source: draft-ietf-httpbis/latest/p1-messaging.xml @ 1839

Last change on this file since 1839 was 1839, checked in by fielding@…, 10 years ago

Begin plowing through p2 to properly explain what HTTP semantics are and why.
Rewrite introductory description of methods.
Rewrite definition of "safe" to be more operable and weaken the original
same-origin restrictions to be more consistent with modern UAs.

  • Property svn:eol-style set to native
  • Property svn:mime-type set to text/xml
File size: 245.4 KB
1<?xml version="1.0" encoding="utf-8"?>
2<?xml-stylesheet type='text/xsl' href='../myxml2rfc.xslt'?>
3<!DOCTYPE rfc [
4  <!ENTITY MAY "<bcp14 xmlns=''>MAY</bcp14>">
5  <!ENTITY MUST "<bcp14 xmlns=''>MUST</bcp14>">
6  <!ENTITY MUST-NOT "<bcp14 xmlns=''>MUST NOT</bcp14>">
7  <!ENTITY OPTIONAL "<bcp14 xmlns=''>OPTIONAL</bcp14>">
8  <!ENTITY RECOMMENDED "<bcp14 xmlns=''>RECOMMENDED</bcp14>">
9  <!ENTITY REQUIRED "<bcp14 xmlns=''>REQUIRED</bcp14>">
10  <!ENTITY SHALL "<bcp14 xmlns=''>SHALL</bcp14>">
11  <!ENTITY SHALL-NOT "<bcp14 xmlns=''>SHALL NOT</bcp14>">
12  <!ENTITY SHOULD "<bcp14 xmlns=''>SHOULD</bcp14>">
13  <!ENTITY SHOULD-NOT "<bcp14 xmlns=''>SHOULD NOT</bcp14>">
14  <!ENTITY ID-VERSION "latest">
15  <!ENTITY ID-MONTH "August">
16  <!ENTITY ID-YEAR "2012">
17  <!ENTITY mdash "&#8212;">
18  <!ENTITY Note "<x:h xmlns:x=''>Note:</x:h>">
19  <!ENTITY caching-overview       "<xref target='Part6' x:rel='#caching.overview' xmlns:x=''/>">
20  <!ENTITY cache-incomplete       "<xref target='Part6' x:rel='#response.cacheability' xmlns:x=''/>">
21  <!ENTITY payload                "<xref target='Part2' xmlns:x=''/>">
22  <!ENTITY media-types            "<xref target='Part2' x:rel='#media.types' xmlns:x=''/>">
23  <!ENTITY content-codings        "<xref target='Part2' x:rel='#content.codings' xmlns:x=''/>">
24  <!ENTITY CONNECT                "<xref target='Part2' x:rel='#CONNECT' xmlns:x=''/>">
25  <!ENTITY content.negotiation    "<xref target='Part2' x:rel='#content.negotiation' xmlns:x=''/>">
26  <!ENTITY diff-mime              "<xref target='Part2' x:rel='#differences.between.http.and.mime' xmlns:x=''/>">
27  <!ENTITY representation         "<xref target='Part2' x:rel='#representation' xmlns:x=''/>">
28  <!ENTITY header-allow           "<xref target='Part2' x:rel='#header.allow' xmlns:x=''/>">
29  <!ENTITY header-cache-control   "<xref target='Part6' x:rel='#header.cache-control' xmlns:x=''/>">
30  <!ENTITY header-content-encoding    "<xref target='Part2' x:rel='#header.content-encoding' xmlns:x=''/>">
31  <!ENTITY header-content-location    "<xref target='Part2' x:rel='#header.content-location' xmlns:x=''/>">
32  <!ENTITY header-content-range   "<xref target='Part5' x:rel='#header.content-range' xmlns:x=''/>">
33  <!ENTITY header-content-type    "<xref target='Part2' x:rel='#header.content-type' xmlns:x=''/>">
34  <!ENTITY header-date            "<xref target='Part2' x:rel='' xmlns:x=''/>">
35  <!ENTITY header-etag            "<xref target='Part4' x:rel='#header.etag' xmlns:x=''/>">
36  <!ENTITY header-expect          "<xref target='Part2' x:rel='#header.expect' xmlns:x=''/>">
37  <!ENTITY header-expires         "<xref target='Part6' x:rel='#header.expires' xmlns:x=''/>">
38  <!ENTITY header-last-modified   "<xref target='Part4' x:rel='#header.last-modified' xmlns:x=''/>">
39  <!ENTITY header-mime-version    "<xref target='Part2' x:rel='#mime-version' xmlns:x=''/>">
40  <!ENTITY header-pragma          "<xref target='Part6' x:rel='#header.pragma' xmlns:x=''/>">
41  <!ENTITY header-proxy-authenticate  "<xref target='Part7' x:rel='#header.proxy-authenticate' xmlns:x=''/>">
42  <!ENTITY header-proxy-authorization "<xref target='Part7' x:rel='#header.proxy-authorization' xmlns:x=''/>">
43  <!ENTITY header-server          "<xref target='Part2' x:rel='#header.server' xmlns:x=''/>">
44  <!ENTITY header-warning         "<xref target='Part6' x:rel='#header.warning' xmlns:x=''/>">
45  <!ENTITY idempotent-methods     "<xref target='Part2' x:rel='#idempotent.methods' xmlns:x=''/>">
46  <!ENTITY methods                "<xref target='Part2' x:rel='#methods' xmlns:x=''/>">
47  <!ENTITY OPTIONS                "<xref target='Part2' x:rel='#OPTIONS' xmlns:x=''/>">
48  <!ENTITY qvalue                 "<xref target='Part2' x:rel='#quality.values' xmlns:x=''/>">
49  <!ENTITY status-codes           "<xref target='Part2' x:rel='' xmlns:x=''/>">
50  <!ENTITY status-100             "<xref target='Part2' x:rel='#status.100' xmlns:x=''/>">
51  <!ENTITY status-1xx             "<xref target='Part2' x:rel='#status.1xx' xmlns:x=''/>">
52  <!ENTITY status-203             "<xref target='Part2' x:rel='#status.203' xmlns:x=''/>">
53  <!ENTITY status-3xx             "<xref target='Part2' x:rel='#status.3xx' xmlns:x=''/>">
54  <!ENTITY status-304             "<xref target='Part4' x:rel='#status.304' xmlns:x=''/>">
55  <!ENTITY status-4xx             "<xref target='Part2' x:rel='#status.4xx' xmlns:x=''/>">
56  <!ENTITY status-414             "<xref target='Part2' x:rel='#status.414' xmlns:x=''/>">
57  <!ENTITY cons-new-header-fields "<xref target='Part2' x:rel='#considerations.for.creating.header.fields' xmlns:x=''/>">
59<?rfc toc="yes" ?>
60<?rfc symrefs="yes" ?>
61<?rfc sortrefs="yes" ?>
62<?rfc compact="yes"?>
63<?rfc subcompact="no" ?>
64<?rfc linkmailto="no" ?>
65<?rfc editing="no" ?>
66<?rfc comments="yes"?>
67<?rfc inline="yes"?>
68<?rfc rfcedstyle="yes"?>
69<?rfc-ext allow-markup-in-artwork="yes" ?>
70<?rfc-ext include-references-in-index="yes" ?>
71<rfc obsoletes="2145,2616" updates="2817" category="std" x:maturity-level="proposed"
72     ipr="pre5378Trust200902" docName="draft-ietf-httpbis-p1-messaging-&ID-VERSION;"
73     xmlns:x=''>
74<x:link rel="next" basename="p2-semantics"/>
75<x:feedback template="{docname},%20%22{section}%22&amp;body=&lt;{ref}&gt;:"/>
78  <title abbrev="HTTP/1.1, Part 1">HTTP/1.1, part 1: Message Routing and Syntax"</title>
80  <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
81    <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
82    <address>
83      <postal>
84        <street>345 Park Ave</street>
85        <city>San Jose</city>
86        <region>CA</region>
87        <code>95110</code>
88        <country>USA</country>
89      </postal>
90      <email></email>
91      <uri></uri>
92    </address>
93  </author>
95  <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
96    <organization abbrev="W3C">World Wide Web Consortium</organization>
97    <address>
98      <postal>
99        <street>W3C / ERCIM</street>
100        <street>2004, rte des Lucioles</street>
101        <city>Sophia-Antipolis</city>
102        <region>AM</region>
103        <code>06902</code>
104        <country>France</country>
105      </postal>
106      <email></email>
107      <uri></uri>
108    </address>
109  </author>
111  <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
112    <organization abbrev="greenbytes">greenbytes GmbH</organization>
113    <address>
114      <postal>
115        <street>Hafenweg 16</street>
116        <city>Muenster</city><region>NW</region><code>48155</code>
117        <country>Germany</country>
118      </postal>
119      <email></email>
120      <uri></uri>
121    </address>
122  </author>
124  <date month="&ID-MONTH;" year="&ID-YEAR;"/>
125  <workgroup>HTTPbis Working Group</workgroup>
129   The Hypertext Transfer Protocol (HTTP) is an application-level protocol for
130   distributed, collaborative, hypertext information systems. HTTP has been in
131   use by the World Wide Web global information initiative since 1990.
132   This document provides an overview of HTTP architecture and its associated
133   terminology, defines the "http" and "https" Uniform Resource Identifier
134   (URI) schemes, defines the HTTP/1.1 message syntax and parsing requirements,
135   and describes general security concerns for implementations.
139<note title="Editorial Note (To be removed by RFC Editor)">
140  <t>
141    Discussion of this draft takes place on the HTTPBIS working group
142    mailing list (, which is archived at
143    <eref target=""/>.
144  </t>
145  <t>
146    The current issues list is at
147    <eref target=""/> and related
148    documents (including fancy diffs) can be found at
149    <eref target=""/>.
150  </t>
151  <t>
152    The changes in this draft are summarized in <xref target="changes.since.20"/>.
153  </t>
157<section title="Introduction" anchor="introduction">
159   The Hypertext Transfer Protocol (HTTP) is an application-level
160   request/response protocol that uses extensible semantics and MIME-like
161   message payloads for flexible interaction with network-based hypertext
162   information systems. This document is the first in a series of documents
163   that collectively form the HTTP/1.1 specification:
164   <list style="empty">
165    <t>RFC xxx1: Message Routing and Syntax</t>
166    <t><xref target="Part2" x:fmt="none">RFC xxx2</xref>: Semantics and Payloads</t>
167    <t><xref target="Part4" x:fmt="none">RFC xxx3</xref>: Conditional Requests</t>
168    <t><xref target="Part5" x:fmt="none">RFC xxx4</xref>: Range Requests</t>
169    <t><xref target="Part6" x:fmt="none">RFC xxx5</xref>: Caching</t>
170    <t><xref target="Part7" x:fmt="none">RFC xxx6</xref>: Authentication</t>
171   </list>
174   This HTTP/1.1 specification obsoletes and moves to historic status
175   <xref target="RFC2616" x:fmt="none">RFC 2616</xref>, its predecessor
176   <xref target="RFC2068" x:fmt="none">RFC 2068</xref>,
177   <xref target="RFC2145" x:fmt="none">RFC 2145</xref> (on HTTP versioning),
178   and <xref target="RFC2817" x:fmt="none">RFC 2817</xref> (on using CONNECT
179   for TLS upgrades).
182   HTTP is a generic interface protocol for information systems. It is
183   designed to hide the details of how a service is implemented by presenting
184   a uniform interface to clients that is independent of the types of
185   resources provided. Likewise, servers do not need to be aware of each
186   client's purpose: an HTTP request can be considered in isolation rather
187   than being associated with a specific type of client or a predetermined
188   sequence of application steps. The result is a protocol that can be used
189   effectively in many different contexts and for which implementations can
190   evolve independently over time.
193   HTTP is also designed for use as an intermediation protocol for translating
194   communication to and from non-HTTP information systems.
195   HTTP proxies and gateways can provide access to alternative information
196   services by translating their diverse protocols into a hypertext
197   format that can be viewed and manipulated by clients in the same way
198   as HTTP services.
201   One consequence of HTTP flexibility is that the protocol cannot be
202   defined in terms of what occurs behind the interface. Instead, we
203   are limited to defining the syntax of communication, the intent
204   of received communication, and the expected behavior of recipients.
205   If the communication is considered in isolation, then successful
206   actions ought to be reflected in corresponding changes to the
207   observable interface provided by servers. However, since multiple
208   clients might act in parallel and perhaps at cross-purposes, we
209   cannot require that such changes be observable beyond the scope
210   of a single response.
213   This document describes the architectural elements that are used or
214   referred to in HTTP, defines the "http" and "https" URI schemes,
215   describes overall network operation and connection management,
216   and defines HTTP message framing and forwarding requirements.
217   Our goal is to define all of the mechanisms necessary for HTTP message
218   handling that are independent of message semantics, thereby defining the
219   complete set of requirements for message parsers and
220   message-forwarding intermediaries.
224<section title="Requirement Notation" anchor="intro.requirements">
226   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
227   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
228   document are to be interpreted as described in <xref target="RFC2119"/>.
231   Conformance criteria and considerations regarding error handling
232   are defined in <xref target="conformance"/>.
236<section title="Syntax Notation" anchor="notation">
237<iref primary="true" item="Grammar" subitem="ALPHA"/>
238<iref primary="true" item="Grammar" subitem="CR"/>
239<iref primary="true" item="Grammar" subitem="CRLF"/>
240<iref primary="true" item="Grammar" subitem="CTL"/>
241<iref primary="true" item="Grammar" subitem="DIGIT"/>
242<iref primary="true" item="Grammar" subitem="DQUOTE"/>
243<iref primary="true" item="Grammar" subitem="HEXDIG"/>
244<iref primary="true" item="Grammar" subitem="HTAB"/>
245<iref primary="true" item="Grammar" subitem="LF"/>
246<iref primary="true" item="Grammar" subitem="OCTET"/>
247<iref primary="true" item="Grammar" subitem="SP"/>
248<iref primary="true" item="Grammar" subitem="VCHAR"/>
250   This specification uses the Augmented Backus-Naur Form (ABNF) notation
251   of <xref target="RFC5234"/> with the list rule extension defined in
252   <xref target="abnf.extension"/>.  <xref target="collected.abnf"/> shows
253   the collected ABNF with the list rule expanded.
255<t anchor="core.rules">
256  <x:anchor-alias value="ALPHA"/>
257  <x:anchor-alias value="CTL"/>
258  <x:anchor-alias value="CR"/>
259  <x:anchor-alias value="CRLF"/>
260  <x:anchor-alias value="DIGIT"/>
261  <x:anchor-alias value="DQUOTE"/>
262  <x:anchor-alias value="HEXDIG"/>
263  <x:anchor-alias value="HTAB"/>
264  <x:anchor-alias value="LF"/>
265  <x:anchor-alias value="OCTET"/>
266  <x:anchor-alias value="SP"/>
267  <x:anchor-alias value="VCHAR"/>
268   The following core rules are included by
269   reference, as defined in <xref target="RFC5234" x:fmt="," x:sec="B.1"/>:
270   ALPHA (letters), CR (carriage return), CRLF (CR LF), CTL (controls),
271   DIGIT (decimal 0-9), DQUOTE (double quote),
272   HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF (line feed),
273   OCTET (any 8-bit sequence of data), SP (space), and
274   VCHAR (any visible <xref target="USASCII"/> character).
277   As a convention, ABNF rule names prefixed with "obs-" denote
278   "obsolete" grammar rules that appear for historical reasons.
283<section title="Architecture" anchor="architecture">
285   HTTP was created for the World Wide Web architecture
286   and has evolved over time to support the scalability needs of a worldwide
287   hypertext system. Much of that architecture is reflected in the terminology
288   and syntax productions used to define HTTP.
291<section title="Client/Server Messaging" anchor="operation">
292<iref primary="true" item="client"/>
293<iref primary="true" item="server"/>
294<iref primary="true" item="connection"/>
296   HTTP is a stateless request/response protocol that operates by exchanging
297   <x:dfn>messages</x:dfn> (<xref target="http.message"/>) across a reliable
298   transport or session-layer
299   "<x:dfn>connection</x:dfn>" (<xref target=""/>).
300   An HTTP "<x:dfn>client</x:dfn>" is a program that establishes a connection
301   to a server for the purpose of sending one or more HTTP requests.
302   An HTTP "<x:dfn>server</x:dfn>" is a program that accepts connections
303   in order to service HTTP requests by sending HTTP responses.
305<iref primary="true" item="user agent"/>
306<iref primary="true" item="origin server"/>
307<iref primary="true" item="browser"/>
308<iref primary="true" item="spider"/>
309<iref primary="true" item="sender"/>
310<iref primary="true" item="recipient"/>
312   The terms client and server refer only to the roles that
313   these programs perform for a particular connection.  The same program
314   might act as a client on some connections and a server on others.  We use
315   the term "<x:dfn>user agent</x:dfn>" to refer to the program that initiates a request,
316   such as a WWW browser, editor, or spider (web-traversing robot), and
317   the term "<x:dfn>origin server</x:dfn>" to refer to the program that can originate
318   authoritative responses to a request.  For general requirements, we use
319   the term "<x:dfn>sender</x:dfn>" to refer to whichever component sent a given message
320   and the term "<x:dfn>recipient</x:dfn>" to refer to any component that receives the
321   message.
324   HTTP relies upon the Uniform Resource Identifier (URI)
325   standard <xref target="RFC3986"/> to indicate the target resource
326   (<xref target="target-resource"/>) and relationships between resources.
327   Messages are passed in a format similar to that used by Internet mail
328   <xref target="RFC5322"/> and the Multipurpose Internet Mail Extensions
329   (MIME) <xref target="RFC2045"/> (see &diff-mime; for the differences
330   between HTTP and MIME messages).
333   Most HTTP communication consists of a retrieval request (GET) for
334   a representation of some resource identified by a URI.  In the
335   simplest case, this might be accomplished via a single bidirectional
336   connection (===) between the user agent (UA) and the origin server (O).
338<figure><artwork type="drawing">
339         request   &gt;
340    <x:highlight>UA</x:highlight> ======================================= <x:highlight>O</x:highlight>
341                                &lt;   response
343<iref primary="true" item="message"/>
344<iref primary="true" item="request"/>
345<iref primary="true" item="response"/>
347   A client sends an HTTP request to a server in the form of a <x:dfn>request</x:dfn>
348   message, beginning with a request-line that includes a method, URI, and
349   protocol version (<xref target="request.line"/>),
350   followed by header fields containing
351   request modifiers, client information, and representation metadata
352   (<xref target="header.fields"/>),
353   an empty line to indicate the end of the header section, and finally
354   a message body containing the payload body (if any,
355   <xref target="message.body"/>).
