </author>
4511    <author initials="J." surname="Mogul" fullname="Jeffrey C. Mogul">
4512      <organization>Digital Equipment Corporation, Western Research Laboratory</organization>
4513      <address><email></email></address>
4514    </author>
4515    <author initials="H." surname="Nielsen" fullname="Henrik Frystyk Nielsen">
4516      <organization>MIT Laboratory for Computer Science</organization>
4517      <address><email></email></address>
4518    </author>
4519    <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
4520      <organization>MIT Laboratory for Computer Science</organization>
4521      <address><email></email></address>
4522    </author>
4523    <date month="January" year="1997"/>
4524  </front>
4525  <seriesInfo name="RFC" value="2068"/>
4528<reference anchor="RFC2145">
4529  <front>
4530    <title abbrev="HTTP Version Numbers">Use and Interpretation of HTTP Version Numbers</title>
4531    <author initials="J.C." surname="Mogul" fullname="Jeffrey C. Mogul">
4532      <organization>Western Research Laboratory</organization>
4533      <address><email></email></address>
4534    </author>
4535    <author initials="R.T." surname="Fielding" fullname="Roy T. Fielding">
4536      <organization>Department of Information and Computer Science</organization>
4537      <address><email></email></address>
4538    </author>
4539    <author initials="J." surname="Gettys" fullname="Jim Gettys">
4540      <organization>MIT Laboratory for Computer Science</organization>
4541      <address><email></email></address>
4542    </author>
4543    <author initials="H.F." surname="Nielsen" fullname="Henrik Frystyk Nielsen">
4544      <organization>W3 Consortium</organization>
4545      <address><email></email></address>
4546    </author>
4547    <date month="May" year="1997"/>
4548  </front>
4549  <seriesInfo name="RFC" value="2145"/>
4552<reference anchor="RFC2616">
4553  <front>
4554    <title>Hypertext Transfer Protocol -- HTTP/1.1</title>
4555    <author initials="R." surname="Fielding" fullname="R. Fielding">
4556      <organization>University of California, Irvine</organization>
4557      <address><email></email></address>
4558    </author>
4559    <author initials="J." surname="Gettys" fullname="J. Gettys">
4560      <organization>W3C</organization>
4561      <address><email></email></address>
4562    </author>
4563    <author initials="J." surname="Mogul" fullname="J. Mogul">
4564      <organization>Compaq Computer Corporation</organization>
4565      <address><email></email></address>
4566    </author>
4567    <author initials="H." surname="Frystyk" fullname="H. Frystyk">
4568      <organization>MIT Laboratory for Computer Science</organization>
4569      <address><email></email></address>
4570    </author>
4571    <author initials="L." surname="Masinter" fullname="L. Masinter">
4572      <organization>Xerox Corporation</organization>
4573      <address><email></email></address>
4574    </author>
4575    <author initials="P." surname="Leach" fullname="P. Leach">
4576      <organization>Microsoft Corporation</organization>
4577      <address><email></email></address>
4578    </author>
4579    <author initials="T." surname="Berners-Lee" fullname="T. Berners-Lee">
4580      <organization>W3C</organization>
4581      <address><email></email></address>
4582    </author>
4583    <date month="June" year="1999"/>
4584  </front>
4585  <seriesInfo name="RFC" value="2616"/>
4588<reference anchor='RFC2817'>
4589  <front>
4590    <title>Upgrading to TLS Within HTTP/1.1</title>
4591    <author initials='R.' surname='Khare' fullname='R. Khare'>
4592      <organization>4K Associates / UC Irvine</organization>
4593      <address><email></email></address>
4594    </author>
4595    <author initials='S.' surname='Lawrence' fullname='S. Lawrence'>
4596      <organization>Agranat Systems, Inc.</organization>
4597      <address><email></email></address>
4598    </author>
4599    <date year='2000' month='May' />
4600  </front>
4601  <seriesInfo name='RFC' value='2817' />
4604<reference anchor='RFC2818'>
4605  <front>
4606    <title>HTTP Over TLS</title>
4607    <author initials='E.' surname='Rescorla' fullname='Eric Rescorla'>
4608      <organization>RTFM, Inc.</organization>
4609      <address><email></email></address>
4610    </author>
4611    <date year='2000' month='May' />
4612  </front>
4613  <seriesInfo name='RFC' value='2818' />
4616<reference anchor='RFC3040'>
4617  <front>
4618    <title>Internet Web Replication and Caching Taxonomy</title>
4619    <author initials='I.' surname='Cooper' fullname='I. Cooper'>
4620      <organization>Equinix, Inc.</organization>
4621    </author>
4622    <author initials='I.' surname='Melve' fullname='I. Melve'>
4623      <organization>UNINETT</organization>
4624    </author>
4625    <author initials='G.' surname='Tomlinson' fullname='G. Tomlinson'>
4626      <organization>CacheFlow Inc.</organization>