358   A server responds to a client's request by sending one or more HTTP
359   <x:dfn>response</x:dfn>
360   messages, each beginning with a status line that
361   includes the protocol version, a success or error code, and textual
362   reason phrase (<xref target="status.line"/>),
363   possibly followed by header fields containing server
364   information, resource metadata, and representation metadata
365   (<xref target="header.fields"/>),
366   an empty line to indicate the end of the header section, and finally
367   a message body containing the payload body (if any,
368   <xref target="message.body"/>).
371   A connection might be used for multiple request/response exchanges,
372   as defined in <xref target="persistent.connections"/>.
375   The following example illustrates a typical message exchange for a
376   GET request on the URI "":
379client request:
380</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
381GET /hello.txt HTTP/1.1
382User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3
384Accept-Language: en, mi
388server response:
389</preamble><artwork type="message/http; msgtype=&#34;response&#34;" x:indent-with="  ">
390HTTP/1.1 200 OK
391Date: Mon, 27 Jul 2009 12:28:53 GMT
392Server: Apache
393Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
394ETag: "34aa387-d-1568eb00"
395Accept-Ranges: bytes
396Content-Length: <x:length-of target="exbody"/>
397Vary: Accept-Encoding
398Content-Type: text/plain
400<x:span anchor="exbody">Hello World!
404<section title="Implementation Diversity" anchor="implementation-diversity">
406   When considering the design of HTTP, it is easy to fall into a trap of
407   thinking that all user agents are general-purpose browsers and all origin
408   servers are large public websites. That is not the case in practice.
409   Common HTTP user agents include household appliances, stereos, scales,
410   firmware update scripts, command-line programs, mobile apps,
411   and communication devices in a multitude of shapes and sizes.  Likewise,
412   common HTTP origin servers include home automation units, configurable
413   networking components, office machines, autonomous robots, news feeds,
414   traffic cameras, ad selectors, and video delivery platforms.
417   The term "user agent" does not imply that there is a human user directly
418   interacting with the software agent at the time of a request. In many
419   cases, a user agent is installed or configured to run in the background
420   and save its results for later inspection (or save only a subset of those
421   results that might be interesting or erroneous). Spiders, for example, are
422   typically given a start URI and configured to follow certain behavior while
423   crawling the Web as a hypertext graph.
426   The implementation diversity of HTTP means that we cannot assume the
427   user agent can make interactive suggestions to a user or provide adequate
428   warning for security or privacy options.  In the few cases where this
429   specification requires reporting of errors to the user, it is acceptable
430   for such reporting to only be observable in an error console or log file.
431   Likewise, requirements that an automated action be confirmed by the user
432   before proceeding can me met via advance configuration choices,
433   run-time options, or simply not proceeding with the unsafe action.
437<section title="Intermediaries" anchor="intermediaries">
438<iref primary="true" item="intermediary"/>
440   HTTP enables the use of intermediaries to satisfy requests through
441   a chain of connections.  There are three common forms of HTTP
442   <x:dfn>intermediary</x:dfn>: proxy, gateway, and tunnel.  In some cases,
443   a single intermediary might act as an origin server, proxy, gateway,
444   or tunnel, switching behavior based on the nature of each request.
446<figure><artwork type="drawing">
447         &gt;             &gt;             &gt;             &gt;
448    <x:highlight>UA</x:highlight> =========== <x:highlight>A</x:highlight> =========== <x:highlight>B</x:highlight> =========== <x:highlight>C</x:highlight> =========== <x:highlight>O</x:highlight>
449               &lt;             &lt;             &lt;             &lt;
452   The figure above shows three intermediaries (A, B, and C) between the
453   user agent and origin server. A request or response message that
454   travels the whole chain will pass through four separate connections.
455   Some HTTP communication options
456   might apply only to the connection with the nearest, non-tunnel
457   neighbor, only to the end-points of the chain, or to all connections
458   along the chain. Although the diagram is linear, each participant might
459   be engaged in multiple, simultaneous communications. For example, B
460   might be receiving requests from many clients other than A, and/or
461   forwarding requests to servers other than C, at the same time that it
462   is handling A's request.
465<iref primary="true" item="upstream"/><iref primary="true" item="downstream"/>
466<iref primary="true" item="inbound"/><iref primary="true" item="outbound"/>
467   We use the terms "<x:dfn>upstream</x:dfn>" and "<x:dfn>downstream</x:dfn>"
468   to describe various requirements in relation to the directional flow of a
469   message: all messages flow from upstream to downstream.
470   Likewise, we use the terms inbound and outbound to refer to
471   directions in relation to the request path:
472   "<x:dfn>inbound</x:dfn>" means toward the origin server and
473   "<x:dfn>outbound</x:dfn>" means toward the user agent.
475<t><iref primary="true" item="proxy"/>
476   A "<x:dfn>proxy</x:dfn>" is a message forwarding agent that is selected by the
477   client, usually via local configuration rules, to receive requests
478   for some type(s) of absolute URI and attempt to satisfy those
479   requests via translation through the HTTP interface.  Some translations
480   are minimal, such as for proxy requests for "http" URIs, whereas
481   other requests might require translation to and from entirely different
482   application-layer protocols. Proxies are often used to group an
483   organization's HTTP requests through a common intermediary for the
484   sake of security, annotation services, or shared caching.
487<iref primary="true" item="transforming proxy"/>
488<iref primary="true" item="non-transforming proxy"/>
489   An HTTP-to-HTTP proxy is called a "<x:dfn>transforming proxy</x:dfn>" if it is designed
490   or configured to modify request or response messages in a semantically
491   meaningful way (i.e., modifications, beyond those required by normal
492   HTTP processing, that change the message in a way that would be
493   significant to the original sender or potentially significant to
494   downstream recipients).  For example, a transforming proxy might be
495   acting as a shared annotation server (modifying responses to include
496   references to a local annotation database), a malware filter, a
497   format transcoder, or an intranet-to-Internet privacy filter.  Such
498   transformations are presumed to be desired by the client (or client
499   organization) that selected the proxy and are beyond the scope of
500   this specification.  However, when a proxy is not intended to transform
501   a given message, we use the term "<x:dfn>non-transforming proxy</x:dfn>" to target
502   requirements that preserve HTTP message semantics. See &status-203; and
503   &header-warning; for status and warning codes related to transformations.
505<t><iref primary="true" item="gateway"/><iref primary="true" item="reverse proxy"/>
506<iref primary="true" item="accelerator"/>
507   A "<x:dfn>gateway</x:dfn>" (a.k.a., "<x:dfn>reverse proxy</x:dfn>")
508   is a receiving agent that acts
509   as a layer above some other server(s) and translates the received
510   requests to the underlying server's protocol.  Gateways are often
511   used to encapsulate legacy or untrusted information services, to
512   improve server performance through "<x:dfn>accelerator</x:dfn>" caching, and to
513   enable partitioning or load-balancing of HTTP services across
514   multiple machines.
517   A gateway behaves as an origin server on its outbound connection and
518   as a user agent on its inbound connection.
519   All HTTP requirements applicable to an origin server
520   also apply to the outbound communication of a gateway.
521   A gateway communicates with inbound servers using any protocol that
522   it desires, including private extensions to HTTP that are outside
523   the scope of this specification.  However, an HTTP-to-HTTP gateway
524   that wishes to interoperate with third-party HTTP servers &MUST;
525   conform to HTTP user agent requirements on the gateway's inbound
526   connection and &MUST; implement the <x:ref>Connection</x:ref>
527   (<xref target="header.connection"/>) and <x:ref>Via</x:ref>
528   (<xref target="header.via"/>) header fields for both connections.
530<t><iref primary="true" item="tunnel"/>
531   A "<x:dfn>tunnel</x:dfn>" acts as a blind relay between two connections
532   without changing the messages. Once active, a tunnel is not
533   considered a party to the HTTP communication, though the tunnel might
534   have been initiated by an HTTP request. A tunnel ceases to exist when
535   both ends of the relayed connection are closed. Tunnels are used to
536   extend a virtual connection through an intermediary, such as when
537   transport-layer security is used to establish confidential communication
538   through a shared firewall proxy.
540<t><iref primary="true" item="interception proxy"/>
541<iref primary="true" item="transparent proxy"/>
542<iref primary="true" item="captive portal"/>
543   The above categories for intermediary only consider those acting as
544   participants in the HTTP communication.  There are also intermediaries
545   that can act on lower layers of the network protocol stack, filtering or
546   redirecting HTTP traffic without the knowledge or permission of message
547   senders. Network intermediaries often introduce security flaws or
548   interoperability problems by violating HTTP semantics.  For example, an
549   "<x:dfn>interception proxy</x:dfn>" <xref target="RFC3040"/> (also commonly
550   known as a "<x:dfn>transparent proxy</x:dfn>" <xref target="RFC1919"/> or
551   "<x:dfn>captive portal</x:dfn>")
552   differs from an HTTP proxy because it is not selected by the client.
553   Instead, an interception proxy filters or redirects outgoing TCP port 80
554   packets (and occasionally other common port traffic).
555   Interception proxies are commonly found on public network access points,
556   as a means of enforcing account subscription prior to allowing use of
557   non-local Internet services, and within corporate firewalls to enforce
558   network usage policies.
559   They are indistinguishable from a man-in-the-middle attack.
562   HTTP is defined as a stateless protocol, meaning that each request message
563   can be understood in isolation.  Many implementations depend on HTTP's
564   stateless design in order to reuse proxied connections or dynamically
565   load balance requests across multiple servers.  Hence, servers &MUST-NOT;
566   assume that two requests on the same connection are from the same user
567   agent unless the connection is secured and specific to that agent.
568   Some non-standard HTTP extensions (e.g., <xref target="RFC4559"/>) have
569   been known to violate this requirement, resulting in security and
570   interoperability problems.
574<section title="Caches" anchor="caches">
575<iref primary="true" item="cache"/>
577   A "<x:dfn>cache</x:dfn>" is a local store of previous response messages and the
578   subsystem that controls its message storage, retrieval, and deletion.
579   A cache stores cacheable responses in order to reduce the response
580   time and network bandwidth consumption on future, equivalent
581   requests. Any client or server &MAY; employ a cache, though a cache
582   cannot be used by a server while it is acting as a tunnel.
585   The effect of a cache is that the request/response chain is shortened
586   if one of the participants along the chain has a cached response
587   applicable to that request. The following illustrates the resulting
588   chain if B has a cached copy of an earlier response from O (via C)
589   for a request which has not been cached by UA or A.
591<figure><artwork type="drawing">
592            &gt;             &gt;
593       <x:highlight>UA</x:highlight> =========== <x:highlight>A</x:highlight> =========== <x:highlight>B</x:highlight> - - - - - - <x:highlight>C</x:highlight> - - - - - - <x:highlight>O</x:highlight>
594                  &lt;             &lt;
596<t><iref primary="true" item="cacheable"/>
597   A response is "<x:dfn>cacheable</x:dfn>" if a cache is allowed to store a copy of
598   the response message for use in answering subsequent requests.
599   Even when a response is cacheable, there might be additional
600   constraints placed by the client or by the origin server on when
601   that cached response can be used for a particular request. HTTP
602   requirements for cache behavior and cacheable responses are
603   defined in &caching-overview;. 
606   There are a wide variety of architectures and configurations
607   of caches and proxies deployed across the World Wide Web and
608   inside large organizations. These systems include national hierarchies
609   of proxy caches to save transoceanic bandwidth, systems that
610   broadcast or multicast cache entries, organizations that distribute
611   subsets of cached data via optical media, and so on.
615<section title="Conformance and Error Handling" anchor="conformance">
617   This specification targets conformance criteria according to the role of
618   a participant in HTTP communication.  Hence, HTTP requirements are placed
619   on senders, recipients, clients, servers, user agents, intermediaries,
620   origin servers, proxies, gateways, or caches, depending on what behavior
621   is being constrained by the requirement.
624   The verb "generate" is used instead of "send" where a requirement
625   differentiates between creating a protocol element and merely forwarding a
626   received element downstream.
629   An implementation is considered conformant if it complies with all of the
630   requirements associated with the roles it partakes in HTTP. Note that
631   SHOULD-level requirements are relevant here, unless one of the documented
632   exceptions is applicable.
635   In addition to the prose requirements placed upon them, senders &MUST-NOT;
636   generate protocol elements that do not match the grammar defined by the
637   ABNF rules for those protocol elements that are applicable to the sender's
638   role. If a received protocol element is processed, the recipient &MUST; be
639   able to parse any value that would match the ABNF rules for that protocol
640   element, excluding only those rules not applicable to the recipient's role.
643   Unless noted otherwise, a recipient &MAY; attempt to recover a usable
644   protocol element from an invalid construct.  HTTP does not define
645   specific error handling mechanisms except when they have a direct impact
646   on security, since different applications of the protocol require
647   different error handling strategies.  For example, a Web browser might
648   wish to transparently recover from a response where the
649   <x:ref>Location</x:ref> header field doesn't parse according to the ABNF,
650   whereas a systems control client might consider any form of error recovery
651   to be dangerous.
655<section title="Protocol Versioning" anchor="http.version">
656  <x:anchor-alias value="HTTP-version"/>
657  <x:anchor-alias value="HTTP-name"/>
659   HTTP uses a "&lt;major&gt;.&lt;minor&gt;" numbering scheme to indicate
660   versions of the protocol. This specification defines version "1.1".
661   The protocol version as a whole indicates the sender's conformance
662   with the set of requirements laid out in that version's corresponding
663   specification of HTTP.
666   The version of an HTTP message is indicated by an HTTP-version field
667   in the first line of the message. HTTP-version is case-sensitive.
669<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="HTTP-version"/><iref primary="true" item="Grammar" subitem="HTTP-name"/>
670  <x:ref>HTTP-version</x:ref>  = <x:ref>HTTP-name</x:ref> "/" <x:ref>DIGIT</x:ref> "." <x:ref>DIGIT</x:ref>
671  <x:ref>HTTP-name</x:ref>     = <x:abnf-char-sequence>"HTTP"</x:abnf-char-sequence> ; "HTTP", case-sensitive
674   The HTTP version number consists of two decimal digits separated by a "."
675   (period or decimal point).  The first digit ("major version") indicates the
676   HTTP messaging syntax, whereas the second digit ("minor version") indicates
677   the highest minor version to which the sender is
678   conformant and able to understand for future communication.  The minor
679   version advertises the sender's communication capabilities even when the
680   sender is only using a backwards-compatible subset of the protocol,
681   thereby letting the recipient know that more advanced features can
682   be used in response (by servers) or in future requests (by clients).
685   When an HTTP/1.1 message is sent to an HTTP/1.0 recipient
686   <xref target="RFC1945"/> or a recipient whose version is unknown,
687   the HTTP/1.1 message is constructed such that it can be interpreted
688   as a valid HTTP/1.0 message if all of the newer features are ignored.
689   This specification places recipient-version requirements on some
690   new features so that a conformant sender will only use compatible
691   features until it has determined, through configuration or the
692   receipt of a message, that the recipient supports HTTP/1.1.
695   The interpretation of a header field does not change between minor
696   versions of the same major HTTP version, though the default
697   behavior of a recipient in the absence of such a field can change.
698   Unless specified otherwise, header fields defined in HTTP/1.1 are
699   defined for all versions of HTTP/1.x.  In particular, the <x:ref>Host</x:ref>
700   and <x:ref>Connection</x:ref> header fields ought to be implemented by all
701   HTTP/1.x implementations whether or not they advertise conformance with
702   HTTP/1.1.
705   New header fields can be defined such that, when they are
706   understood by a recipient, they might override or enhance the
707   interpretation of previously defined header fields.  When an
708   implementation receives an unrecognized header field, the recipient
709   &MUST; ignore that header field for local processing regardless of
710   the message's HTTP version.  An unrecognized header field received
711   by a proxy &MUST; be forwarded downstream unless the header field's
712   field-name is listed in the message's <x:ref>Connection</x:ref> header field
713   (see <xref target="header.connection"/>).
714   These requirements allow HTTP's functionality to be enhanced without
715   requiring prior update of deployed intermediaries.
718   Intermediaries that process HTTP messages (i.e., all intermediaries
719   other than those acting as tunnels) &MUST; send their own HTTP-version
720   in forwarded messages.  In other words, they &MUST-NOT; blindly
721   forward the first line of an HTTP message without ensuring that the
722   protocol version in that message matches a version to which that
723   intermediary is conformant for both the receiving and
724   sending of messages.  Forwarding an HTTP message without rewriting
725   the HTTP-version might result in communication errors when downstream
726   recipients use the message sender's version to determine what features
727   are safe to use for later communication with that sender.
730   An HTTP client &SHOULD; send a request version equal to the highest
731   version to which the client is conformant and
732   whose major version is no higher than the highest version supported
733   by the server, if this is known.  An HTTP client &MUST-NOT; send a
734   version to which it is not conformant.
737   An HTTP client &MAY; send a lower request version if it is known that
738   the server incorrectly implements the HTTP specification, but only
739   after the client has attempted at least one normal request and determined
740   from the response status or header fields (e.g., <x:ref>Server</x:ref>) that
741   the server improperly handles higher request versions.
744   An HTTP server &SHOULD; send a response version equal to the highest
745   version to which the server is conformant and
746   whose major version is less than or equal to the one received in the
747   request.  An HTTP server &MUST-NOT; send a version to which it is not
748   conformant.  A server &MAY; send a <x:ref>505 (HTTP Version Not
749   Supported)</x:ref> response if it cannot send a response using the
750   major version used in the client's request.
753   An HTTP server &MAY; send an HTTP/1.0 response to an HTTP/1.0 request
754   if it is known or suspected that the client incorrectly implements the
755   HTTP specification and is incapable of correctly processing later
756   version responses, such as when a client fails to parse the version
757   number correctly or when an intermediary is known to blindly forward
758   the HTTP-version even when it doesn't conform to the given minor
759   version of the protocol. Such protocol downgrades &SHOULD-NOT; be
760   performed unless triggered by specific client attributes, such as when
761   one or more of the request header fields (e.g., <x:ref>User-Agent</x:ref>)
762   uniquely match the values sent by a client known to be in error.
765   The intention of HTTP's versioning design is that the major number
766   will only be incremented if an incompatible message syntax is
767   introduced, and that the minor number will only be incremented when
768   changes made to the protocol have the effect of adding to the message
769   semantics or implying additional capabilities of the sender.  However,
770   the minor version was not incremented for the changes introduced between
771   <xref target="RFC2068"/> and <xref target="RFC2616"/>, and this revision
772   is specifically avoiding any such changes to the protocol.
776<section title="Uniform Resource Identifiers" anchor="uri">
777<iref primary="true" item="resource"/>
779   Uniform Resource Identifiers (URIs) <xref target="RFC3986"/> are used
780   throughout HTTP as the means for identifying resources. URI references
781   are used to target requests, indicate redirects, and define relationships.
782   HTTP does not limit what a resource might be; it merely defines an interface
783   that can be used to interact with a resource via HTTP. More information on
784   the scope of URIs and resources can be found in <xref target="RFC3986"/>.
786  <x:anchor-alias value="URI-reference"/>
787  <x:anchor-alias value="absolute-URI"/>
788  <x:anchor-alias value="relative-part"/>
789  <x:anchor-alias value="authority"/>
790  <x:anchor-alias value="path-abempty"/>
791  <x:anchor-alias value="path-absolute"/>
792  <x:anchor-alias value="port"/>
793  <x:anchor-alias value="query"/>
794  <x:anchor-alias value="uri-host"/>
795  <x:anchor-alias value="partial-URI"/>
797   This specification adopts the definitions of "URI-reference",
798   "absolute-URI", "relative-part", "port", "host",
799   "path-abempty", "path-absolute", "query", and "authority" from the
800   URI generic syntax <xref target="RFC3986"/>.
801   In addition, we define a partial-URI rule for protocol elements
802   that allow a relative URI but not a fragment.
804<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="URI-reference"><!--exported production--></iref><iref primary="true" item="Grammar" subitem="absolute-URI"/><iref primary="true" item="Grammar" subitem="authority"/><iref primary="true" item="Grammar" subitem="path-absolute"/><iref primary="true" item="Grammar" subitem="port"/><iref primary="true" item="Grammar" subitem="query"/><iref primary="true" item="Grammar" subitem="uri-host"/><iref primary="true" item="Grammar" subitem="partial-URI"><!--exported production--></iref>
805  <x:ref>URI-reference</x:ref> = &lt;URI-reference, defined in <xref target="RFC3986" x:fmt="," x:sec="4.1"/>&gt;
806  <x:ref>absolute-URI</x:ref>  = &lt;absolute-URI, defined in <xref target="RFC3986" x:fmt="," x:sec="4.3"/>&gt;
807  <x:ref>relative-part</x:ref> = &lt;relative-part, defined in <xref target="RFC3986" x:fmt="," x:sec="4.2"/>&gt;
808  <x:ref>authority</x:ref>     = &lt;authority, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2"/>&gt;
809  <x:ref>path-abempty</x:ref>  = &lt;path-abempty, defined in <xref target="RFC3986" x:fmt="," x:sec="3.3"/>&gt;
810  <x:ref>path-absolute</x:ref> = &lt;path-absolute, defined in <xref target="RFC3986" x:fmt="," x:sec="3.3"/>&gt;
811  <x:ref>port</x:ref>          = &lt;port, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2.3"/>&gt;
812  <x:ref>query</x:ref>         = &lt;query, defined in <xref target="RFC3986" x:fmt="," x:sec="3.4"/>&gt;
813  <x:ref>uri-host</x:ref>      = &lt;host, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2.2"/>&gt;
815  <x:ref>partial-URI</x:ref>   = relative-part [ "?" query ]
818   Each protocol element in HTTP that allows a URI reference will indicate
819   in its ABNF production whether the element allows any form of reference
820   (URI-reference), only a URI in absolute form (absolute-URI), only the
821   path and optional query components, or some combination of the above.
822   Unless otherwise indicated, URI references are parsed
823   relative to the effective request URI
824   (<xref target="effective.request.uri"/>).
827<section title="http URI scheme" anchor="http.uri">
828  <x:anchor-alias value="http-URI"/>
829  <iref item="http URI scheme" primary="true"/>
830  <iref item="URI scheme" subitem="http" primary="true"/>
832   The "http" URI scheme is hereby defined for the purpose of minting
833   identifiers according to their association with the hierarchical
834   namespace governed by a potential HTTP origin server listening for
835   TCP connections on a given port.
837<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="http-URI"><!--terminal production--></iref>
838  <x:ref>http-URI</x:ref> = "http:" "//" <x:ref>authority</x:ref> <x:ref>path-abempty</x:ref> [ "?" <x:ref>query</x:ref> ]
841   The HTTP origin server is identified by the generic syntax's
842   <x:ref>authority</x:ref> component, which includes a host identifier
843   and optional TCP port (<xref target="RFC3986" x:fmt="," x:sec="3.2.2"/>).
844   The remainder of the URI, consisting of both the hierarchical path
845   component and optional query component, serves as an identifier for
846   a potential resource within that origin server's name space.
849   If the host identifier is provided as an IP literal or IPv4 address,
850   then the origin server is any listener on the indicated TCP port at
851   that IP address. If host is a registered name, then that name is
852   considered an indirect identifier and the recipient might use a name
853   resolution service, such as DNS, to find the address of a listener
854   for that host.
855   The host &MUST-NOT; be empty; if an "http" URI is received with an
856   empty host, then it &MUST; be rejected as invalid.
857   If the port subcomponent is empty or not given, then TCP port 80 is
858   assumed (the default reserved port for WWW services).
861   Regardless of the form of host identifier, access to that host is not
862   implied by the mere presence of its name or address. The host might or might
863   not exist and, even when it does exist, might or might not be running an
864   HTTP server or listening to the indicated port. The "http" URI scheme
865   makes use of the delegated nature of Internet names and addresses to
866   establish a naming authority (whatever entity has the ability to place
867   an HTTP server at that Internet name or address) and allows that
868   authority to determine which names are valid and how they might be used.
871   When an "http" URI is used within a context that calls for access to the
872   indicated resource, a client &MAY; attempt access by resolving
873   the host to an IP address, establishing a TCP connection to that address
874   on the indicated port, and sending an HTTP request message
875   (<xref target="http.message"/>) containing the URI's identifying data
876   (<xref target="message.routing"/>) to the server.
877   If the server responds to that request with a non-interim HTTP response
878   message, as described in &status-codes;, then that response
879   is considered an authoritative answer to the client's request.
882   Although HTTP is independent of the transport protocol, the "http"
883   scheme is specific to TCP-based services because the name delegation
884   process depends on TCP for establishing authority.
885   An HTTP service based on some other underlying connection protocol
886   would presumably be identified using a different URI scheme, just as
887   the "https" scheme (below) is used for servers that require an SSL/TLS
888   transport layer on a connection. Other protocols might also be used to
889   provide access to "http" identified resources &mdash; it is only the
890   authoritative interface used for mapping the namespace that is
891   specific to TCP.
894   The URI generic syntax for authority also includes a deprecated
895   userinfo subcomponent (<xref target="RFC3986" x:fmt="," x:sec="3.2.1"/>)
896   for including user authentication information in the URI.  Some
897   implementations make use of the userinfo component for internal
898   configuration of authentication information, such as within command
899   invocation options, configuration files, or bookmark lists, even
900   though such usage might expose a user identifier or password.
901   Senders &MUST-NOT; include a userinfo subcomponent (and its "@"
902   delimiter) when transmitting an "http" URI in a message.  Recipients
903   of HTTP messages that contain a URI reference &SHOULD; parse for the
904   existence of userinfo and treat its presence as an error, likely
905   indicating that the deprecated subcomponent is being used to obscure
906   the authority for the sake of phishing attacks.
910<section title="https URI scheme" anchor="https.uri">
911   <x:anchor-alias value="https-URI"/>
912   <iref item="https URI scheme"/>
913   <iref item="URI scheme" subitem="https"/>
915   The "https" URI scheme is hereby defined for the purpose of minting
916   identifiers according to their association with the hierarchical
917   namespace governed by a potential HTTP origin server listening for
918   SSL/TLS-secured connections on a given TCP port.
921   All of the requirements listed above for the "http" scheme are also
922   requirements for the "https" scheme, except that a default TCP port
923   of 443 is assumed if the port subcomponent is empty or not given,
924   and the TCP connection &MUST; be secured through the
925   use of strong encryption prior to sending the first HTTP request.
927<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="https-URI"><!--terminal production--></iref>
928  <x:ref>https-URI</x:ref> = "https:" "//" <x:ref>authority</x:ref> <x:ref>path-abempty</x:ref> [ "?" <x:ref>query</x:ref> ]
931   Unlike the "http" scheme, responses to "https" identified requests
932   are never "public" and thus &MUST-NOT; be reused for shared caching.
933   They can, however, be reused in a private cache if the message is
934   cacheable by default in HTTP or specifically indicated as such by
935   the Cache-Control header field (&header-cache-control;).
938   Resources made available via the "https" scheme have no shared
939   identity with the "http" scheme even if their resource identifiers
940   indicate the same authority (the same host listening to the same
941   TCP port).  They are distinct name spaces and are considered to be
942   distinct origin servers.  However, an extension to HTTP that is
943   defined to apply to entire host domains, such as the Cookie protocol
944   <xref target="RFC6265"/>, can allow information
945   set by one service to impact communication with other services
946   within a matching group of host domains.
949   The process for authoritative access to an "https" identified
950   resource is defined in <xref target="RFC2818"/>.
954<section title="http and https URI Normalization and Comparison" anchor="uri.comparison">
956   Since the "http" and "https" schemes conform to the URI generic syntax,
957   such URIs are normalized and compared according to the algorithm defined
958   in <xref target="RFC3986" x:fmt="," x:sec="6"/>, using the defaults
959   described above for each scheme.
962   If the port is equal to the default port for a scheme, the normal
963   form is to elide the port subcomponent. Likewise, an empty path
964   component is equivalent to an absolute path of "/", so the normal
965   form is to provide a path of "/" instead. The scheme and host
966   are case-insensitive and normally provided in lowercase; all
967   other components are compared in a case-sensitive manner.
968   Characters other than those in the "reserved" set are equivalent
969   to their percent-encoded octets (see <xref target="RFC3986"
970   x:fmt="," x:sec="2.1"/>): the normal form is to not encode them.
973   For example, the following three URIs are equivalent:
975<figure><artwork type="example">
984<section title="Message Format" anchor="http.message">
985<x:anchor-alias value="generic-message"/>
986<x:anchor-alias value="message.types"/>
987<x:anchor-alias value="HTTP-message"/>
988<x:anchor-alias value="start-line"/>
989<iref item="header section"/>
990<iref item="headers"/>
991<iref item="header field"/>
993   All HTTP/1.1 messages consist of a start-line followed by a sequence of
994   octets in a format similar to the Internet Message Format
995   <xref target="RFC5322"/>: zero or more header fields (collectively
996   referred to as the "headers" or the "header section"), an empty line
997   indicating the end of the header section, and an optional message body.
999<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="HTTP-message"><!--terminal production--></iref>
1000  <x:ref>HTTP-message</x:ref>   = <x:ref>start-line</x:ref>
1001                   *( <x:ref>header-field</x:ref> <x:ref>CRLF</x:ref> )
1002                   <x:ref>CRLF</x:ref>
1003                   [ <x:ref>message-body</x:ref> ]
1006   The normal procedure for parsing an HTTP message is to read the
1007   start-line into a structure, read each header field into a hash
1008   table by field name until the empty line, and then use the parsed
1009   data to determine if a message body is expected.  If a message body
1010   has been indicated, then it is read as a stream until an amount
1011   of octets equal to the message body length is read or the connection
1012   is closed.
1015   Recipients &MUST; parse an HTTP message as a sequence of octets in an
1016   encoding that is a superset of US-ASCII <xref target="USASCII"/>.
1017   Parsing an HTTP message as a stream of Unicode characters, without regard
1018   for the specific encoding, creates security vulnerabilities due to the
1019   varying ways that string processing libraries handle invalid multibyte
1020   character sequences that contain the octet LF (%x0A).  String-based
1021   parsers can only be safely used within protocol elements after the element
1022   has been extracted from the message, such as within a header field-value
1023   after message parsing has delineated the individual fields.
1026   An HTTP message can be parsed as a stream for incremental processing or
1027   forwarding downstream.  However, recipients cannot rely on incremental
1028   delivery of partial messages, since some implementations will buffer or
1029   delay message forwarding for the sake of network efficiency, security
1030   checks, or payload transformations.
1033<section title="Start Line" anchor="start.line">
1034  <x:anchor-alias value="Start-Line"/>
1036   An HTTP message can either be a request from client to server or a
1037   response from server to client.  Syntactically, the two types of message
1038   differ only in the start-line, which is either a request-line (for requests)
1039   or a status-line (for responses), and in the algorithm for determining
1040   the length of the message body (<xref target="message.body"/>).
1041   In theory, a client could receive requests and a server could receive
1042   responses, distinguishing them by their different start-line formats,
1043   but in practice servers are implemented to only expect a request
1044   (a response is interpreted as an unknown or invalid request method)
1045   and clients are implemented to only expect a response.
1047<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="start-line"/>
1048  <x:ref>start-line</x:ref>     = <x:ref>request-line</x:ref> / <x:ref>status-line</x:ref>
1051   Implementations &MUST-NOT; send whitespace between the start-line and
1052   the first header field. The presence of such whitespace in a request
1053   might be an attempt to trick a server into ignoring that field or
1054   processing the line after it as a new request, either of which might
1055   result in a security vulnerability if other implementations within
1056   the request chain interpret the same message differently.
1057   Likewise, the presence of such whitespace in a response might be
1058   ignored by some clients or cause others to cease parsing.
1061<section title="Request Line" anchor="request.line">
1062  <x:anchor-alias value="Request"/>
1063  <x:anchor-alias value="request-line"/>
1065   A request-line begins with a method token, followed by a single
1066   space (SP), the request-target, another single space (SP), the
1067   protocol version, and ending with CRLF.
1069<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="request-line"/>
1070  <x:ref>request-line</x:ref>   = <x:ref>method</x:ref> <x:ref>SP</x:ref> <x:ref>request-target</x:ref> <x:ref>SP</x:ref> <x:ref>HTTP-version</x:ref> <x:ref>CRLF</x:ref>
1073   A server &MUST; be able to parse any received message that begins
1074   with a request-line and matches the ABNF rule for HTTP-message.
1076<iref primary="true" item="method"/>
1077<t anchor="method">
1078   The method token indicates the request method to be performed on the
1079   target resource. The request method is case-sensitive.
1081<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="method"/>
1082  <x:ref>method</x:ref>         = <x:ref>token</x:ref>
1085   The methods defined by this specification can be found in
1086   &methods;, along with information regarding the HTTP method registry
1087   and considerations for defining new methods.
1089<iref item="request-target"/>
1091   The request-target identifies the target resource upon which to apply
1092   the request, as defined in <xref target="request-target"/>.
1095   No whitespace is allowed inside the method, request-target, and
1096   protocol version.  Hence, recipients typically parse the request-line
1097   into its component parts by splitting on the SP characters.
1100   Unfortunately, some user agents fail to properly encode hypertext
1101   references that have embedded whitespace, sending the characters
1102   directly instead of properly percent-encoding the disallowed characters.
1103   Recipients of an invalid request-line &SHOULD; respond with either a
1104   <x:ref>400 (Bad Request)</x:ref> error or a <x:ref>301 (Moved Permanently)</x:ref>
1105   redirect with the request-target properly encoded.  Recipients &SHOULD-NOT;
1106   attempt to autocorrect and then process the request without a redirect,
1107   since the invalid request-line might be deliberately crafted to bypass
1108   security filters along the request chain.
1111   HTTP does not place a pre-defined limit on the length of a request-line.
1112   A server that receives a method longer than any that it implements
1113   &SHOULD; respond with either a <x:ref>405 (Method Not Allowed)</x:ref>, if it is an origin
1114   server, or a <x:ref>501 (Not Implemented)</x:ref> status code.
1115   A server &MUST; be prepared to receive URIs of unbounded length and
1116   respond with the <x:ref>414 (URI Too Long)</x:ref> status code if the received
1117   request-target would be longer than the server wishes to handle
1118   (see &status-414;).
1121   Various ad-hoc limitations on request-line length are found in practice.
1122   It is &RECOMMENDED; that all HTTP senders and recipients support, at a
1123   minimum, request-line lengths of up to 8000 octets.
1127<section title="Status Line" anchor="status.line">
1128  <x:anchor-alias value="response"/>
1129  <x:anchor-alias value="status-line"/>
1130  <x:anchor-alias value="status-code"/>
1131  <x:anchor-alias value="reason-phrase"/>
1133   The first line of a response message is the status-line, consisting
1134   of the protocol version, a space (SP), the status code, another space,
1135   a possibly-empty textual phrase describing the status code, and
1136   ending with CRLF.
1138<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="status-line"/>
1139  <x:ref>status-line</x:ref> = <x:ref>HTTP-version</x:ref> <x:ref>SP</x:ref> <x:ref>status-code</x:ref> <x:ref>SP</x:ref> <x:ref>reason-phrase</x:ref> <x:ref>CRLF</x:ref>
1142   A client &MUST; be able to parse any received message that begins
1143   with a status-line and matches the ABNF rule for HTTP-message.
1146   The status-code element is a 3-digit integer code describing the
1147   result of the server's attempt to understand and satisfy the client's
1148   corresponding request. The rest of the response message is to be
1149   interpreted in light of the semantics defined for that status code.
1150   See &status-codes; for information about the semantics of status codes,
1151   including the classes of status code (indicated by the first digit),
1152   the status codes defined by this specification, considerations for the
1153   definition of new status codes, and the IANA registry.
1155<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="status-code"/>
1156  <x:ref>status-code</x:ref>    = 3<x:ref>DIGIT</x:ref>
1159   The reason-phrase element exists for the sole purpose of providing a
1160   textual description associated with the numeric status code, mostly
1161   out of deference to earlier Internet application protocols that were more
1162   frequently used with interactive text clients. A client &SHOULD; ignore
1163   the reason-phrase content.
1165<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="reason-phrase"/>
1166  <x:ref>reason-phrase</x:ref>  = *( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1171<section title="Header Fields" anchor="header.fields">
1172  <x:anchor-alias value="header-field"/>
1173  <x:anchor-alias value="field-content"/>
1174  <x:anchor-alias value="field-name"/>
1175  <x:anchor-alias value="field-value"/>
1176  <x:anchor-alias value="obs-fold"/>
1178   Each HTTP header field consists of a case-insensitive field name
1179   followed by a colon (":"), optional whitespace, and the field value.