4627    </author>
4628    <date year='2001' month='January' />
4629  </front>
4630  <seriesInfo name='RFC' value='3040' />
4633<reference anchor='BCP90'>
4634  <front>
4635    <title>Registration Procedures for Message Header Fields</title>
4636    <author initials='G.' surname='Klyne' fullname='G. Klyne'>
4637      <organization>Nine by Nine</organization>
4638      <address><email></email></address>
4639    </author>
4640    <author initials='M.' surname='Nottingham' fullname='M. Nottingham'>
4641      <organization>BEA Systems</organization>
4642      <address><email></email></address>
4643    </author>
4644    <author initials='J.' surname='Mogul' fullname='J. Mogul'>
4645      <organization>HP Labs</organization>
4646      <address><email></email></address>
4647    </author>
4648    <date year='2004' month='September' />
4649  </front>
4650  <seriesInfo name='BCP' value='90' />
4651  <seriesInfo name='RFC' value='3864' />
4654<reference anchor='RFC4033'>
4655  <front>
4656    <title>DNS Security Introduction and Requirements</title>
4657    <author initials='R.' surname='Arends' fullname='R. Arends'/>
4658    <author initials='R.' surname='Austein' fullname='R. Austein'/>
4659    <author initials='M.' surname='Larson' fullname='M. Larson'/>
4660    <author initials='D.' surname='Massey' fullname='D. Massey'/>
4661    <author initials='S.' surname='Rose' fullname='S. Rose'/>
4662    <date year='2005' month='March' />
4663  </front>
4664  <seriesInfo name='RFC' value='4033' />
4667<reference anchor="BCP13">
4668  <front>
4669    <title>Media Type Specifications and Registration Procedures</title>
4670    <author initials="N." surname="Freed" fullname="Ned Freed">
4671      <organization>Oracle</organization>
4672      <address>
4673        <email></email>
4674      </address>
4675    </author>
4676    <author initials="J." surname="Klensin" fullname="John C. Klensin">
4677      <address>
4678        <email></email>
4679      </address>
4680    </author>
4681    <author initials="T." surname="Hansen" fullname="Tony Hansen">
4682      <organization>AT&amp;T Laboratories</organization>
4683      <address>
4684        <email></email>
4685      </address>
4686    </author>
4687    <date year="2013" month="January"/>
4688  </front>
4689  <seriesInfo name="BCP" value="13"/>
4690  <seriesInfo name="RFC" value="6838"/>
4693<reference anchor='BCP115'>
4694  <front>
4695    <title>Guidelines and Registration Procedures for New URI Schemes</title>
4696    <author initials='T.' surname='Hansen' fullname='T. Hansen'>
4697      <organization>AT&amp;T Laboratories</organization>
4698      <address>
4699        <email></email>
4700      </address>
4701    </author>
4702    <author initials='T.' surname='Hardie' fullname='T. Hardie'>
4703      <organization>Qualcomm, Inc.</organization>
4704      <address>
4705        <email></email>
4706      </address>
4707    </author>
4708    <author initials='L.' surname='Masinter' fullname='L. Masinter'>
4709      <organization>Adobe Systems</organization>
4710      <address>
4711        <email></email>
4712      </address>
4713    </author>
4714    <date year='2006' month='February' />
4715  </front>
4716  <seriesInfo name='BCP' value='115' />
4717  <seriesInfo name='RFC' value='4395' />
4720<reference anchor='RFC4559'>
4721  <front>
4722    <title>SPNEGO-based Kerberos and NTLM HTTP Authentication in Microsoft Windows</title>
4723    <author initials='K.' surname='Jaganathan' fullname='K. Jaganathan'/>
4724    <author initials='L.' surname='Zhu' fullname='L. Zhu'/>
4725    <author initials='J.' surname='Brezak' fullname='J. Brezak'/>
4726    <date year='2006' month='June' />
4727  </front>
4728  <seriesInfo name='RFC' value='4559' />
4731<reference anchor='RFC5226'>
4732  <front>
4733    <title>Guidelines for Writing an IANA Considerations Section in RFCs</title>
4734    <author initials='T.' surname='Narten' fullname='T. Narten'>
4735      <organization>IBM</organization>
4736      <address><email></email></address>
4737    </author>
4738    <author initials='H.' surname='Alvestrand' fullname='H. Alvestrand'>
4739      <organization>Google</organization>
4740      <address><email></email></address>
4741    </author>
4742    <date year='2008' month='May' />
4743  </front>
4744  <seriesInfo name='BCP' value='26' />
4745  <seriesInfo name='RFC' value='5226' />
4748<reference anchor='RFC5246'>
4749   <front>
4750      <title>The Transport Layer Security (TLS) Protocol Version 1.2</title>
4751      <author initials='T.' surname='Dierks' fullname='T. Dierks'>
4752         <organization />
4753      </author>
4754      <author initials='E.' surname='Rescorla' fullname='E. Rescorla'>
4755         <organization>RTFM, Inc.</organization>
4756      </author>
4757      <date year='2008' month='August' />
4758   </front>
4759   <seriesInfo name='RFC' value='5246' />
4762<reference anchor="RFC5322">