1181<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="header-field"/><iref primary="true" item="Grammar" subitem="field-name"/><iref primary="true" item="Grammar" subitem="field-value"/><iref primary="true" item="Grammar" subitem="field-content"/><iref primary="true" item="Grammar" subitem="obs-fold"/>
1182  <x:ref>header-field</x:ref>   = <x:ref>field-name</x:ref> ":" <x:ref>OWS</x:ref> <x:ref>field-value</x:ref> <x:ref>BWS</x:ref>
1183  <x:ref>field-name</x:ref>     = <x:ref>token</x:ref>
1184  <x:ref>field-value</x:ref>    = *( <x:ref>field-content</x:ref> / <x:ref>obs-fold</x:ref> )
1185  <x:ref>field-content</x:ref>  = *( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1186  <x:ref>obs-fold</x:ref>       = <x:ref>CRLF</x:ref> ( <x:ref>SP</x:ref> / <x:ref>HTAB</x:ref> )
1187                 ; obsolete line folding
1188                 ; see <xref target="field.parsing"/>
1191   The field-name token labels the corresponding field-value as having the
1192   semantics defined by that header field.  For example, the <x:ref>Date</x:ref>
1193   header field is defined in &header-date; as containing the origination
1194   timestamp for the message in which it appears.
1197   HTTP header fields are fully extensible: there is no limit on the
1198   introduction of new field names, each presumably defining new semantics,
1199   or on the number of header fields used in a given message.  Existing
1200   fields are defined in each part of this specification and in many other
1201   specifications outside the standards process.
1202   New header fields can be introduced without changing the protocol version
1203   if their defined semantics allow them to be safely ignored by recipients
1204   that do not recognize them.
1207   New HTTP header fields &SHOULD; be registered with IANA according
1208   to the procedures in &cons-new-header-fields;.
1209   Unrecognized header fields &MUST; be forwarded by a proxy unless the
1210   field-name is listed in the <x:ref>Connection</x:ref> header field
1211   (<xref target="header.connection"/>) or the proxy is specifically
1212   configured to block or otherwise transform such fields.
1213   Unrecognized header fields &SHOULD; be ignored by other recipients.
1216   The order in which header fields with differing field names are
1217   received is not significant. However, it is "good practice" to send
1218   header fields that contain control data first, such as <x:ref>Host</x:ref>
1219   on requests and <x:ref>Date</x:ref> on responses, so that implementations
1220   can decide when not to handle a message as early as possible.  A server
1221   &MUST; wait until the entire header section is received before interpreting
1222   a request message, since later header fields might include conditionals,
1223   authentication credentials, or deliberately misleading duplicate
1224   header fields that would impact request processing.
1227   Multiple header fields with the same field name &MUST-NOT; be
1228   sent in a message unless the entire field value for that
1229   header field is defined as a comma-separated list [i.e., #(values)].
1230   Multiple header fields with the same field name can be combined into
1231   one "field-name: field-value" pair, without changing the semantics of the
1232   message, by appending each subsequent field value to the combined
1233   field value in order, separated by a comma. The order in which
1234   header fields with the same field name are received is therefore
1235   significant to the interpretation of the combined field value;
1236   a proxy &MUST-NOT; change the order of these field values when
1237   forwarding a message.
1240  <t>
1241   &Note; The "Set-Cookie" header field as implemented in
1242   practice can occur multiple times, but does not use the list syntax, and
1243   thus cannot be combined into a single line (<xref target="RFC6265"/>). (See Appendix A.2.3 of <xref target="Kri2001"/>
1244   for details.) Also note that the Set-Cookie2 header field specified in
1245   <xref target="RFC2965"/> does not share this problem.
1246  </t>
1249<section title="Whitespace" anchor="whitespace">
1250<t anchor="rule.LWS">
1251   This specification uses three rules to denote the use of linear
1252   whitespace: OWS (optional whitespace), RWS (required whitespace), and
1253   BWS ("bad" whitespace).
1255<t anchor="rule.OWS">
1256   The OWS rule is used where zero or more linear whitespace octets might
1257   appear. OWS &SHOULD; either not be produced or be produced as a single
1258   SP. Multiple OWS octets that occur within field-content &SHOULD; either
1259   be replaced with a single SP or transformed to all SP octets (each
1260   octet other than SP replaced with SP) before interpreting the field value
1261   or forwarding the message downstream.
1263<t anchor="rule.RWS">
1264   RWS is used when at least one linear whitespace octet is required to
1265   separate field tokens. RWS &SHOULD; be produced as a single SP.
1266   Multiple RWS octets that occur within field-content &SHOULD; either
1267   be replaced with a single SP or transformed to all SP octets before
1268   interpreting the field value or forwarding the message downstream.
1270<t anchor="rule.BWS">
1271   BWS is used where the grammar allows optional whitespace for historical
1272   reasons but senders &SHOULD-NOT; produce it in messages. HTTP/1.1
1273   recipients &MUST; accept such bad optional whitespace and remove it before
1274   interpreting the field value or forwarding the message downstream.
1276<t anchor="rule.whitespace">
1277  <x:anchor-alias value="BWS"/>
1278  <x:anchor-alias value="OWS"/>
1279  <x:anchor-alias value="RWS"/>
1281<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="OWS"/><iref primary="true" item="Grammar" subitem="RWS"/><iref primary="true" item="Grammar" subitem="BWS"/>
1282  <x:ref>OWS</x:ref>            = *( <x:ref>SP</x:ref> / <x:ref>HTAB</x:ref> )
1283                 ; "optional" whitespace
1284  <x:ref>RWS</x:ref>            = 1*( <x:ref>SP</x:ref> / <x:ref>HTAB</x:ref> )
1285                 ; "required" whitespace
1286  <x:ref>BWS</x:ref>            = <x:ref>OWS</x:ref>
1287                 ; "bad" whitespace
1291<section title="Field Parsing" anchor="field.parsing">
1293   No whitespace is allowed between the header field-name and colon.
1294   In the past, differences in the handling of such whitespace have led to
1295   security vulnerabilities in request routing and response handling.
1296   Any received request message that contains whitespace between a header
1297   field-name and colon &MUST; be rejected with a response code of 400
1298   (Bad Request).  A proxy &MUST; remove any such whitespace from a response
1299   message before forwarding the message downstream.
1302   A field value &MAY; be preceded by optional whitespace (OWS); a single SP is
1303   preferred. The field value does not include any leading or trailing white
1304   space: OWS occurring before the first non-whitespace octet of the
1305   field value or after the last non-whitespace octet of the field value
1306   is ignored and &SHOULD; be removed before further processing (as this does
1307   not change the meaning of the header field).
1310   Historically, HTTP header field values could be extended over multiple
1311   lines by preceding each extra line with at least one space or horizontal
1312   tab (obs-fold). This specification deprecates such line
1313   folding except within the message/http media type
1314   (<xref target=""/>).
1315   HTTP senders &MUST-NOT; produce messages that include line folding
1316   (i.e., that contain any field-value that matches the obs-fold rule) unless
1317   the message is intended for packaging within the message/http media type.
1318   HTTP recipients &SHOULD; accept line folding and replace any embedded
1319   obs-fold whitespace with either a single SP or a matching number of SP
1320   octets (to avoid buffer copying) prior to interpreting the field value or
1321   forwarding the message downstream.
1324   Historically, HTTP has allowed field content with text in the ISO-8859-1
1325   <xref target="ISO-8859-1"/> character encoding and supported other
1326   character sets only through use of <xref target="RFC2047"/> encoding.
1327   In practice, most HTTP header field values use only a subset of the
1328   US-ASCII character encoding <xref target="USASCII"/>. Newly defined
1329   header fields &SHOULD; limit their field values to US-ASCII octets.
1330   Recipients &SHOULD; treat other (obs-text) octets in field content as
1331   opaque data.
1335<section title="Field Length" anchor="field.length">
1337   HTTP does not place a pre-defined limit on the length of header fields,
1338   either in isolation or as a set. A server &MUST; be prepared to receive
1339   request header fields of unbounded length and respond with a <x:ref>4xx
1340   (Client Error)</x:ref> status code if the received header field(s) would be
1341   longer than the server wishes to handle.
1344   A client that receives response header fields that are longer than it wishes
1345   to handle can only treat it as a server error.
1348   Various ad-hoc limitations on header field length are found in practice. It
1349   is &RECOMMENDED; that all HTTP senders and recipients support messages whose
1350   combined header fields have 4000 or more octets.
1354<section title="Field value components" anchor="field.components">
1355<t anchor="rule.token.separators">
1356  <x:anchor-alias value="tchar"/>
1357  <x:anchor-alias value="token"/>
1358  <x:anchor-alias value="special"/>
1359  <x:anchor-alias value="word"/>
1360   Many HTTP/1.1 header field values consist of words (token or quoted-string)
1361   separated by whitespace or special characters. These special characters
1362   &MUST; be in a quoted string to be used within a parameter value (as defined
1363   in <xref target="transfer.codings"/>).
1365<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="word"/><iref primary="true" item="Grammar" subitem="token"/><iref primary="true" item="Grammar" subitem="tchar"/><iref primary="true" item="Grammar" subitem="special"><!--unused production--></iref>
1366  <x:ref>word</x:ref>           = <x:ref>token</x:ref> / <x:ref>quoted-string</x:ref>
1368  <x:ref>token</x:ref>          = 1*<x:ref>tchar</x:ref>
1370  IMPORTANT: when editing "tchar" make sure that "special" is updated accordingly!!!
1371 -->
1372  <x:ref>tchar</x:ref>          = "!" / "#" / "$" / "%" / "&amp;" / "'" / "*"
1373                 / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"
1374                 / <x:ref>DIGIT</x:ref> / <x:ref>ALPHA</x:ref>
1375                 ; any <x:ref>VCHAR</x:ref>, except <x:ref>special</x:ref>
1377  <x:ref>special</x:ref>        = "(" / ")" / "&lt;" / ">" / "@" / ","
1378                 / ";" / ":" / "\" / DQUOTE / "/" / "["
1379                 / "]" / "?" / "=" / "{" / "}"
1381<t anchor="rule.quoted-string">
1382  <x:anchor-alias value="quoted-string"/>
1383  <x:anchor-alias value="qdtext"/>
1384  <x:anchor-alias value="obs-text"/>
1385   A string of text is parsed as a single word if it is quoted using
1386   double-quote marks.
1388<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-string"/><iref primary="true" item="Grammar" subitem="qdtext"/><iref primary="true" item="Grammar" subitem="obs-text"/>
1389  <x:ref>quoted-string</x:ref>  = <x:ref>DQUOTE</x:ref> *( <x:ref>qdtext</x:ref> / <x:ref>quoted-pair</x:ref> ) <x:ref>DQUOTE</x:ref>
1390  <x:ref>qdtext</x:ref>         = <x:ref>OWS</x:ref> / %x21 / %x23-5B / %x5D-7E / <x:ref>obs-text</x:ref>
1391  <x:ref>obs-text</x:ref>       = %x80-FF
1393<t anchor="rule.quoted-pair">
1394  <x:anchor-alias value="quoted-pair"/>
1395   The backslash octet ("\") can be used as a single-octet
1396   quoting mechanism within quoted-string constructs:
1398<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-pair"/>
1399  <x:ref>quoted-pair</x:ref>    = "\" ( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1402   Recipients that process the value of the quoted-string &MUST; handle a
1403   quoted-pair as if it were replaced by the octet following the backslash.
1406   Senders &SHOULD-NOT; escape octets in quoted-strings that do not require
1407   escaping (i.e., other than DQUOTE and the backslash octet).
1409<t anchor="rule.comment">
1410  <x:anchor-alias value="comment"/>
1411  <x:anchor-alias value="ctext"/>
1412   Comments can be included in some HTTP header fields by surrounding
1413   the comment text with parentheses. Comments are only allowed in
1414   fields containing "comment" as part of their field value definition.
1416<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="comment"/><iref primary="true" item="Grammar" subitem="ctext"/>
1417  <x:ref>comment</x:ref>        = "(" *( <x:ref>ctext</x:ref> / <x:ref>quoted-cpair</x:ref> / <x:ref>comment</x:ref> ) ")"
1418  <x:ref>ctext</x:ref>          = <x:ref>OWS</x:ref> / %x21-27 / %x2A-5B / %x5D-7E / <x:ref>obs-text</x:ref>
1420<t anchor="rule.quoted-cpair">
1421  <x:anchor-alias value="quoted-cpair"/>
1422   The backslash octet ("\") can be used as a single-octet
1423   quoting mechanism within comment constructs:
1425<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-cpair"/>
1426  <x:ref>quoted-cpair</x:ref>   = "\" ( <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
1429   Senders &SHOULD-NOT; escape octets in comments that do not require escaping
1430   (i.e., other than the backslash octet "\" and the parentheses "(" and ")").
1436<section title="Message Body" anchor="message.body">
1437  <x:anchor-alias value="message-body"/>
1439   The message body (if any) of an HTTP message is used to carry the
1440   payload body of that request or response.  The message body is
1441   identical to the payload body unless a transfer coding has been
1442   applied, as described in <xref target="header.transfer-encoding"/>.
1444<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="message-body"/>
1445  <x:ref>message-body</x:ref> = *OCTET
1448   The rules for when a message body is allowed in a message differ for
1449   requests and responses.
1452   The presence of a message body in a request is signaled by a
1453   a <x:ref>Content-Length</x:ref> or <x:ref>Transfer-Encoding</x:ref> header
1454   field. Request message framing is independent of method semantics,
1455   even if the method does not define any use for a message body.
1458   The presence of a message body in a response depends on both
1459   the request method to which it is responding and the response
1460   status code (<xref target="status.line"/>).
1461   Responses to the HEAD request method never include a message body
1462   because the associated response header fields (e.g.,
1463   <x:ref>Transfer-Encoding</x:ref>, <x:ref>Content-Length</x:ref>, etc.) only
1464   indicate what their values would have been if the request method had been
1465   GET. <x:ref>2xx (Successful)</x:ref> responses to CONNECT switch to tunnel
1466   mode instead of having a message body.
1467   All <x:ref>1xx (Informational)</x:ref>, <x:ref>204 (No Content)</x:ref>, and
1468   <x:ref>304 (Not Modified)</x:ref> responses &MUST-NOT; include a message body.
1469   All other responses do include a message body, although the body
1470   &MAY; be of zero length.
1473<section title="Transfer-Encoding" anchor="header.transfer-encoding">
1474  <iref primary="true" item="Transfer-Encoding header field" x:for-anchor=""/>
1475  <iref primary="true" item="Header Fields" subitem="Transfer-Encoding" x:for-anchor=""/>
1476  <x:anchor-alias value="Transfer-Encoding"/>
1478   When one or more transfer codings are applied to a payload body in order
1479   to form the message body, a Transfer-Encoding header field &MUST; be sent
1480   in the message and &MUST; contain the list of corresponding
1481   transfer-coding names in the same order that they were applied.
1482   Transfer codings are defined in <xref target="transfer.codings"/>.
1484<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Transfer-Encoding"/>
1485  <x:ref>Transfer-Encoding</x:ref> = 1#<x:ref>transfer-coding</x:ref>
1488   Transfer-Encoding is analogous to the Content-Transfer-Encoding field of
1489   MIME, which was designed to enable safe transport of binary data over a
1490   7-bit transport service (<xref target="RFC2045" x:fmt="," x:sec="6"/>).
1491   However, safe transport has a different focus for an 8bit-clean transfer
1492   protocol. In HTTP's case, Transfer-Encoding is primarily intended to
1493   accurately delimit a dynamically generated payload and to distinguish
1494   payload encodings that are only applied for transport efficiency or
1495   security from those that are characteristics of the target resource.
1498   The "chunked" transfer-coding (<xref target="chunked.encoding"/>)
1499   &MUST; be implemented by all HTTP/1.1 recipients because it plays a
1500   crucial role in delimiting messages when the payload body size is not
1501   known in advance.
1502   When the "chunked" transfer-coding is used, it &MUST; be the last
1503   transfer-coding applied to form the message body and &MUST-NOT;
1504   be applied more than once in a message body.
1505   If any transfer-coding is applied to a request payload body,
1506   the final transfer-coding applied &MUST; be "chunked".
1507   If any transfer-coding is applied to a response payload body, then either
1508   the final transfer-coding applied &MUST; be "chunked" or
1509   the message &MUST; be terminated by closing the connection.
1512   For example,
1513</preamble><artwork type="example">
1514  Transfer-Encoding: gzip, chunked
1516   indicates that the payload body has been compressed using the gzip
1517   coding and then chunked using the chunked coding while forming the
1518   message body.
1521   If more than one Transfer-Encoding header field is present in a message,
1522   the multiple field-values &MUST; be combined into one field-value,
1523   according to the algorithm defined in <xref target="header.fields"/>,
1524   before determining the message body length.
1527   Unlike <x:ref>Content-Encoding</x:ref> (&content-codings;),
1528   Transfer-Encoding is a property of the message, not of the payload, and thus
1529   &MAY; be added or removed by any implementation along the request/response
1530   chain. Additional information about the encoding parameters &MAY; be
1531   provided by other header fields not defined by this specification.
1534   Transfer-Encoding &MAY; be sent in a response to a HEAD request or in a
1535   <x:ref>304 (Not Modified)</x:ref> response (&status-304;) to a GET request,
1536   neither of which includes a message body,
1537   to indicate that the origin server would have applied a transfer coding
1538   to the message body if the request had been an unconditional GET.
1539   This indication is not required, however, because any recipient on
1540   the response chain (including the origin server) can remove transfer
1541   codings when they are not needed.
1544   Transfer-Encoding was added in HTTP/1.1.  It is generally assumed that
1545   implementations advertising only HTTP/1.0 support will not understand
1546   how to process a transfer-encoded payload.
1547   A client &MUST-NOT; send a request containing Transfer-Encoding unless it
1548   knows the server will handle HTTP/1.1 (or later) requests; such knowledge
1549   might be in the form of specific user configuration or by remembering the
1550   version of a prior received response.
1551   A server &MUST-NOT; send a response containing Transfer-Encoding unless
1552   the corresponding request indicates HTTP/1.1 (or later).
1555   A server that receives a request message with a transfer-coding it does
1556   not understand &SHOULD; respond with <x:ref>501 (Not Implemented)</x:ref> and then
1557   close the connection.
1561<section title="Content-Length" anchor="header.content-length">
1562  <iref primary="true" item="Content-Length header field" x:for-anchor=""/>
1563  <iref primary="true" item="Header Fields" subitem="Content-Length" x:for-anchor=""/>
1564  <x:anchor-alias value="Content-Length"/>
1566   When a message does not have a <x:ref>Transfer-Encoding</x:ref> header field
1567   and the payload body length can be determined prior to being transferred, a
1568   Content-Length header field &SHOULD; be sent to indicate the length of the
1569   payload body that is either present as the message body, for requests
1570   and non-HEAD responses other than <x:ref>304 (Not Modified)</x:ref>, or
1571   would have been present had the request been an unconditional GET.  The
1572   length is expressed as a decimal number of octets.
1574<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Content-Length"/>
1575  <x:ref>Content-Length</x:ref> = 1*<x:ref>DIGIT</x:ref>
1578   An example is
1580<figure><artwork type="example">
1581  Content-Length: 3495
1584   In the case of a response to a HEAD request, Content-Length indicates
1585   the size of the payload body (without any potential transfer-coding)
1586   that would have been sent had the request been a GET.
1587   In the case of a <x:ref>304 (Not Modified)</x:ref> response (&status-304;)
1588   to a GET request, Content-Length indicates the size of the payload body (without
1589   any potential transfer-coding) that would have been sent in a <x:ref>200 (OK)</x:ref>
1590   response.
1593   Any Content-Length field value greater than or equal to zero is valid.
1594   Since there is no predefined limit to the length of an HTTP payload,
1595   recipients &SHOULD; anticipate potentially large decimal numerals and
1596   prevent parsing errors due to integer conversion overflows
1597   (<xref target="attack.protocol.element.size.overflows"/>).
1600   If a message is received that has multiple Content-Length header fields
1601   with field-values consisting of the same decimal value, or a single
1602   Content-Length header field with a field value containing a list of
1603   identical decimal values (e.g., "Content-Length: 42, 42"), indicating that
1604   duplicate Content-Length header fields have been generated or combined by an
1605   upstream message processor, then the recipient &MUST; either reject the
1606   message as invalid or replace the duplicated field-values with a single
1607   valid Content-Length field containing that decimal value prior to
1608   determining the message body length.
1611  <t>
1612   &Note; HTTP's use of Content-Length for message framing differs
1613   significantly from the same field's use in MIME, where it is an optional
1614   field used only within the "message/external-body" media-type.
1615  </t>
1619<section title="Message Body Length" anchor="message.body.length">
1621   The length of a message body is determined by one of the following
1622   (in order of precedence):
1625  <list style="numbers">
1626    <x:lt><t>
1627     Any response to a HEAD request and any response with a
1628     <x:ref>1xx (Informational)</x:ref>, <x:ref>204 (No Content)</x:ref>, or
1629     <x:ref>304 (Not Modified)</x:ref> status code is always
1630     terminated by the first empty line after the header fields, regardless of
1631     the header fields present in the message, and thus cannot contain a
1632     message body.
1633    </t></x:lt>
1634    <x:lt><t>
1635     Any <x:ref>2xx (Successful)</x:ref> response to a CONNECT request implies that the
1636     connection will become a tunnel immediately after the empty line that
1637     concludes the header fields.  A client &MUST; ignore any
1638     <x:ref>Content-Length</x:ref> or <x:ref>Transfer-Encoding</x:ref> header
1639     fields received in such a message.
1640    </t></x:lt>
1641    <x:lt><t>
1642     If a <x:ref>Transfer-Encoding</x:ref> header field is present
1643     and the "chunked" transfer-coding (<xref target="chunked.encoding"/>)
1644     is the final encoding, the message body length is determined by reading
1645     and decoding the chunked data until the transfer-coding indicates the
1646     data is complete.
1647    </t>
1648    <t>
1649     If a <x:ref>Transfer-Encoding</x:ref> header field is present in a
1650     response and the "chunked" transfer-coding is not the final encoding, the
1651     message body length is determined by reading the connection until it is
1652     closed by the server.
1653     If a Transfer-Encoding header field is present in a request and the
1654     "chunked" transfer-coding is not the final encoding, the message body
1655     length cannot be determined reliably; the server &MUST; respond with
1656     the <x:ref>400 (Bad Request)</x:ref> status code and then close the connection.
1657    </t>
1658    <t>
1659     If a message is received with both a <x:ref>Transfer-Encoding</x:ref>
1660     and a <x:ref>Content-Length</x:ref> header field, the
1661     Transfer-Encoding overrides the Content-Length.
1662     Such a message might indicate an attempt to perform request or response
1663     smuggling (bypass of security-related checks on message routing or content)
1664     and thus ought to be handled as an error.  The provided Content-Length &MUST;
1665     be removed, prior to forwarding the message downstream, or replaced with
1666     the real message body length after the transfer-coding is decoded.
1667    </t></x:lt>
1668    <x:lt><t>
1669     If a message is received without <x:ref>Transfer-Encoding</x:ref> and with
1670     either multiple <x:ref>Content-Length</x:ref> header fields having
1671     differing field-values or a single Content-Length header field having an
1672     invalid value, then the message framing is invalid and &MUST; be treated
1673     as an error to prevent request or response smuggling.
1674     If this is a request message, the server &MUST; respond with
1675     a <x:ref>400 (Bad Request)</x:ref> status code and then close the connection.
1676     If this is a response message received by a proxy, the proxy
1677     &MUST; discard the received response, send a <x:ref>502 (Bad Gateway)</x:ref>
1678     status code as its downstream response, and then close the connection.
1679     If this is a response message received by a user-agent, it &MUST; be
1680     treated as an error by discarding the message and closing the connection.
1681    </t></x:lt>
1682    <x:lt><t>
1683     If a valid <x:ref>Content-Length</x:ref> header field is present without
1684     <x:ref>Transfer-Encoding</x:ref>, its decimal value defines the
1685     message body length in octets.  If the actual number of octets sent in
1686     the message is less than the indicated Content-Length, the recipient
1687     &MUST; consider the message to be incomplete and treat the connection
1688     as no longer usable.
1689     If the actual number of octets sent in the message is more than the indicated
1690     Content-Length, the recipient &MUST; only process the message body up to the
1691     field value's number of octets; the remainder of the message &MUST; either
1692     be discarded or treated as the next message in a pipeline.  For the sake of
1693     robustness, a user-agent &MAY; attempt to detect and correct such an error
1694     in message framing if it is parsing the response to the last request on
1695     a connection and the connection has been closed by the server.
1696    </t></x:lt>
1697    <x:lt><t>
1698     If this is a request message and none of the above are true, then the
1699     message body length is zero (no message body is present).
1700    </t></x:lt>
1701    <x:lt><t>
1702     Otherwise, this is a response message without a declared message body
1703     length, so the message body length is determined by the number of octets
1704     received prior to the server closing the connection.
1705    </t></x:lt>
1706  </list>
1709   Since there is no way to distinguish a successfully completed,
1710   close-delimited message from a partially-received message interrupted
1711   by network failure, implementations &SHOULD; use encoding or
1712   length-delimited messages whenever possible.  The close-delimiting
1713   feature exists primarily for backwards compatibility with HTTP/1.0.
1716   A server &MAY; reject a request that contains a message body but
1717   not a <x:ref>Content-Length</x:ref> by responding with
1718   <x:ref>411 (Length Required)</x:ref>.
1721   Unless a transfer-coding other than "chunked" has been applied,
1722   a client that sends a request containing a message body &SHOULD;
1723   use a valid <x:ref>Content-Length</x:ref> header field if the message body
1724   length is known in advance, rather than the "chunked" encoding, since some
1725   existing services respond to "chunked" with a <x:ref>411 (Length Required)</x:ref>
1726   status code even though they understand the chunked encoding.  This
1727   is typically because such services are implemented via a gateway that
1728   requires a content-length in advance of being called and the server
1729   is unable or unwilling to buffer the entire request before processing.
1732   A client that sends a request containing a message body &MUST; include a
1733   valid <x:ref>Content-Length</x:ref> header field if it does not know the
1734   server will handle HTTP/1.1 (or later) requests; such knowledge can be in
1735   the form of specific user configuration or by remembering the version of a
1736   prior received response.
1741<section anchor="incomplete.messages" title="Handling Incomplete Messages">
1743   Request messages that are prematurely terminated, possibly due to a
1744   canceled connection or a server-imposed time-out exception, &MUST;
1745   result in closure of the connection; sending an HTTP/1.1 error response
1746   prior to closing the connection is &OPTIONAL;.
1749   Response messages that are prematurely terminated, usually by closure
1750   of the connection prior to receiving the expected number of octets or by
1751   failure to decode a transfer-encoded message body, &MUST; be recorded
1752   as incomplete.  A response that terminates in the middle of the header
1753   block (before the empty line is received) cannot be assumed to convey the
1754   full semantics of the response and &MUST; be treated as an error.
1757   A message body that uses the chunked transfer encoding is
1758   incomplete if the zero-sized chunk that terminates the encoding has not
1759   been received.  A message that uses a valid <x:ref>Content-Length</x:ref> is
1760   incomplete if the size of the message body received (in octets) is less than
1761   the value given by Content-Length.  A response that has neither chunked
1762   transfer encoding nor Content-Length is terminated by closure of the
1763   connection, and thus is considered complete regardless of the number of
1764   message body octets received, provided that the header block was received
1765   intact.
1768   A user agent &MUST-NOT; render an incomplete response message body as if
1769   it were complete (i.e., some indication needs to be given to the user that an
1770   error occurred).  Cache requirements for incomplete responses are defined
1771   in &cache-incomplete;.
1774   A server &MUST; read the entire request message body or close
1775   the connection after sending its response, since otherwise the
1776   remaining data on a persistent connection would be misinterpreted
1777   as the next request.  Likewise,
1778   a client &MUST; read the entire response message body if it intends
1779   to reuse the same connection for a subsequent request.  Pipelining
1780   multiple requests on a connection is described in <xref target="pipelining"/>.
1784<section title="Message Parsing Robustness" anchor="message.robustness">
1786   Older HTTP/1.0 client implementations might send an extra CRLF
1787   after a POST request as a lame workaround for some early server
1788   applications that failed to read message body content that was
1789   not terminated by a line-ending. An HTTP/1.1 client &MUST-NOT;
1790   preface or follow a request with an extra CRLF.  If terminating
1791   the request message body with a line-ending is desired, then the
1792   client &MUST; include the terminating CRLF octets as part of the
1793   message body length.
1796   In the interest of robustness, servers &SHOULD; ignore at least one
1797   empty line received where a request-line is expected. In other words, if
1798   the server is reading the protocol stream at the beginning of a
1799   message and receives a CRLF first, it &SHOULD; ignore the CRLF.
1800   Likewise, although the line terminator for the start-line and header
1801   fields is the sequence CRLF, we recommend that recipients recognize a
1802   single LF as a line terminator and ignore any CR.
1805   When a server listening only for HTTP request messages, or processing
1806   what appears from the start-line to be an HTTP request message,
1807   receives a sequence of octets that does not match the HTTP-message
1808   grammar aside from the robustness exceptions listed above, the
1809   server &MUST; respond with an HTTP/1.1 <x:ref>400 (Bad Request)</x:ref> response. 
1814<section title="Transfer Codings" anchor="transfer.codings">
1815  <x:anchor-alias value="transfer-coding"/>
1816  <x:anchor-alias value="transfer-extension"/>
1818   Transfer-coding values are used to indicate an encoding
1819   transformation that has been, can be, or might need to be applied to a
1820   payload body in order to ensure "safe transport" through the network.
1821   This differs from a content coding in that the transfer-coding is a
1822   property of the message rather than a property of the representation
1823   that is being transferred.
1825<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="transfer-coding"/><iref primary="true" item="Grammar" subitem="transfer-extension"/>
1826  <x:ref>transfer-coding</x:ref>    = "chunked" ; <xref target="chunked.encoding"/>
1827                     / "compress" ; <xref target="compress.coding"/>
1828                     / "deflate" ; <xref target="deflate.coding"/>
1829                     / "gzip" ; <xref target="gzip.coding"/>
1830                     / <x:ref>transfer-extension</x:ref>
1831  <x:ref>transfer-extension</x:ref> = <x:ref>token</x:ref> *( <x:ref>OWS</x:ref> ";" <x:ref>OWS</x:ref> <x:ref>transfer-parameter</x:ref> )
1833<t anchor="rule.parameter">
1834  <x:anchor-alias value="attribute"/>
1835  <x:anchor-alias value="transfer-parameter"/>
1836  <x:anchor-alias value="value"/>
1837   Parameters are in the form of attribute/value pairs.
1839<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="transfer-parameter"/><iref primary="true" item="Grammar" subitem="attribute"/><iref primary="true" item="Grammar" subitem="value"/><iref primary="true" item="Grammar" subitem="date2"/><iref primary="true" item="Grammar" subitem="date3"/>
1840  <x:ref>transfer-parameter</x:ref> = <x:ref>attribute</x:ref> <x:ref>BWS</x:ref> "=" <x:ref>BWS</x:ref> <x:ref>value</x:ref>
1841  <x:ref>attribute</x:ref>          = <x:ref>token</x:ref>
1842  <x:ref>value</x:ref>              = <x:ref>word</x:ref>
1845   All transfer-coding values are case-insensitive.
1846   The HTTP Transfer Coding registry is defined in
1847   <xref target="transfer.coding.registry"/>.
1848   HTTP/1.1 uses transfer-coding values in the <x:ref>TE</x:ref> header field
1849   (<xref target="header.te"/>) and in the <x:ref>Transfer-Encoding</x:ref>
1850   header field (<xref target="header.transfer-encoding"/>).
1853<section title="Chunked Transfer Coding" anchor="chunked.encoding">
1854  <iref item="chunked (Coding Format)"/>
1855  <iref item="Coding Format" subitem="chunked"/>
1856  <x:anchor-alias value="chunk"/>
1857  <x:anchor-alias value="chunked-body"/>
1858  <x:anchor-alias value="chunk-data"/>
1859  <x:anchor-alias value="chunk-ext"/>
1860  <x:anchor-alias value="chunk-ext-name"/>
1861  <x:anchor-alias value="chunk-ext-val"/>
1862  <x:anchor-alias value="chunk-size"/>
1863  <x:anchor-alias value="last-chunk"/>
1864  <x:anchor-alias value="trailer-part"/>
1865  <x:anchor-alias value="quoted-str-nf"/>
1866  <x:anchor-alias value="qdtext-nf"/>
1868   The chunked encoding modifies the body of a message in order to
1869   transfer it as a series of chunks, each with its own size indicator,
1870   followed by an &OPTIONAL; trailer containing header fields. This
1871   allows dynamically produced content to be transferred along with the
1872   information necessary for the recipient to verify that it has
1873   received the full message.
1875<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="chunked-body"><!--terminal production--></iref><iref primary="true" item="Grammar" subitem="chunk"/><iref primary="true" item="Grammar" subitem="chunk-size"/><iref primary="true" item="Grammar" subitem="last-chunk"/><iref primary="true" item="Grammar" subitem="chunk-ext"/><iref primary="true" item="Grammar" subitem="chunk-ext-name"/><iref primary="true" item="Grammar" subitem="chunk-ext-val"/><iref primary="true" item="Grammar" subitem="chunk-data"/><iref primary="true" item="Grammar" subitem="trailer-part"/><iref primary="true" item="Grammar" subitem="quoted-str-nf"/><iref primary="true" item="Grammar" subitem="qdtext-nf"/>
1876  <x:ref>chunked-body</x:ref>   = *<x:ref>chunk</x:ref>
1877                   <x:ref>last-chunk</x:ref>
1878                   <x:ref>trailer-part</x:ref>
1879                   <x:ref>CRLF</x:ref>
1881  <x:ref>chunk</x:ref>          = <x:ref>chunk-size</x:ref> [ <x:ref>chunk-ext</x:ref> ] <x:ref>CRLF</x:ref>
1882                   <x:ref>chunk-data</x:ref> <x:ref>CRLF</x:ref>
1883  <x:ref>chunk-size</x:ref>     = 1*<x:ref>HEXDIG</x:ref>
1884  <x:ref>last-chunk</x:ref>     = 1*("0") [ <x:ref>chunk-ext</x:ref> ] <x:ref>CRLF</x:ref>
1886  <x:ref>chunk-ext</x:ref>      = *( ";" <x:ref>chunk-ext-name</x:ref> [ "=" <x:ref>chunk-ext-val</x:ref> ] )
1887  <x:ref>chunk-ext-name</x:ref> = <x:ref>token</x:ref>
1888  <x:ref>chunk-ext-val</x:ref>  = <x:ref>token</x:ref> / <x:ref>quoted-str-nf</x:ref>
1889  <x:ref>chunk-data</x:ref>     = 1*<x:ref>OCTET</x:ref> ; a sequence of chunk-size octets
1890  <x:ref>trailer-part</x:ref>   = *( <x:ref>header-field</x:ref> <x:ref>CRLF</x:ref> )
1892  <x:ref>quoted-str-nf</x:ref>  = <x:ref>DQUOTE</x:ref> *( <x:ref>qdtext-nf</x:ref> / <x:ref>quoted-pair</x:ref> ) <x:ref>DQUOTE</x:ref>
1893                 ; like <x:ref>quoted-string</x:ref>, but disallowing line folding
1894  <x:ref>qdtext-nf</x:ref>      = <x:ref>HTAB</x:ref> / <x:ref>SP</x:ref> / %x21 / %x23-5B / %x5D-7E / <x:ref>obs-text</x:ref>
1897   Chunk extensions within the chucked encoding are deprecated.
1898   Senders &SHOULD-NOT; send chunk-ext.
1899   Definition of new chunk extensions is discouraged.
1902   The chunk-size field is a string of hex digits indicating the size of
1903   the chunk-data in octets. The chunked encoding is ended by any chunk whose size is
1904   zero, followed by the trailer, which is terminated by an empty line.
1907<section title="Trailer" anchor="header.trailer">
1908  <iref primary="true" item="Trailer header field" x:for-anchor=""/>
1909  <iref primary="true" item="Header Fields" subitem="Trailer" x:for-anchor=""/>
1910  <x:anchor-alias value="Trailer"/>
1912   A trailer allows the sender to include additional fields at the end of a
1913   chunked message in order to supply metadata that might be dynamically
1914   generated while the message body is sent, such as a message integrity
1915   check, digital signature, or post-processing status.