4763  <front>
4764    <title>Internet Message Format</title>
4765    <author initials="P." surname="Resnick" fullname="P. Resnick">
4766      <organization>Qualcomm Incorporated</organization>
4767    </author>
4768    <date year="2008" month="October"/>
4769  </front>
4770  <seriesInfo name="RFC" value="5322"/>
4773<reference anchor="RFC6265">
4774  <front>
4775    <title>HTTP State Management Mechanism</title>
4776    <author initials="A." surname="Barth" fullname="Adam Barth">
4777      <organization abbrev="U.C. Berkeley">
4778        University of California, Berkeley
4779      </organization>
4780      <address><email></email></address>
4781    </author>
4782    <date year="2011" month="April" />
4783  </front>
4784  <seriesInfo name="RFC" value="6265"/>
4787<reference anchor='RFC6585'>
4788  <front>
4789    <title>Additional HTTP Status Codes</title>
4790    <author initials='M.' surname='Nottingham' fullname='M. Nottingham'>
4791      <organization>Rackspace</organization>
4792    </author>
4793    <author initials='R.' surname='Fielding' fullname='R. Fielding'>
4794      <organization>Adobe</organization>
4795    </author>
4796    <date year='2012' month='April' />
4797   </front>
4798   <seriesInfo name='RFC' value='6585' />
4801<!--<reference anchor='BCP97'>
4802  <front>
4803    <title>Handling Normative References to Standards-Track Documents</title>
4804    <author initials='J.' surname='Klensin' fullname='J. Klensin'>
4805      <address>
4806        <email></email>
4807      </address>
4808    </author>
4809    <author initials='S.' surname='Hartman' fullname='S. Hartman'>
4810      <organization>MIT</organization>
4811      <address>
4812        <email></email>
4813      </address>
4814    </author>
4815    <date year='2007' month='June' />
4816  </front>
4817  <seriesInfo name='BCP' value='97' />
4818  <seriesInfo name='RFC' value='4897' />
4821<reference anchor="Kri2001" target="">
4822  <front>
4823    <title>HTTP Cookies: Standards, Privacy, and Politics</title>
4824    <author initials="D." surname="Kristol" fullname="David M. Kristol"/>
4825    <date year="2001" month="November"/>
4826  </front>
4827  <seriesInfo name="ACM Transactions on Internet Technology" value="1(2)"/>
4833<section title="HTTP Version History" anchor="compatibility">
4835   HTTP has been in use by the World-Wide Web global information initiative
4836   since 1990. The first version of HTTP, later referred to as HTTP/0.9,
4837   was a simple protocol for hypertext data transfer across the Internet
4838   with only a single request method (GET) and no metadata.
4839   HTTP/1.0, as defined by <xref target="RFC1945"/>, added a range of request
4840   methods and MIME-like messaging that could include metadata about the data
4841   transferred and modifiers on the request/response semantics. However,
4842   HTTP/1.0 did not sufficiently take into consideration the effects of
4843   hierarchical proxies, caching, the need for persistent connections, or
4844   name-based virtual hosts. The proliferation of incompletely-implemented
4845   applications calling themselves "HTTP/1.0" further necessitated a
4846   protocol version change in order for two communicating applications
4847   to determine each other's true capabilities.
4850   HTTP/1.1 remains compatible with HTTP/1.0 by including more stringent
4851   requirements that enable reliable implementations, adding only
4852   those new features that will either be safely ignored by an HTTP/1.0
4853   recipient or only sent when communicating with a party advertising
4854   conformance with HTTP/1.1.
4857   It is beyond the scope of a protocol specification to mandate
4858   conformance with previous versions. HTTP/1.1 was deliberately
4859   designed, however, to make supporting previous versions easy.
4860   We would expect a general-purpose HTTP/1.1 server to understand
4861   any valid request in the format of HTTP/1.0 and respond appropriately
4862   with an HTTP/1.1 message that only uses features understood (or
4863   safely ignored) by HTTP/1.0 clients.  Likewise, we would expect
4864   an HTTP/1.1 client to understand any valid HTTP/1.0 response.
4867   Since HTTP/0.9 did not support header fields in a request,
4868   there is no mechanism for it to support name-based virtual
4869   hosts (selection of resource by inspection of the <x:ref>Host</x:ref> header
4870   field).  Any server that implements name-based virtual hosts
4871   ought to disable support for HTTP/0.9.  Most requests that
4872   appear to be HTTP/0.9 are, in fact, badly constructed HTTP/1.x
4873   requests wherein a buggy client failed to properly encode
4874   linear whitespace found in a URI reference and placed in
4875   the request-target.
4878<section title="Changes from HTTP/1.0" anchor="changes.from.1.0">
4880   This section summarizes major differences between versions HTTP/1.0
4881   and HTTP/1.1.