1916   The trailer &MUST-NOT; contain fields that need to be known before a
1917   recipient processes the body, such as <x:ref>Transfer-Encoding</x:ref>,
1918   <x:ref>Content-Length</x:ref>, and <x:ref>Trailer</x:ref>.
1921   When a message includes a message body encoded with the chunked
1922   transfer-coding and the sender desires to send metadata in the form of
1923   trailer fields at the end of the message, the sender &SHOULD; send a
1924   <x:ref>Trailer</x:ref> header field before the message body to indicate
1925   which fields will be present in the trailers. This allows the recipient
1926   to prepare for receipt of that metadata before it starts processing the body,
1927   which is useful if the message is being streamed and the recipient wishes
1928   to confirm an integrity check on the fly.
1930<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Trailer"/>
1931  <x:ref>Trailer</x:ref> = 1#<x:ref>field-name</x:ref>
1934   If no <x:ref>Trailer</x:ref> header field is present, the sender of a
1935   chunked message body &SHOULD; send an empty trailer.
1938   A server &MUST; send an empty trailer with the chunked transfer-coding
1939   unless at least one of the following is true:
1940  <list style="numbers">
1941    <t>the request included a <x:ref>TE</x:ref> header field that indicates
1942    "trailers" is acceptable in the transfer-coding of the response, as
1943    described in <xref target="header.te"/>; or,</t>
1945    <t>the trailer fields consist entirely of optional metadata and the
1946    recipient could use the message (in a manner acceptable to the server where
1947    the field originated) without receiving that metadata. In other words,
1948    the server that generated the header field is willing to accept the
1949    possibility that the trailer fields might be silently discarded along
1950    the path to the client.</t>
1951  </list>
1954   The above requirement prevents the need for an infinite buffer when a
1955   message is being received by an HTTP/1.1 (or later) proxy and forwarded to
1956   an HTTP/1.0 recipient.
1960<section title="Decoding chunked" anchor="decoding.chunked">
1962   A process for decoding the "chunked" transfer-coding
1963   can be represented in pseudo-code as:
1965<figure><artwork type="code">
1966  length := 0
1967  read chunk-size, chunk-ext (if any) and CRLF
1968  while (chunk-size &gt; 0) {
1969     read chunk-data and CRLF
1970     append chunk-data to decoded-body
1971     length := length + chunk-size
1972     read chunk-size and CRLF
1973  }
1974  read header-field
1975  while (header-field not empty) {
1976     append header-field to existing header fields
1977     read header-field
1978  }
1979  Content-Length := length
1980  Remove "chunked" from Transfer-Encoding
1981  Remove Trailer from existing header fields
1984   All HTTP/1.1 applications &MUST; be able to receive and decode the
1985   "chunked" transfer-coding and &MUST; ignore chunk-ext extensions
1986   they do not understand.
1991<section title="Compression Codings" anchor="compression.codings">
1993   The codings defined below can be used to compress the payload of a
1994   message.
1997<section title="Compress Coding" anchor="compress.coding">
1998<iref item="compress (Coding Format)"/>
1999<iref item="Coding Format" subitem="compress"/>
2001   The "compress" format is produced by the common UNIX file compression
2002   program "compress". This format is an adaptive Lempel-Ziv-Welch
2003   coding (LZW). Recipients &SHOULD; consider "x-compress" to be
2004   equivalent to "compress".
2008<section title="Deflate Coding" anchor="deflate.coding">
2009<iref item="deflate (Coding Format)"/>
2010<iref item="Coding Format" subitem="deflate"/>
2012   The "deflate" format is defined as the "deflate" compression mechanism
2013   (described in <xref target="RFC1951"/>) used inside the "zlib"
2014   data format (<xref target="RFC1950"/>).
2017  <t>
2018    &Note; Some incorrect implementations send the "deflate"
2019    compressed data without the zlib wrapper.
2020   </t>
2024<section title="Gzip Coding" anchor="gzip.coding">
2025<iref item="gzip (Coding Format)"/>
2026<iref item="Coding Format" subitem="gzip"/>
2028   The "gzip" format is produced by the file compression program
2029   "gzip" (GNU zip), as described in <xref target="RFC1952"/>. This format is a
2030   Lempel-Ziv coding (LZ77) with a 32 bit CRC.
2031   Recipients &SHOULD; consider "x-gzip" to be equivalent to "gzip".
2037<section title="TE" anchor="header.te">
2038  <iref primary="true" item="TE header field" x:for-anchor=""/>
2039  <iref primary="true" item="Header Fields" subitem="TE" x:for-anchor=""/>
2040  <x:anchor-alias value="TE"/>
2041  <x:anchor-alias value="t-codings"/>
2042  <x:anchor-alias value="t-ranking"/>
2043  <x:anchor-alias value="rank"/>
2045   The "TE" header field in a request indicates what transfer-codings,
2046   besides "chunked", the client is willing to accept in response, and
2047   whether or not the client is willing to accept trailer fields in a
2048   chunked transfer-coding.
2051   The TE field-value consists of a comma-separated list of transfer-coding
2052   names, each allowing for optional parameters (as described in
2053   <xref target="transfer.codings"/>), and/or the keyword "trailers".
2054   Clients &MUST-NOT; send the chunked transfer-coding name in TE;
2055   chunked is always acceptable for HTTP/1.1 recipients.
2057<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="TE"/><iref primary="true" item="Grammar" subitem="t-codings"/><iref primary="true" item="Grammar" subitem="t-ranking"/><iref primary="true" item="Grammar" subitem="rank"/>
2058  <x:ref>TE</x:ref>        = #<x:ref>t-codings</x:ref>
2059  <x:ref>t-codings</x:ref> = "trailers" / ( <x:ref>transfer-coding</x:ref> [ <x:ref>t-ranking</x:ref> ] )
2060  <x:ref>t-ranking</x:ref> = <x:ref>OWS</x:ref> ";" <x:ref>OWS</x:ref> "q=" <x:ref>rank</x:ref>
2061  <x:ref>rank</x:ref>      = ( "0" [ "." 0*3<x:ref>DIGIT</x:ref> ] )
2062             / ( "1" [ "." 0*3("0") ] )
2065   Three examples of TE use are below.
2067<figure><artwork type="example">
2068  TE: deflate
2069  TE:
2070  TE: trailers, deflate;q=0.5
2073   The presence of the keyword "trailers" indicates that the client is
2074   willing to accept trailer fields in a chunked transfer-coding,
2075   as defined in <xref target="chunked.encoding"/>, on behalf of itself and
2076   any downstream clients. For chained requests, this implies that either:
2077   (a) all downstream clients are willing to accept trailer fields in the
2078   forwarded response; or,
2079   (b) the client will attempt to buffer the response on behalf of downstream
2080   recipients.
2081   Note that HTTP/1.1 does not define any means to limit the size of a
2082   chunked response such that a client can be assured of buffering the
2083   entire response.
2086   When multiple transfer-codings are acceptable, the client &MAY; rank the
2087   codings by preference using a "q" parameter (similar to the qvalues
2088   used in content negotiation fields, &qvalue;). The rank value is a real
2089   number in the range 0 through 1, where 0.001 is the least preferred and
2090   1 is the most preferred; a value of 0 means "not acceptable".
2093   If the TE field-value is empty or if no TE field is present, the only
2094   acceptable transfer-coding is "chunked". A message with no transfer-coding
2095   is always acceptable.
2098   Since the TE header field only applies to the immediate connection,
2099   a sender of TE &MUST; also send a "TE" connection option within the
2100   <x:ref>Connection</x:ref> header field (<xref target="header.connection"/>)
2101   in order to prevent the TE field from being forwarded by intermediaries
2102   that do not support its semantics.
2107<section title="Message Routing" anchor="message.routing">
2109   HTTP request message routing is determined by each client based on the
2110   target resource, the client's proxy configuration, and
2111   establishment or reuse of an inbound connection.  The corresponding
2112   response routing follows the same connection chain back to the client.
2115<section title="Identifying a Target Resource" anchor="target-resource">
2116  <iref primary="true" item="target resource"/>
2117  <iref primary="true" item="target URI"/>
2118  <x:anchor-alias value="target resource"/>
2119  <x:anchor-alias value="target URI"/>
2121   HTTP is used in a wide variety of applications, ranging from
2122   general-purpose computers to home appliances.  In some cases,
2123   communication options are hard-coded in a client's configuration.
2124   However, most HTTP clients rely on the same resource identification
2125   mechanism and configuration techniques as general-purpose Web browsers.
2128   HTTP communication is initiated by a user agent for some purpose.
2129   The purpose is a combination of request semantics, which are defined in
2130   <xref target="Part2"/>, and a target resource upon which to apply those
2131   semantics.  A URI reference (<xref target="uri"/>) is typically used as
2132   an identifier for the "<x:dfn>target resource</x:dfn>", which a user agent
2133   would resolve to its absolute form in order to obtain the
2134   "<x:dfn>target URI</x:dfn>".  The target URI
2135   excludes the reference's fragment identifier component, if any,
2136   since fragment identifiers are reserved for client-side processing
2137   (<xref target="RFC3986" x:fmt="," x:sec="3.5"/>).
2141<section title="Connecting Inbound" anchor="connecting.inbound">
2143   Once the target URI is determined, a client needs to decide whether
2144   a network request is necessary to accomplish the desired semantics and,
2145   if so, where that request is to be directed.
2148   If the client has a response cache and the request semantics can be
2149   satisfied by a cache (<xref target="Part6"/>), then the request is
2150   usually directed to the cache first.
2153   If the request is not satisfied by a cache, then a typical client will
2154   check its configuration to determine whether a proxy is to be used to
2155   satisfy the request.  Proxy configuration is implementation-dependent,
2156   but is often based on URI prefix matching, selective authority matching,
2157   or both, and the proxy itself is usually identified by an "http" or
2158   "https" URI.  If a proxy is applicable, the client connects inbound by
2159   establishing (or reusing) a connection to that proxy.
2162   If no proxy is applicable, a typical client will invoke a handler routine,
2163   usually specific to the target URI's scheme, to connect directly
2164   to an authority for the target resource.  How that is accomplished is
2165   dependent on the target URI scheme and defined by its associated
2166   specification, similar to how this specification defines origin server
2167   access for resolution of the "http" (<xref target="http.uri"/>) and
2168   "https" (<xref target="https.uri"/>) schemes.
2171   HTTP requirements regarding connection management are defined in
2172   <xref target=""/>.
2176<section title="Request Target" anchor="request-target">
2178   Once an inbound connection is obtained,
2179   the client sends an HTTP request message (<xref target="http.message"/>)
2180   with a request-target derived from the target URI.
2181   There are four distinct formats for the request-target, depending on both
2182   the method being requested and whether the request is to a proxy.
2184<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="request-target"/><iref primary="true" item="Grammar" subitem="origin-form"/><iref primary="true" item="Grammar" subitem="absolute-form"/><iref primary="true" item="Grammar" subitem="authority-form"/><iref primary="true" item="Grammar" subitem="asterisk-form"/>
2185  <x:ref>request-target</x:ref> = <x:ref>origin-form</x:ref>
2186                 / <x:ref>absolute-form</x:ref>
2187                 / <x:ref>authority-form</x:ref>
2188                 / <x:ref>asterisk-form</x:ref>
2190  <x:ref>origin-form</x:ref>    = <x:ref>path-absolute</x:ref> [ "?" <x:ref>query</x:ref> ]
2191  <x:ref>absolute-form</x:ref>  = <x:ref>absolute-URI</x:ref>
2192  <x:ref>authority-form</x:ref> = <x:ref>authority</x:ref>
2193  <x:ref>asterisk-form</x:ref>  = "*"
2195<t anchor="origin-form"><iref item="origin-form (of request-target)"/>
2196   The most common form of request-target is the origin-form.
2197   When making a request directly to an origin server, other than a CONNECT
2198   or server-wide OPTIONS request (as detailed below),
2199   a client &MUST; send only the absolute path and query components of
2200   the target URI as the request-target.
2201   If the target URI's path component is empty, then the client &MUST; send
2202   "/" as the path within the origin-form of request-target.
2203   A <x:ref>Host</x:ref> header field is also sent, as defined in
2204   <xref target=""/>, containing the target URI's
2205   authority component (excluding any userinfo).
2208   For example, a client wishing to retrieve a representation of the resource
2209   identified as
2211<figure><artwork x:indent-with="  " type="example">
2215   directly from the origin server would open (or reuse) a TCP connection
2216   to port 80 of the host "" and send the lines:
2218<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2219GET /where?q=now HTTP/1.1
2223   followed by the remainder of the request message.
2225<t anchor="absolute-form"><iref item="absolute-form (of request-target)"/>
2226   When making a request to a proxy, other than a CONNECT or server-wide
2227   OPTIONS request (as detailed below), a client &MUST; send the target URI
2228   in absolute-form as the request-target.
2229   The proxy is requested to either service that request from a valid cache,
2230   if possible, or make the same request on the client's behalf to either
2231   the next inbound proxy server or directly to the origin server indicated
2232   by the request-target.  Requirements on such "forwarding" of messages are
2233   defined in <xref target="message.forwarding"/>.
2236   An example absolute-form of request-line would be:
2238<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2239GET HTTP/1.1
2242   To allow for transition to the absolute-form for all requests in some
2243   future version of HTTP, HTTP/1.1 servers &MUST; accept the absolute-form
2244   in requests, even though HTTP/1.1 clients will only send them in requests
2245   to proxies.
2247<t anchor="authority-form"><iref item="authority-form (of request-target)"/>
2248   The authority-form of request-target is only used for CONNECT requests
2249   (&CONNECT;).  When making a CONNECT request to establish a tunnel through
2250   one or more proxies, a client &MUST; send only the target URI's
2251   authority component (excluding any userinfo) as the request-target.
2252   For example,
2254<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2257<t anchor="asterisk-form"><iref item="asterisk-form (of request-target)"/>
2258   The asterisk-form of request-target is only used for a server-wide
2259   OPTIONS request (&OPTIONS;).  When a client wishes to request OPTIONS
2260   for the server as a whole, as opposed to a specific named resource of
2261   that server, the client &MUST; send only "*" (%x2A) as the request-target.
2262   For example,
2264<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2265OPTIONS * HTTP/1.1
2268   If a proxy receives an OPTIONS request with an absolute-form of
2269   request-target in which the URI has an empty path and no query component,
2270   then the last proxy on the request chain &MUST; send a request-target
2271   of "*" when it forwards the request to the indicated origin server.
2274   For example, the request
2275</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2279  would be forwarded by the final proxy as
2280</preamble><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2281OPTIONS * HTTP/1.1
2285   after connecting to port 8001 of host "".
2290<section title="Host" anchor="">
2291  <iref primary="true" item="Host header field" x:for-anchor=""/>
2292  <iref primary="true" item="Header Fields" subitem="Host" x:for-anchor=""/>
2293  <x:anchor-alias value="Host"/>
2295   The "Host" header field in a request provides the host and port
2296   information from the target URI, enabling the origin
2297   server to distinguish among resources while servicing requests
2298   for multiple host names on a single IP address.  Since the Host
2299   field-value is critical information for handling a request, it
2300   &SHOULD; be sent as the first header field following the request-line.
2302<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Host"/>
2303  <x:ref>Host</x:ref> = <x:ref>uri-host</x:ref> [ ":" <x:ref>port</x:ref> ] ; <xref target="http.uri"/>
2306   A client &MUST; send a Host header field in all HTTP/1.1 request
2307   messages.  If the target URI includes an authority component, then
2308   the Host field-value &MUST; be identical to that authority component
2309   after excluding any userinfo (<xref target="http.uri"/>).
2310   If the authority component is missing or undefined for the target URI,
2311   then the Host header field &MUST; be sent with an empty field-value.
2314   For example, a GET request to the origin server for
2315   &lt;; would begin with:
2317<figure><artwork type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
2318GET /pub/WWW/ HTTP/1.1
2322   The Host header field &MUST; be sent in an HTTP/1.1 request even
2323   if the request-target is in the absolute-form, since this
2324   allows the Host information to be forwarded through ancient HTTP/1.0
2325   proxies that might not have implemented Host.
2328   When an HTTP/1.1 proxy receives a request with an absolute-form of
2329   request-target, the proxy &MUST; ignore the received
2330   Host header field (if any) and instead replace it with the host
2331   information of the request-target.  If the proxy forwards the request,
2332   it &MUST; generate a new Host field-value based on the received
2333   request-target rather than forward the received Host field-value.
2336   Since the Host header field acts as an application-level routing
2337   mechanism, it is a frequent target for malware seeking to poison
2338   a shared cache or redirect a request to an unintended server.
2339   An interception proxy is particularly vulnerable if it relies on
2340   the Host field-value for redirecting requests to internal
2341   servers, or for use as a cache key in a shared cache, without
2342   first verifying that the intercepted connection is targeting a
2343   valid IP address for that host.
2346   A server &MUST; respond with a <x:ref>400 (Bad Request)</x:ref> status code
2347   to any HTTP/1.1 request message that lacks a Host header field and
2348   to any request message that contains more than one Host header field
2349   or a Host header field with an invalid field-value.
2353<section title="Effective Request URI" anchor="effective.request.uri">
2354  <iref primary="true" item="effective request URI"/>
2356   A server that receives an HTTP request message &MUST; reconstruct
2357   the user agent's original target URI, based on the pieces of information
2358   learned from the request-target, <x:ref>Host</x:ref> header field, and
2359   connection context, in order to identify the intended target resource and
2360   properly service the request. The URI derived from this reconstruction
2361   process is referred to as the "<x:dfn>effective request URI</x:dfn>".
2364   For a user agent, the effective request URI is the target URI.
2367   If the request-target is in absolute-form, then the effective request URI
2368   is the same as the request-target.  Otherwise, the effective request URI
2369   is constructed as follows.
2372   If the request is received over an SSL/TLS-secured TCP connection,
2373   then the effective request URI's scheme is "https"; otherwise, the
2374   scheme is "http".
2377   If the request-target is in authority-form, then the effective
2378   request URI's authority component is the same as the request-target.
2379   Otherwise, if a <x:ref>Host</x:ref> header field is supplied with a
2380   non-empty field-value, then the authority component is the same as the
2381   Host field-value. Otherwise, the authority component is the concatenation of
2382   the default host name configured for the server, a colon (":"), and the
2383   connection's incoming TCP port number in decimal form.