4884<section title="Multi-homed Web Servers" anchor="">
4886   The requirements that clients and servers support the <x:ref>Host</x:ref>
4887   header field (<xref target=""/>), report an error if it is
4888   missing from an HTTP/1.1 request, and accept absolute URIs (<xref target="request-target"/>)
4889   are among the most important changes defined by HTTP/1.1.
4892   Older HTTP/1.0 clients assumed a one-to-one relationship of IP
4893   addresses and servers; there was no other established mechanism for
4894   distinguishing the intended server of a request than the IP address
4895   to which that request was directed. The <x:ref>Host</x:ref> header field was
4896   introduced during the development of HTTP/1.1 and, though it was
4897   quickly implemented by most HTTP/1.0 browsers, additional requirements
4898   were placed on all HTTP/1.1 requests in order to ensure complete
4899   adoption.  At the time of this writing, most HTTP-based services
4900   are dependent upon the Host header field for targeting requests.
4904<section title="Keep-Alive Connections" anchor="compatibility.with.http.1.0.persistent.connections">
4906   In HTTP/1.0, each connection is established by the client prior to the
4907   request and closed by the server after sending the response. However, some
4908   implementations implement the explicitly negotiated ("Keep-Alive") version
4909   of persistent connections described in <xref x:sec="19.7.1" x:fmt="of"
4910   target="RFC2068"/>.
4913   Some clients and servers might wish to be compatible with these previous
4914   approaches to persistent connections, by explicitly negotiating for them
4915   with a "Connection: keep-alive" request header field. However, some
4916   experimental implementations of HTTP/1.0 persistent connections are faulty;
4917   for example, if an HTTP/1.0 proxy server doesn't understand
4918   <x:ref>Connection</x:ref>, it will erroneously forward that header field
4919   to the next inbound server, which would result in a hung connection.
4922   One attempted solution was the introduction of a Proxy-Connection header
4923   field, targeted specifically at proxies. In practice, this was also
4924   unworkable, because proxies are often deployed in multiple layers, bringing
4925   about the same problem discussed above.
4928   As a result, clients are encouraged not to send the Proxy-Connection header
4929   field in any requests.
4932   Clients are also encouraged to consider the use of Connection: keep-alive
4933   in requests carefully; while they can enable persistent connections with
4934   HTTP/1.0 servers, clients using them will need to monitor the
4935   connection for "hung" requests (which indicate that the client ought stop
4936   sending the header field), and this mechanism ought not be used by clients
4937   at all when a proxy is being used.
4941<section title="Introduction of Transfer-Encoding" anchor="introduction.of.transfer-encoding">
4943   HTTP/1.1 introduces the <x:ref>Transfer-Encoding</x:ref> header field
4944   (<xref target="header.transfer-encoding"/>).
4945   Transfer codings need to be decoded prior to forwarding an HTTP message
4946   over a MIME-compliant protocol.
4952<section title="Changes from RFC 2616" anchor="changes.from.rfc.2616">
4954  HTTP's approach to error handling has been explained.
4955  (<xref target="conformance"/>)
4958  The expectation to support HTTP/0.9 requests has been removed.
4961  The term "Effective Request URI" has been introduced.
4962  (<xref target="effective.request.uri" />)
4965  HTTP messages can be (and often are) buffered by implementations; despite
4966  it sometimes being available as a stream, HTTP is fundamentally a
4967  message-oriented protocol.
4968  (<xref target="http.message" />)
4971  Minimum supported sizes for various protocol elements have been
4972  suggested, to improve interoperability.
4975  Header fields that span multiple lines ("line folding") are deprecated.
4976  (<xref target="field.parsing" />)
4979  The HTTP-version ABNF production has been clarified to be case-sensitive.
4980  Additionally, version numbers has been restricted to single digits, due
4981  to the fact that implementations are known to handle multi-digit version
4982  numbers incorrectly.
4983  (<xref target="http.version"/>)
4986  The HTTPS URI scheme is now defined by this specification; previously,
4987  it was done in  <xref target="RFC2818" x:fmt="of" x:sec="2.4"/>.
4988  (<xref target="https.uri"/>)
4991  The HTTPS URI scheme implies end-to-end security.
4992  (<xref target="https.uri"/>)
4995  Userinfo (i.e., username and password) are now disallowed in HTTP and
4996  HTTPS URIs, because of security issues related to their transmission on the
4997  wire.
4998  (<xref target="http.uri" />)
5001  Invalid whitespace around field-names is now required to be rejected,
5002  because accepting it represents a security vulnerability.
5003  (<xref target="header.fields"/>)
5006  The ABNF productions defining header fields now only list the field value.
5007  (<xref target="header.fields"/>)
5010  Rules about implicit linear whitespace between certain grammar productions
5011  have been removed; now whitespace is only allowed where specifically
5012  defined in the ABNF.
5013  (<xref target="whitespace"/>)
5016  The NUL octet is no longer allowed in comment and quoted-string text, and
5017  handling of backslash-escaping in them has been clarified.