2386   If the request-target is in authority-form or asterisk-form, then the
2387   effective request URI's combined path and query component is empty.
2388   Otherwise, the combined path and query component is the same as the
2389   request-target.
2392   The components of the effective request URI, once determined as above,
2393   can be combined into absolute-URI form by concatenating the scheme,
2394   "://", authority, and combined path and query component.
2398   Example 1: the following message received over an insecure TCP connection
2400<artwork type="example" x:indent-with="  ">
2401GET /pub/WWW/TheProject.html HTTP/1.1
2407  has an effective request URI of
2409<artwork type="example" x:indent-with="  ">
2415   Example 2: the following message received over an SSL/TLS-secured TCP
2416   connection
2418<artwork type="example" x:indent-with="  ">
2419OPTIONS * HTTP/1.1
2425  has an effective request URI of
2427<artwork type="example" x:indent-with="  ">
2432   An origin server that does not allow resources to differ by requested
2433   host &MAY; ignore the <x:ref>Host</x:ref> field-value and instead replace it
2434   with a configured server name when constructing the effective request URI.
2437   Recipients of an HTTP/1.0 request that lacks a <x:ref>Host</x:ref> header
2438   field &MAY; attempt to use heuristics (e.g., examination of the URI path for
2439   something unique to a particular host) in order to guess the
2440   effective request URI's authority component.
2444<section title="Message Forwarding" anchor="message.forwarding">
2446   As described in <xref target="intermediaries"/>, intermediaries can serve
2447   a variety of roles in the processing of HTTP requests and responses.
2448   Some intermediaries are used to improve performance or availability.
2449   Others are used for access control or to filter content.
2450   Since an HTTP stream has characteristics similar to a pipe-and-filter
2451   architecture, there are no inherent limits to the extent an intermediary
2452   can enhance (or interfere) with either direction of the stream.
2455   Intermediaries that forward a message &MUST; implement the
2456   <x:ref>Connection</x:ref> header field, as specified in
2457   <xref target="header.connection"/>, to exclude fields that are only
2458   intended for the incoming connection.
2461   In order to avoid request loops, a proxy that forwards requests to other
2462   proxies &MUST; be able to recognize and exclude all of its own server
2463   names, including any aliases, local variations, or literal IP addresses.
2467<section title="Via" anchor="header.via">
2468  <iref primary="true" item="Via header field" x:for-anchor=""/>
2469  <iref primary="true" item="Header Fields" subitem="Via" x:for-anchor=""/>
2470  <x:anchor-alias value="pseudonym"/>
2471  <x:anchor-alias value="received-by"/>
2472  <x:anchor-alias value="received-protocol"/>
2473  <x:anchor-alias value="Via"/>
2475   The "Via" header field &MUST; be sent by a proxy or gateway
2476   in forwarded messages to
2477   indicate the intermediate protocols and recipients between the user
2478   agent and the server on requests, and between the origin server and
2479   the client on responses. It is analogous to the "Received" field
2480   used by email systems (<xref target="RFC5322" x:fmt="of" x:sec="3.6.7"/>).
2481   Via is used in HTTP for tracking message forwards,
2482   avoiding request loops, and identifying the protocol capabilities of
2483   all senders along the request/response chain.
2485<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Via"/><iref primary="true" item="Grammar" subitem="received-protocol"/><iref primary="true" item="Grammar" subitem="protocol-name"/><iref primary="true" item="Grammar" subitem="protocol-version"/><iref primary="true" item="Grammar" subitem="received-by"/><iref primary="true" item="Grammar" subitem="pseudonym"/>
2486  <x:ref>Via</x:ref>               = 1#( <x:ref>received-protocol</x:ref> <x:ref>RWS</x:ref> <x:ref>received-by</x:ref>
2487                          [ <x:ref>RWS</x:ref> <x:ref>comment</x:ref> ] )
2488  <x:ref>received-protocol</x:ref> = [ <x:ref>protocol-name</x:ref> "/" ] <x:ref>protocol-version</x:ref>
2489  <x:ref>received-by</x:ref>       = ( <x:ref>uri-host</x:ref> [ ":" <x:ref>port</x:ref> ] ) / <x:ref>pseudonym</x:ref>
2490  <x:ref>pseudonym</x:ref>         = <x:ref>token</x:ref>
2493   The received-protocol indicates the protocol version of the message
2494   received by the server or client along each segment of the
2495   request/response chain. The received-protocol version is appended to
2496   the Via field value when the message is forwarded so that information
2497   about the protocol capabilities of upstream applications remains
2498   visible to all recipients.
2501   The protocol-name is excluded if and only if it would be "HTTP". The
2502   received-by field is normally the host and optional port number of a
2503   recipient server or client that subsequently forwarded the message.
2504   However, if the real host is considered to be sensitive information,
2505   it &MAY; be replaced by a pseudonym. If the port is not given, it &MAY;
2506   be assumed to be the default port of the received-protocol.
2509   Multiple Via field values represent each proxy or gateway that has
2510   forwarded the message. Each recipient &MUST; append its information
2511   such that the end result is ordered according to the sequence of
2512   forwarding applications.
2515   Comments &MAY; be used in the Via header field to identify the software
2516   of each recipient, analogous to the <x:ref>User-Agent</x:ref> and
2517   <x:ref>Server</x:ref> header fields. However, all comments in the Via field
2518   are optional and &MAY; be removed by any recipient prior to forwarding the
2519   message.
2522   For example, a request message could be sent from an HTTP/1.0 user
2523   agent to an internal proxy code-named "fred", which uses HTTP/1.1 to
2524   forward the request to a public proxy at, which completes
2525   the request by forwarding it to the origin server at
2526   The request received by would then have the following
2527   Via header field:
2529<figure><artwork type="example">
2530  Via: 1.0 fred, 1.1 (Apache/1.1)
2533   A proxy or gateway used as a portal through a network firewall
2534   &SHOULD-NOT; forward the names and ports of hosts within the firewall
2535   region unless it is explicitly enabled to do so. If not enabled, the
2536   received-by host of any host behind the firewall &SHOULD; be replaced
2537   by an appropriate pseudonym for that host.
2540   A proxy or gateway &MAY; combine an ordered subsequence of Via header
2541   field entries into a single such entry if the entries have identical
2542   received-protocol values. For example,
2544<figure><artwork type="example">
2545  Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy
2548  could be collapsed to
2550<figure><artwork type="example">
2551  Via: 1.0 ricky, 1.1 mertz, 1.0 lucy
2554   Senders &SHOULD-NOT; combine multiple entries unless they are all
2555   under the same organizational control and the hosts have already been
2556   replaced by pseudonyms. Senders &MUST-NOT; combine entries which
2557   have different received-protocol values.
2561<section title="Message Transforming" anchor="message.transforming">
2563   If a proxy receives a request-target with a host name that is not a
2564   fully qualified domain name, it &MAY; add its own domain to the host name
2565   it received when forwarding the request.  A proxy &MUST-NOT; change the
2566   host name if it is a fully qualified domain name.
2569   A non-transforming proxy &MUST-NOT; modify the "path-absolute" and "query"
2570   parts of the received request-target when forwarding it to the next inbound
2571   server, except as noted above to replace an empty path with "/" or "*".
2574   A non-transforming proxy &MUST; preserve the message payload (&payload;),
2575   though it &MAY; change the message body through application or removal
2576   of a transfer-coding (<xref target="transfer.codings"/>).
2579   A non-transforming proxy &SHOULD-NOT; modify header fields that provide
2580   information about the end points of the communication chain, the resource
2581   state, or the selected representation.
2584   A non-transforming proxy &MUST-NOT; modify any of the following fields in a
2585   request or response, and it &MUST-NOT; add any of these fields if not
2586   already present:
2587  <list style="symbols">
2588    <t><x:ref>Allow</x:ref> (&header-allow;)</t>
2589    <t><x:ref>Content-Location</x:ref> (&header-content-location;)</t>
2590    <t>Content-MD5 (<xref target="RFC2616" x:fmt="of" x:sec="14.15"/>)</t>
2591    <t><x:ref>ETag</x:ref> (&header-etag;)</t>
2592    <t><x:ref>Last-Modified</x:ref> (&header-last-modified;)</t>
2593    <t><x:ref>Server</x:ref> (&header-server;)</t>
2594  </list>
2597   A non-transforming proxy &MUST-NOT; modify an <x:ref>Expires</x:ref>
2598   header field (&header-expires;) if already present in a response, but
2599   it &MAY; add an <x:ref>Expires</x:ref> header field with a field-value
2600   identical to that of the <x:ref>Date</x:ref> header field.
2603   A proxy &MUST-NOT; modify or add any of the following fields in a
2604   message that contains the no-transform cache-control directive:
2605  <list style="symbols">
2606    <t><x:ref>Content-Encoding</x:ref> (&header-content-encoding;)</t>
2607    <t><x:ref>Content-Range</x:ref> (&header-content-range;)</t>
2608    <t><x:ref>Content-Type</x:ref> (&header-content-type;)</t>
2609  </list>
2612   A transforming proxy &MAY; modify or add these fields to a message
2613   that does not include no-transform, but if it does so, it &MUST; add a
2614   Warning 214 (Transformation applied) if one does not already appear
2615   in the message (see &header-warning;).
2618  <t>
2619    <x:h>Warning:</x:h> Unnecessary modification of header fields might
2620    cause authentication failures if stronger authentication
2621    mechanisms are introduced in later versions of HTTP. Such
2622    authentication mechanisms &MAY; rely on the values of header fields
2623    not listed here.
2624  </t>
2628<section title="Associating a Response to a Request" anchor="">
2630   HTTP does not include a request identifier for associating a given
2631   request message with its corresponding one or more response messages.
2632   Hence, it relies on the order of response arrival to correspond exactly
2633   to the order in which requests are made on the same connection.
2634   More than one response message per request only occurs when one or more
2635   informational responses (<x:ref>1xx</x:ref>, see &status-1xx;) precede a final response
2636   to the same request.
2639   A client that uses persistent connections and sends more than one request
2640   per connection &MUST; maintain a list of outstanding requests in the
2641   order sent on that connection and &MUST; associate each received response
2642   message to the highest ordered request that has not yet received a final
2643   (non-<x:ref>1xx</x:ref>) response.
2648<section title="Connection Management" anchor="">
2650   HTTP messaging is independent of the underlying transport or
2651   session-layer connection protocol(s).  HTTP only presumes a reliable
2652   transport with in-order delivery of requests and the corresponding
2653   in-order delivery of responses.  The mapping of HTTP request and
2654   response structures onto the data units of an underlying transport
2655   protocol is outside the scope of this specification.
2658   As described in <xref target="connecting.inbound"/>, the specific
2659   connection protocols to be used for an HTTP interaction are determined by
2660   client configuration and the <x:ref>target URI</x:ref>.
2661   For example, the "http" URI scheme
2662   (<xref target="http.uri"/>) indicates a default connection of TCP
2663   over IP, with a default TCP port of 80, but the client might be
2664   configured to use a proxy via some other connection, port, or protocol.
2667   HTTP implementations are expected to engage in connection management,
2668   which includes maintaining the state of current connections,
2669   establishing a new connection or reusing an existing connection,
2670   processing messages received on a connection, detecting connection
2671   failures, and closing each connection.
2672   Most clients maintain multiple connections in parallel, including
2673   more than one connection per server endpoint.
2674   Most servers are designed to maintain thousands of concurrent connections,
2675   while controlling request queues to enable fair use and detect
2676   denial of service attacks.
2679<section title="Connection" anchor="header.connection">
2680  <iref primary="true" item="Connection header field" x:for-anchor=""/>
2681  <iref primary="true" item="Header Fields" subitem="Connection" x:for-anchor=""/>
2682  <x:anchor-alias value="Connection"/>
2683  <x:anchor-alias value="connection-option"/>
2684  <x:anchor-alias value="close"/>
2686   The "Connection" header field allows the sender to indicate desired
2687   control options for the current connection.  In order to avoid confusing
2688   downstream recipients, a proxy or gateway &MUST; remove or replace any
2689   received connection options before forwarding the message.
2692   When a header field is used to supply control information for or about
2693   the current connection, the sender &SHOULD; list the corresponding
2694   field-name within the "Connection" header field.
2695   A proxy or gateway &MUST; parse a received Connection
2696   header field before a message is forwarded and, for each
2697   connection-option in this field, remove any header field(s) from
2698   the message with the same name as the connection-option, and then
2699   remove the Connection header field itself (or replace it with the
2700   intermediary's own connection options for the forwarded message).
2703   Hence, the Connection header field provides a declarative way of
2704   distinguishing header fields that are only intended for the
2705   immediate recipient ("hop-by-hop") from those fields that are
2706   intended for all recipients on the chain ("end-to-end"), enabling the
2707   message to be self-descriptive and allowing future connection-specific
2708   extensions to be deployed without fear that they will be blindly
2709   forwarded by older intermediaries.
2712   The Connection header field's value has the following grammar:
2714<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Connection"/><iref primary="true" item="Grammar" subitem="connection-option"/>
2715  <x:ref>Connection</x:ref>        = 1#<x:ref>connection-option</x:ref>
2716  <x:ref>connection-option</x:ref> = <x:ref>token</x:ref>
2719   Connection options are compared case-insensitively.
2722   A sender &MUST-NOT; include field-names in the Connection header
2723   field-value for fields that are defined as expressing constraints
2724   for all recipients in the request or response chain, such as the
2725   Cache-Control header field (&header-cache-control;).
2728   The connection options do not have to correspond to a header field
2729   present in the message, since a connection-specific header field
2730   might not be needed if there are no parameters associated with that
2731   connection option.  Recipients that trigger certain connection
2732   behavior based on the presence of connection options &MUST; do so
2733   based on the presence of the connection-option rather than only the
2734   presence of the optional header field.  In other words, if the
2735   connection option is received as a header field but not indicated
2736   within the Connection field-value, then the recipient &MUST; ignore
2737   the connection-specific header field because it has likely been
2738   forwarded by an intermediary that is only partially conformant.
2741   When defining new connection options, specifications ought to
2742   carefully consider existing deployed header fields and ensure
2743   that the new connection option does not share the same name as
2744   an unrelated header field that might already be deployed.
2745   Defining a new connection option essentially reserves that potential
2746   field-name for carrying additional information related to the
2747   connection option, since it would be unwise for senders to use
2748   that field-name for anything else.
2751   HTTP/1.1 defines the "<x:dfn>close</x:dfn>" connection option for the
2752   sender to signal that this connection will be closed after completion of
2753   the response. For example,
2755<figure><artwork type="example">
2756  Connection: close
2759   in either the request or the response header fields indicates that
2760   the connection &SHOULD; be closed after the current request/response
2761   is complete (<xref target="persistent.connections"/>).
2764   An HTTP/1.1 client that does not support persistent connections &MUST;
2765   include the "close" connection option in every request message.
2768   An HTTP/1.1 server that does not support persistent connections &MUST;
2769   include the "close" connection option in every response message that
2770   does not have a <x:ref>1xx (Informational)</x:ref> status code.
2774<section title="Persistent Connections" anchor="persistent.connections">
2775  <x:anchor-alias value="persistent connections"/>
2777   HTTP was originally designed to use a separate connection for each
2778   request/response pair. As the Web evolved and embedded requests became
2779   common for inline images, the connection establishment overhead was
2780   a significant drain on performance and a concern for Internet congestion.
2781   Message framing (via <x:ref>Content-Length</x:ref>) and optional
2782   long-lived connections (via Keep-Alive) were added to HTTP/1.0 in order
2783   to improve performance for some requests. However, these extensions were
2784   insufficient for dynamically generated responses and difficult to use
2785   with intermediaries.
2788   HTTP/1.1 defaults to the use of "<x:ref>persistent connections</x:ref>",
2789   which allow multiple requests and responses to be carried over a single
2790   connection. The "<x:ref>close</x:ref>" connection-option is used to
2791   signal that a connection will close after the current request/response.
2792   Persistent connections have a number of advantages:
2793  <list style="symbols">
2794      <t>
2795        By opening and closing fewer connections, CPU time is saved
2796        in routers and hosts (clients, servers, proxies, gateways,
2797        tunnels, or caches), and memory used for protocol control
2798        blocks can be saved in hosts.
2799      </t>
2800      <t>
2801        Most requests and responses can be pipelined on a connection.
2802        Pipelining allows a client to make multiple requests without
2803        waiting for each response, allowing a single connection to
2804        be used much more efficiently and with less overall latency.
2805      </t>
2806      <t>
2807        Network congestion is reduced by reducing the number of packets
2808        caused by connection establishment and tear-down, and by allowing
2809        sufficient time for send/receive windows to adjust to the
2810        available network bandwidth.
2811      </t>
2812      <t>
2813        Latency on subsequent requests is reduced since there is no time
2814        spent in the connection opening handshake.
2815      </t>
2816      <t>
2817        HTTP can evolve more gracefully, since most errors can be reported
2818        without the penalty of closing the connection. Clients using
2819        future versions of HTTP might optimistically try a new feature,
2820        but if communicating with an older server, retry with old
2821        semantics after an error is reported.
2822      </t>
2823    </list>
2826   HTTP implementations &SHOULD; implement persistent connections.
2829<section title="Establishment" anchor="persistent.establishment">
2831   Each connection applies to only one transport link.
2834   An HTTP/1.1 server &MAY; assume that a HTTP/1.1 client intends to
2835   maintain a persistent connection unless a <x:ref>Connection</x:ref> header
2836   field including the connection option "close" was sent in the request.
2839   An HTTP/1.1 client &MAY; expect a connection to remain open, but would
2840   decide to keep it open based on whether the response from a server
2841   contains a <x:ref>Connection</x:ref> header field with the connection option
2842   "close".
2845   Clients and servers &SHOULD-NOT;  assume that a persistent connection is
2846   maintained for HTTP versions less than 1.1 unless it is explicitly
2847   signaled. See <xref target="compatibility.with.http.1.0.persistent.connections"/> for more information on backward
2848   compatibility with HTTP/1.0 clients.
2851   A proxy server &MUST-NOT; establish a HTTP/1.1 persistent connection
2852   with an HTTP/1.0 client (but see <xref x:sec="19.7.1" x:fmt="of" target="RFC2068"/>
2853   for information and discussion of the problems with the Keep-Alive header field
2854   implemented by many HTTP/1.0 clients).