5018  (<xref target="field.components"/>)
5021  The quoted-pair rule no longer allows escaping control characters other than
5022  HTAB.
5023  (<xref target="field.components"/>)
5026  Non-ASCII content in header fields and the reason phrase has been obsoleted
5027  and made opaque (the TEXT rule was removed).
5028  (<xref target="field.components"/>)
5031  Bogus "<x:ref>Content-Length</x:ref>" header fields are now required to be
5032  handled as errors by recipients.
5033  (<xref target="header.content-length"/>)
5036  The "identity" transfer coding token has been removed.
5037  (Sections <xref format="counter" target="message.body"/> and
5038  <xref format="counter" target="transfer.codings"/>)
5041  The algorithm for determining the message body length has been clarified
5042  to indicate all of the special cases (e.g., driven by methods or status
5043  codes) that affect it, and that new protocol elements cannot define such
5044  special cases.
5045  (<xref target="message.body.length"/>)
5048  "multipart/byteranges" is no longer a way of determining message body length
5049  detection.
5050  (<xref target="message.body.length"/>)
5053  CONNECT is a new, special case in determining message body length.
5054  (<xref target="message.body.length"/>)
5057  Chunk length does not include the count of the octets in the
5058  chunk header and trailer.
5059  (<xref target="chunked.encoding"/>)
5062  Use of chunk extensions is deprecated, and line folding in them is
5063  disallowed.
5064  (<xref target="chunked.encoding"/>)
5067  The segment + query components of RFC 3986 have been used to define the
5068  request-target, instead of abs_path from RFC 1808.
5069  (<xref target="request-target"/>)
5072  The asterisk-form of the request-target is only allowed in the OPTIONS
5073  method.
5074  (<xref target="request-target"/>)
5077  Gateways do not need to generate <x:ref>Via</x:ref> header fields anymore.
5078  (<xref target="header.via"/>)
5081  Exactly when "close" connection options have to be sent has been clarified.
5082  (<xref target="header.connection"/>)
5085  "hop-by-hop" header fields are required to appear in the Connection header
5086  field; just because they're defined as hop-by-hop in this specification
5087  doesn't exempt them.
5088  (<xref target="header.connection"/>)
5091  The limit of two connections per server has been removed.
5092  (<xref target="persistent.connections"/>)
5095  An idempotent sequence of requests is no longer required to be retried.
5096  (<xref target="persistent.connections"/>)
5099  The requirement to retry requests under certain circumstances when the
5100  server prematurely closes the connection has been removed.
5101  (<xref target="persistent.connections"/>)
5104  Some extraneous requirements about when servers are allowed to close
5105  connections prematurely have been removed.
5106  (<xref target="persistent.connections"/>)
5109  The semantics of the <x:ref>Upgrade</x:ref> header field is now defined in
5110  responses other than 101 (this was incorporated from <xref
5111  target="RFC2817"/>). Furthermore, the ordering in the field value is now
5112  significant.
5113  (<xref target="header.upgrade"/>)
5116  Registration of Transfer Codings now requires IETF Review
5117  (<xref target="transfer.coding.registry"/>)
5120  The meaning of the "deflate" content coding has been clarified.
5121  (<xref target="deflate.coding" />)
5124  This specification now defines the Upgrade Token Registry, previously
5125  defined in <xref target="RFC2817" x:fmt="of" x:sec="7.2"/>.
5126  (<xref target="upgrade.token.registry"/>)
5129  Issues with the Keep-Alive and Proxy-Connection header fields in requests
5130  are pointed out, with use of the latter being discouraged altogether.
5131  (<xref target="compatibility.with.http.1.0.persistent.connections" />)
5134  Empty list elements in list productions (e.g., a list header field containing
5135  ", ,") have been deprecated.
5136  (<xref target="abnf.extension"/>)
5141<section title="ABNF list extension: #rule" anchor="abnf.extension">
5143  A #rule extension to the ABNF rules of <xref target="RFC5234"/> is used to
5144  improve readability in the definitions of some header field values.
5147  A construct "#" is defined, similar to "*", for defining comma-delimited
5148  lists of elements. The full form is "&lt;n&gt;#&lt;m&gt;element" indicating
5149  at least &lt;n&gt; and at most &lt;m&gt; elements, each separated by a single
5150  comma (",") and optional whitespace (OWS).   
5153  Thus,
5154</preamble><artwork type="example">
5155  1#element =&gt; element *( OWS "," OWS element )
5158  and:
5159</preamble><artwork type="example">
5160  #element =&gt; [ 1#element ]
5163  and for n &gt;= 1 and m &gt; 1:
5164</preamble><artwork type="example">
5165  &lt;n&gt;#&lt;m&gt;element =&gt; element &lt;n-1&gt;*&lt;m-1&gt;( OWS "," OWS element )
5168  For compatibility with legacy list rules, recipients &SHOULD; accept empty
5169  list elements. In other words, consumers would follow the list productions:
5171<figure><artwork type="example">
5172  #element =&gt; [ ( "," / element ) *( OWS "," [ OWS element ] ) ]
5174  1#element =&gt; *( "," OWS ) element *( OWS "," [ OWS element ] )
5177  Note that empty elements do not contribute to the count of elements present,
5178  though.
5181  For example, given these ABNF productions:
5183<figure><artwork type="example">
5184  example-list      = 1#example-list-elmt
5185  example-list-elmt = token ; see <xref target="field.components"/>
5188  Then these are valid values for example-list (not including the double
5189  quotes, which are present for delimitation only):
5191<figure><artwork type="example">
5192  "foo,bar"
5193  "foo ,bar,"
5194  "foo , ,bar,charlie   "
5197  But these values would be invalid, as at least one non-empty element is
5198  required:
5200<figure><artwork type="example">
5201  ""
5202  ","
5203  ",   ,"
5206  <xref target="collected.abnf"/> shows the collected ABNF, with the list rules
5207  expanded as explained above.
5211<?BEGININC p1-messaging.abnf-appendix ?>
5212<section xmlns:x="" title="Collected ABNF" anchor="collected.abnf">
5214<artwork type="abnf" name="p1-messaging.parsed-abnf">
5215<x:ref>BWS</x:ref> = OWS
5217<x:ref>Connection</x:ref> = *( "," OWS ) connection-option *( OWS "," [ OWS
5218 connection-option ] )
5219<x:ref>Content-Length</x:ref> = 1*DIGIT
5221<x:ref>HTTP-message</x:ref> = start-line *( header-field CRLF ) CRLF [ message-body
5222 ]
5223<x:ref>HTTP-name</x:ref> = %x48.54.54.50 ; HTTP
5224<x:ref>HTTP-version</x:ref> = HTTP-name "/" DIGIT "." DIGIT
5225<x:ref>Host</x:ref> = uri-host [ ":" port ]
5227<x:ref>OWS</x:ref> = *( SP / HTAB )
5229<x:ref>RWS</x:ref> = 1*( SP / HTAB )
5231<x:ref>TE</x:ref> = [ ( "," / t-codings ) *( OWS "," [ OWS t-codings ] ) ]
5232<x:ref>Trailer</x:ref> = *( "," OWS ) field-name *( OWS "," [ OWS field-name ] )
5233<x:ref>Transfer-Encoding</x:ref> = *( "," OWS ) transfer-coding *( OWS "," [ OWS
5234 transfer-coding ] )
5236<x:ref>URI-reference</x:ref> = &lt;URI-reference, defined in [RFC3986], Section 4.1&gt;
5237<x:ref>Upgrade</x:ref> = *( "," OWS ) protocol *( OWS "," [ OWS protocol ] )
5239<x:ref>Via</x:ref> = *( "," OWS ) ( received-protocol RWS received-by [ RWS comment
5240 ] ) *( OWS "," [ OWS ( received-protocol RWS received-by [ RWS
5241 comment ] ) ] )
5243<x:ref>absolute-URI</x:ref> = &lt;absolute-URI, defined in [RFC3986], Section 4.3&gt;
5244<x:ref>absolute-form</x:ref> = absolute-URI
5245<x:ref>absolute-path</x:ref> = 1*( "/" segment )
5246<x:ref>asterisk-form</x:ref> = "*"
5247<x:ref>attribute</x:ref> = token
5248<x:ref>authority</x:ref> = &lt;authority, defined in [RFC3986], Section 3.2&gt;
5249<x:ref>authority-form</x:ref> = authority
5251<x:ref>chunk</x:ref> = chunk-size [ chunk-ext ] CRLF chunk-data CRLF
5252<x:ref>chunk-data</x:ref> = 1*OCTET
5253<x:ref>chunk-ext</x:ref> = *( ";" chunk-ext-name [ "=" chunk-ext-val ] )
5254<x:ref>chunk-ext-name</x:ref> = token
5255<x:ref>chunk-ext-val</x:ref> = token / quoted-str-nf
5256<x:ref>chunk-size</x:ref> = 1*HEXDIG
5257<x:ref>chunked-body</x:ref> = *chunk last-chunk trailer-part CRLF
5258<x:ref>comment</x:ref> = "(" *( ctext / quoted-cpair / comment ) ")"
5259<x:ref>connection-option</x:ref> = token
5260<x:ref>ctext</x:ref> = HTAB / SP / %x21-27 ; '!'-'''
5261 / %x2A-5B ; '*'-'['
5262 / %x5D-7E ; ']'-'~'
5263 / obs-text
5265<x:ref>field-content</x:ref> = *( HTAB / SP / VCHAR / obs-text )
5266<x:ref>field-name</x:ref> = token
5267<x:ref>field-value</x:ref> = *( field-content / obs-fold )
5268<x:ref>fragment</x:ref> = &lt;fragment, defined in [RFC3986], Section 3.5&gt;
5270<x:ref>header-field</x:ref> = field-name ":" OWS field-value OWS
5271<x:ref>http-URI</x:ref> = "http://" authority path-abempty [ "?" query ] [ "#"
5272 fragment ]
5273<x:ref>https-URI</x:ref> = "https://" authority path-abempty [ "?" query ] [ "#"
5274 fragment ]
5276<x:ref>last-chunk</x:ref> = 1*"0" [ chunk-ext ] CRLF
5278<x:ref>message-body</x:ref> = *OCTET
5279<x:ref>method</x:ref> = token
5281<x:ref>obs-fold</x:ref> = CRLF ( SP / HTAB )
5282<x:ref>obs-text</x:ref> = %x80-FF
5283<x:ref>origin-form</x:ref> = absolute-path [ "?" query ]
5285<x:ref>partial-URI</x:ref> = relative-part [ "?" query ]
5286<x:ref>path-abempty</x:ref> = &lt;path-abempty, defined in [RFC3986], Section 3.3&gt;
5287<x:ref>port</x:ref> = &lt;port, defined in [RFC3986], Section 3.2.3&gt;
5288<x:ref>protocol</x:ref> = protocol-name [ "/" protocol-version ]
5289<x:ref>protocol-name</x:ref> = token
5290<x:ref>protocol-version</x:ref> = token
5291<x:ref>pseudonym</x:ref> = token
5293<x:ref>qdtext</x:ref> = HTAB / SP / "!" / %x23-5B ; '#'-'['
5294 / %x5D-7E ; ']'-'~'
5295 / obs-text
5296<x:ref>qdtext-nf</x:ref> = HTAB / SP / "!" / %x23-5B ; '#'-'['
5297 / %x5D-7E ; ']'-'~'
5298 / obs-text
5299<x:ref>query</x:ref> = &lt;query, defined in [RFC3986], Section 3.4&gt;
5300<x:ref>quoted-cpair</x:ref> = "\" ( HTAB / SP / VCHAR / obs-text )
5301<x:ref>quoted-pair</x:ref> = "\" ( HTAB / SP / VCHAR / obs-text )
5302<x:ref>quoted-str-nf</x:ref> = DQUOTE *( qdtext-nf / quoted-pair ) DQUOTE
5303<x:ref>quoted-string</x:ref> = DQUOTE *( qdtext / quoted-pair ) DQUOTE
5305<x:ref>rank</x:ref> = ( "0" [ "." *3DIGIT ] ) / ( "1" [ "." *3"0" ] )
5306<x:ref>reason-phrase</x:ref> = *( HTAB / SP / VCHAR / obs-text )
5307<x:ref>received-by</x:ref> = ( uri-host [ ":" port ] ) / pseudonym
5308<x:ref>received-protocol</x:ref> = [ protocol-name "/" ] protocol-version
5309<x:ref>relative-part</x:ref> = &lt;relative-part, defined in [RFC3986], Section 4.2&gt;
5310<x:ref>request-line</x:ref> = method SP request-target SP HTTP-version CRLF
5311<x:ref>request-target</x:ref> = origin-form / absolute-form / authority-form /
5312 asterisk-form
5314<x:ref>segment</x:ref> = &lt;segment, defined in [RFC3986], Section 3.3&gt;
5315<x:ref>special</x:ref> = "(" / ")" / "&lt;" / "&gt;" / "@" / "," / ";" / ":" / "\" /
5316 DQUOTE / "/" / "[" / "]" / "?" / "=" / "{" / "}"
5317<x:ref>start-line</x:ref> = request-line / status-line
5318<x:ref>status-code</x:ref> = 3DIGIT
5319<x:ref>status-line</x:ref> = HTTP-version SP status-code SP reason-phrase CRLF
5321<x:ref>t-codings</x:ref> = "trailers" / ( transfer-coding [ t-ranking ] )
5322<x:ref>t-ranking</x:ref> = OWS ";" OWS "q=" rank
5323<x:ref>tchar</x:ref> = "!" / "#" / "$" / "%" / "&amp;" / "'" / "*" / "+" / "-" / "." /
5324 "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
5325<x:ref>token</x:ref> = 1*tchar
5326<x:ref>trailer-part</x:ref> = *( header-field CRLF )
5327<x:ref>transfer-coding</x:ref> = "chunked" / "compress" / "deflate" / "gzip" /
5328 transfer-extension
5329<x:ref>transfer-extension</x:ref> = token *( OWS ";" OWS transfer-parameter )
5330<x:ref>transfer-parameter</x:ref> = attribute BWS "=" BWS value
5332<x:ref>uri-host</x:ref> = &lt;host, defined in [RFC3986], Section 3.2.2&gt;
5334<x:ref>value</x:ref> = word
5336<x:ref>word</x:ref> = token / quoted-string
5340<?ENDINC p1-messaging.abnf-appendix ?>
5342<section title="Change Log (to be removed by RFC Editor before publication)" anchor="change.log">
5344<section title="Since RFC 2616">
5346  Changes up to the first Working Group Last Call draft are summarized
5347  in <eref target=""/>.
5351<section title="Since draft-ietf-httpbis-p1-messaging-21" anchor="changes.since.21">
5353  Closed issues:
5354  <list style="symbols">
5355    <t>
5356      <eref target=""/>:
5357      "Cite HTTPS URI scheme definition" (the spec now includes the HTTPs
5358      scheme definition and thus updates RFC 2818)
5359    </t>
5360    <t>
5361      <eref target=""/>:
5362      "mention of 'proxies' in section about caches"
5363    </t>
5364    <t>
5365      <eref target=""/>:
5366      "use of ABNF terms from RFC 3986"
5367    </t>
5368    <t>
5369      <eref target=""/>:
5370      "transferring URIs with userinfo in payload"
5371    </t>
5372    <t>
5373      <eref target=""/>:
5374      "editorial improvements to message length definition"
5375    </t>
5376    <t>
5377      <eref target=""/>:
5378      "Connection header field MUST vs SHOULD"
5379    </t>
5380    <t>
5381      <eref target=""/>:
5382      "editorial improvements to persistent connections section"
5383    </t>
5384    <t>
5385      <eref target=""/>:
5386      "URI normalization vs empty path"
5387    </t>
5388    <t>
5389      <eref target=""/>:
5390      "p1 feedback"
5391    </t>
5392    <t>
5393      <eref target=""/>:
5394      "is parsing OBS-FOLD mandatory?"
5395    </t>
5396    <t>
5397      <eref target=""/>:
5398      "HTTPS and Shared Caching"
5399    </t>
5400    <t>
5401      <eref target=""/>:
5402      "Requirements for recipients of ws between start-line and first header field"
5403    </t>
5404    <t>
5405      <eref target=""/>:
5406      "SP and HT when being tolerant"
5407    </t>
5408    <t>
5409      <eref target=""/>:
5410      "Message Parsing Strictness"
5411    </t>
5412    <t>
5413      <eref target=""/>:
5414      "'Render'"
5415    </t>
5416    <t>
5417      <eref target=""/>:
5418      "No-Transform"
5419    </t>
5420    <t>
5421      <eref target=""/>:
5422      "p2 editorial feedback"
5423    </t>
5424    <t>
5425      <eref target=""/>:
5426      "Content-Length SHOULD be sent"
5427    </t>
5428    <t>
5429      <eref target=""/>:
5430      "origin-form does not allow path starting with "//""
5431    </t>
5432    <t>
5433      <eref target=""/>:
5434      "ambiguity in part 1 example"
5435    </t>
5436  </list>
5440<section title="Since draft-ietf-httpbis-p1-messaging-22" anchor="changes.since.22">
5442  Closed issues:
5443  <list style="symbols">
5444    <t>
5445      <eref target=""/>:
5446      "Part1 should have a reference to TCP (RFC 793)"
5447    </t>
5448    <t>
5449      <eref target=""/>:
5450      "media type registration template issues"
5451    </t>
5452    <t>
5453      <eref target=""/>:
5454      P1 editorial nits
5455    </t>
5456    <t>
5457      <eref target=""/>:
5458      "BWS" (vs conformance)
5459    </t>
5460    <t>
5461      <eref target=""/>:
5462      "obs-fold language"
5463    </t>
5464    <t>
5465      <eref target=""/>:
5466      "Ordering in Upgrade"
5467    </t>
5468    <t>
5469      <eref target=""/>:
5470      "p1 editorial feedback"
5471    </t>
5472    <t>
5473      <eref target=""/>:
5474      "HTTP and TCP name delegation"
5475    </t>
5476    <t>
5477      <eref target=""/>:
5478      "Receiving a higher minor HTTP version number"
5479    </t>
5480    <t>
5481      <eref target=""/>:
5482      "HTTP(S) URIs and fragids"
5483    </t>
5484    <t>
5485      <eref target=""/>:
5486      "Registering x-gzip and x-deflate"
5487    </t>
5488    <t>
5489      <eref target=""/>:
5490      "Via and gateways"
5491    </t>
5492    <t>
5493      <eref target=""/>:
5494      "Mention 203 Non-Authoritative Information in p1"
5495    </t>
5496    <t>
5497      <eref target=""/>:
5498      "SHOULD and conformance"
5499    </t>
5500    <t>
5501      <eref target=""/>:
5502      "Pipelining language"
5503    </t>
5504    <t>
5505      <eref target=""/>:
5506      "proxy handling of a really bad Content-Length"
5507    </t>
5508  </list>
5512<section title="Since draft-ietf-httpbis-p1-messaging-23" anchor="changes.since.23">
5514  Closed issues:
5515  <list style="symbols">
5516    <t>
5517      <eref target=""/>:
5518      "MUST fix Content-Length?"
5519    </t>
5520  </list>
Note: See TracBrowser for help on using the repository browser.