2858<section title="Reuse" anchor="persistent.reuse">
2860   Unless otherwise indicated, the client
2861   &SHOULD; assume that the server will maintain a persistent connection,
2862   even after error responses from the server.
2865   In order to remain persistent, all messages on the connection &MUST;
2866   have a self-defined message length (i.e., one not defined by closure
2867   of the connection), as described in <xref target="message.body"/>.
2870<section title="Pipelining" anchor="pipelining">
2872   A client that supports persistent connections &MAY; "pipeline" its
2873   requests (i.e., send multiple requests without waiting for each
2874   response). A server &MUST; send its responses to those requests in the
2875   same order that the requests were received.
2878   Clients which assume persistent connections and pipeline immediately
2879   after connection establishment &SHOULD; be prepared to retry their
2880   connection if the first pipelined attempt fails. If a client does
2881   such a retry, it &MUST-NOT; pipeline before it knows the connection is
2882   persistent. Clients &MUST; also be prepared to resend their requests if
2883   the server closes the connection before sending all of the
2884   corresponding responses.
2887   Clients &SHOULD-NOT; pipeline requests using non-idempotent request methods
2888   or non-idempotent sequences of request methods (see &idempotent-methods;).
2889   Otherwise, a premature termination of the transport connection could lead
2890   to indeterminate results. A client wishing to send a non-idempotent
2891   request &SHOULD; wait to send that request until it has received the
2892   response status line for the previous request.
2896<section title="Retrying Requests" anchor="persistent.retrying.requests">
2898   Senders can close the transport connection at any time. Therefore,
2899   clients, servers, and proxies &MUST; be able to recover
2900   from asynchronous close events. Client software &MAY; reopen the
2901   transport connection and retransmit the aborted sequence of requests
2902   without user interaction so long as the request sequence is
2903   idempotent (see &idempotent-methods;). Non-idempotent request methods or sequences
2904   &MUST-NOT; be automatically retried, although user agents &MAY; offer a
2905   human operator the choice of retrying the request(s). Confirmation by
2906   user-agent software with semantic understanding of the application
2907   &MAY; substitute for user confirmation. The automatic retry &SHOULD-NOT;
2908   be repeated if the second sequence of requests fails.
2913<section title="Concurrency" anchor="persistent.concurrency">
2915   Clients (including proxies) &SHOULD; limit the number of simultaneous
2916   connections that they maintain to a given server (including proxies).
2919   Previous revisions of HTTP gave a specific number of connections as a
2920   ceiling, but this was found to be impractical for many applications. As a
2921   result, this specification does not mandate a particular maximum number of
2922   connections, but instead encourages clients to be conservative when opening
2923   multiple connections.
2926   In particular, while using multiple connections avoids the "head-of-line
2927   blocking" problem (whereby a request that takes significant server-side
2928   processing and/or has a large payload can block subsequent requests on the
2929   same connection), each connection used consumes server resources (sometimes
2930   significantly), and furthermore using multiple connections can cause
2931   undesirable side effects in congested networks.
2934   Note that servers might reject traffic that they deem abusive, including an
2935   excessive number of connections from a client.
2939<section title="Failures and Time-outs" anchor="persistent.failures">
2941   Servers will usually have some time-out value beyond which they will
2942   no longer maintain an inactive connection. Proxy servers might make
2943   this a higher value since it is likely that the client will be making
2944   more connections through the same server. The use of persistent
2945   connections places no requirements on the length (or existence) of
2946   this time-out for either the client or the server.
2949   When a client or server wishes to time-out it &SHOULD; issue a graceful
2950   close on the transport connection. Clients and servers &SHOULD; both
2951   constantly watch for the other side of the transport close, and
2952   respond to it as appropriate. If a client or server does not detect
2953   the other side's close promptly it could cause unnecessary resource
2954   drain on the network.
2957   A client, server, or proxy &MAY; close the transport connection at any
2958   time. For example, a client might have started to send a new request
2959   at the same time that the server has decided to close the "idle"
2960   connection. From the server's point of view, the connection is being
2961   closed while it was idle, but from the client's point of view, a
2962   request is in progress.
2965   HTTP/1.1 servers &SHOULD; maintain persistent connections and use TCP's
2966   flow control mechanisms to resolve temporary overloads, rather than
2967   terminating connections with the expectation that clients will retry.
2968   The latter technique can exacerbate network congestion.
2971   An HTTP/1.1 (or later) client sending a message body &SHOULD; monitor
2972   the network connection for an error status code while it is transmitting
2973   the request. If the client sees an error status code, it &SHOULD;
2974   immediately cease transmitting the body and close the connection.
2978<section title="Tear-down" anchor="persistent.tear-down">
2980   Persistent connections provide a mechanism by which a client and a
2981   server can signal the close of a TCP connection. This signaling takes
2982   place using the <x:ref>Connection</x:ref> header field
2983   (<xref target="header.connection"/>). Once a close has been signaled, the
2984   client &MUST-NOT; send any more requests on that
2985   connection.
2988   If either the client or the server sends the "close" option in the
2989   <x:ref>Connection</x:ref> header field, that request/response pair
2990   becomes the last one for the connection.
2993   If the server chooses to close the connection immediately after sending the
2994   response, it &SHOULD; send a Connection header field including the
2995   connection option "close".
2998   In case the client does not want to maintain a connection for more
2999   than that request, it &SHOULD; send a Connection header field including the
3000   connection option "close".
3003   If the client is sending data, a server implementation using TCP
3004   &SHOULD; be careful to ensure that the client acknowledges receipt of
3005   the packet(s) containing the response, before the server closes the
3006   input connection. If the client continues sending data to the server
3007   after the close, the server's TCP stack will send a reset packet to
3008   the client, which might erase the client's unacknowledged input buffers
3009   before they can be read and interpreted by the HTTP application.
3014<section title="Use of the 100 (Continue) Status" anchor="use.of.the.100.status">
3016   The purpose of the <x:ref>100 (Continue)</x:ref> status code (see &status-100;)
3017   is to allow a client that is sending a request message with a request body
3018   to determine if the origin server is willing to accept the request
3019   (based on the request header fields) before the client sends the request
3020   body. In some cases, it might either be inappropriate or highly
3021   inefficient for the client to send the body if the server will reject
3022   the message without looking at the body.
3025   Requirements for HTTP/1.1 clients:
3026  <list style="symbols">
3027    <t>
3028        If a client will wait for a <x:ref>100 (Continue)</x:ref> response before
3029        sending the request body, it &MUST; send an <x:ref>Expect</x:ref> header
3030        field (&header-expect;) with the "100-continue" expectation.
3031    </t>
3032    <t>
3033        A client &MUST-NOT; send an <x:ref>Expect</x:ref> header field with
3034        the "100-continue" expectation if it does not intend to send a request
3035        body.
3036    </t>
3037  </list>
3040   Because of the presence of older implementations, the protocol allows
3041   ambiguous situations in which a client might send "Expect: 100-continue"
3042   without receiving either a <x:ref>417 (Expectation Failed)</x:ref>
3043   or a <x:ref>100 (Continue)</x:ref> status code. Therefore, when a client sends this
3044   header field to an origin server (possibly via a proxy) from which it
3045   has never seen a <x:ref>100 (Continue)</x:ref> status code, the client &SHOULD-NOT; 
3046   wait for an indefinite period before sending the request body.
3049   Requirements for HTTP/1.1 origin servers:
3050  <list style="symbols">
3051    <t> Upon receiving a request which includes an <x:ref>Expect</x:ref> header
3052        field with the "100-continue" expectation, an origin server &MUST;
3053        either respond with <x:ref>100 (Continue)</x:ref> status code and continue to read
3054        from the input stream, or respond with a final status code. The
3055        origin server &MUST-NOT; wait for the request body before sending
3056        the <x:ref>100 (Continue)</x:ref> response. If it responds with a final status
3057        code, it &MAY; close the transport connection or it &MAY; continue
3058        to read and discard the rest of the request.  It &MUST-NOT;
3059        perform the request method if it returns a final status code.
3060    </t>
3061    <t> An origin server &SHOULD-NOT;  send a <x:ref>100 (Continue)</x:ref> response if
3062        the request message does not include an <x:ref>Expect</x:ref> header
3063        field with the "100-continue" expectation, and &MUST-NOT; send a
3064        <x:ref>100 (Continue)</x:ref> response if such a request comes from an HTTP/1.0
3065        (or earlier) client. There is an exception to this rule: for
3066        compatibility with <xref target="RFC2068"/>, a server &MAY; send a <x:ref>100 (Continue)</x:ref>
3067        status code in response to an HTTP/1.1 PUT or POST request that does
3068        not include an Expect header field with the "100-continue"
3069        expectation. This exception, the purpose of which is
3070        to minimize any client processing delays associated with an
3071        undeclared wait for <x:ref>100 (Continue)</x:ref> status code, applies only to
3072        HTTP/1.1 requests, and not to requests with any other HTTP-version
3073        value.
3074    </t>
3075    <t> An origin server &MAY; omit a <x:ref>100 (Continue)</x:ref> response if it has
3076        already received some or all of the request body for the
3077        corresponding request.
3078    </t>
3079    <t> An origin server that sends a <x:ref>100 (Continue)</x:ref> response &MUST;
3080        ultimately send a final status code, once the request body is
3081        received and processed, unless it terminates the transport
3082        connection prematurely.
3083    </t>
3084    <t> If an origin server receives a request that does not include an
3085        <x:ref>Expect</x:ref> header field with the "100-continue" expectation,
3086        the request includes a request body, and the server responds
3087        with a final status code before reading the entire request body
3088        from the transport connection, then the server &SHOULD-NOT;  close
3089        the transport connection until it has read the entire request,
3090        or until the client closes the connection. Otherwise, the client
3091        might not reliably receive the response message. However, this
3092        requirement ought not be construed as preventing a server from
3093        defending itself against denial-of-service attacks, or from
3094        badly broken client implementations.
3095      </t>
3096    </list>
3099   Requirements for HTTP/1.1 proxies:
3100  <list style="symbols">
3101    <t> If a proxy receives a request that includes an <x:ref>Expect</x:ref>
3102        header field with the "100-continue" expectation, and the proxy
3103        either knows that the next-hop server complies with HTTP/1.1 or
3104        higher, or does not know the HTTP version of the next-hop
3105        server, it &MUST; forward the request, including the Expect header
3106        field.
3107    </t>
3108    <t> If the proxy knows that the version of the next-hop server is
3109        HTTP/1.0 or lower, it &MUST-NOT; forward the request, and it &MUST;
3110        respond with a <x:ref>417 (Expectation Failed)</x:ref> status code.
3111    </t>
3112    <t> Proxies &SHOULD; maintain a record of the HTTP version
3113        numbers received from recently-referenced next-hop servers.
3114    </t>
3115    <t> A proxy &MUST-NOT; forward a <x:ref>100 (Continue)</x:ref> response if the
3116        request message was received from an HTTP/1.0 (or earlier)
3117        client and did not include an <x:ref>Expect</x:ref> header field with
3118        the "100-continue" expectation. This requirement overrides the
3119        general rule for forwarding of <x:ref>1xx</x:ref> responses (see &status-1xx;).
3120    </t>
3121  </list>
3125<section title="Upgrade" anchor="header.upgrade">
3126  <iref primary="true" item="Upgrade header field" x:for-anchor=""/>
3127  <iref primary="true" item="Header Fields" subitem="Upgrade" x:for-anchor=""/>
3128  <x:anchor-alias value="Upgrade"/>
3129  <x:anchor-alias value="protocol"/>
3130  <x:anchor-alias value="protocol-name"/>
3131  <x:anchor-alias value="protocol-version"/>
3133   The "Upgrade" header field allows the client to specify what
3134   additional communication protocols it would like to use, if the server
3135   chooses to switch protocols. Servers can use it to indicate what protocols
3136   they are willing to switch to.
3138<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Upgrade"/>
3139  <x:ref>Upgrade</x:ref>          = 1#<x:ref>protocol</x:ref>
3141  <x:ref>protocol</x:ref>         = <x:ref>protocol-name</x:ref> ["/" <x:ref>protocol-version</x:ref>]
3142  <x:ref>protocol-name</x:ref>    = <x:ref>token</x:ref>
3143  <x:ref>protocol-version</x:ref> = <x:ref>token</x:ref>
3146   For example,
3148<figure><artwork type="example">
3149  Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11
3152   The Upgrade header field is intended to provide a simple mechanism
3153   for transitioning from HTTP/1.1 to some other, incompatible protocol. It
3154   does so by allowing the client to advertise its desire to use another
3155   protocol, such as a later version of HTTP with a higher major version
3156   number, even though the current request has been made using HTTP/1.1.
3157   This eases the difficult transition between incompatible protocols by
3158   allowing the client to initiate a request in the more commonly
3159   supported protocol while indicating to the server that it would like
3160   to use a "better" protocol if available (where "better" is determined
3161   by the server, possibly according to the nature of the request method
3162   or target resource).
3165   The Upgrade header field only applies to switching application-layer
3166   protocols upon the existing transport-layer connection. Upgrade
3167   cannot be used to insist on a protocol change; its acceptance and use
3168   by the server is optional. The capabilities and nature of the
3169   application-layer communication after the protocol change is entirely
3170   dependent upon the new protocol chosen, although the first action
3171   after changing the protocol &MUST; be a response to the initial HTTP
3172   request containing the Upgrade header field.
3175   The Upgrade header field only applies to the immediate connection.
3176   Therefore, the upgrade keyword &MUST; be supplied within a
3177   <x:ref>Connection</x:ref> header field (<xref target="header.connection"/>)
3178   whenever Upgrade is present in an HTTP/1.1 message.
3181   The Upgrade header field cannot be used to indicate a switch to a
3182   protocol on a different connection. For that purpose, it is more
3183   appropriate to use a <x:ref>3xx (Redirection)</x:ref> response (&status-3xx;).
3186   Servers &MUST; include the "Upgrade" header field in <x:ref>101 (Switching
3187   Protocols)</x:ref> responses to indicate which protocol(s) are being switched to,
3188   and &MUST; include it in <x:ref>426 (Upgrade Required)</x:ref> responses to indicate
3189   acceptable protocols to upgrade to. Servers &MAY; include it in any other
3190   response to indicate that they are willing to upgrade to one of the
3191   specified protocols.
3194   This specification only defines the protocol name "HTTP" for use by
3195   the family of Hypertext Transfer Protocols, as defined by the HTTP
3196   version rules of <xref target="http.version"/> and future updates to this
3197   specification. Additional tokens can be registered with IANA using the
3198   registration procedure defined in <xref target="upgrade.token.registry"/>.
3204<section title="IANA Considerations" anchor="IANA.considerations">
3206<section title="Header Field Registration" anchor="header.field.registration">
3208   HTTP header fields are registered within the Message Header Field Registry
3209   <xref target="RFC3864"/> maintained by IANA at
3210   <eref target=""/>.
3213   This document defines the following HTTP header fields, so their
3214   associated registry entries shall be updated according to the permanent
3215   registrations below:
3217<?BEGININC p1-messaging.iana-headers ?>
3218<!--AUTOGENERATED FROM extract-header-defs.xslt, do not edit manually-->
3219<texttable align="left" suppress-title="true" anchor="iana.header.registration.table">
3220   <ttcol>Header Field Name</ttcol>
3221   <ttcol>Protocol</ttcol>
3222   <ttcol>Status</ttcol>
3223   <ttcol>Reference</ttcol>
3225   <c>Connection</c>
3226   <c>http</c>
3227   <c>standard</c>
3228   <c>
3229      <xref target="header.connection"/>
3230   </c>
3231   <c>Content-Length</c>
3232   <c>http</c>
3233   <c>standard</c>
3234   <c>
3235      <xref target="header.content-length"/>
3236   </c>
3237   <c>Host</c>
3238   <c>http</c>
3239   <c>standard</c>
3240   <c>
3241      <xref target=""/>
3242   </c>
3243   <c>TE</c>
3244   <c>http</c>
3245   <c>standard</c>
3246   <c>
3247      <xref target="header.te"/>
3248   </c>
3249   <c>Trailer</c>
3250   <c>http</c>
3251   <c>standard</c>
3252   <c>
3253      <xref target="header.trailer"/>
3254   </c>
3255   <c>Transfer-Encoding</c>
3256   <c>http</c>
3257   <c>standard</c>
3258   <c>
3259      <xref target="header.transfer-encoding"/>
3260   </c>
3261   <c>Upgrade</c>
3262   <c>http</c>
3263   <c>standard</c>
3264   <c>
3265      <xref target="header.upgrade"/>
3266   </c>
3267   <c>Via</c>
3268   <c>http</c>
3269   <c>standard</c>
3270   <c>
3271      <xref target="header.via"/>
3272   </c>
3275<?ENDINC p1-messaging.iana-headers ?>
3277   Furthermore, the header field-name "Close" shall be registered as
3278   "reserved", since using that name as an HTTP header field might
3279   conflict with the "close" connection option of the "<x:ref>Connection</x:ref>"
3280   header field (<xref target="header.connection"/>).
3282<texttable align="left" suppress-title="true">
3283   <ttcol>Header Field Name</ttcol>
3284   <ttcol>Protocol</ttcol>
3285   <ttcol>Status</ttcol>
3286   <ttcol>Reference</ttcol>
3288   <c>Close</c>
3289   <c>http</c>
3290   <c>reserved</c>
3291   <c>
3292      <xref target="header.field.registration"/>
3293   </c>
3296   The change controller is: "IETF ( - Internet Engineering Task Force".
3300<section title="URI Scheme Registration" anchor="uri.scheme.registration">
3302   IANA maintains the registry of URI Schemes <xref target="RFC4395"/> at
3303   <eref target=""/>.
3306   This document defines the following URI schemes, so their
3307   associated registry entries shall be updated according to the permanent
3308   registrations below:
3310<texttable align="left" suppress-title="true">
3311   <ttcol>URI Scheme</ttcol>
3312   <ttcol>Description</ttcol>
3313   <ttcol>Reference</ttcol>
3315   <c>http</c>
3316   <c>Hypertext Transfer Protocol</c>
3317   <c><xref target="http.uri"/></c>
3319   <c>https</c>
3320   <c>Hypertext Transfer Protocol Secure</c>
3321   <c><xref target="https.uri"/></c>
3325<section title="Internet Media Type Registrations" anchor="">
3327   This document serves as the specification for the Internet media types
3328   "message/http" and "application/http". The following is to be registered with
3329   IANA (see <xref target="RFC4288"/>).
3331<section title="Internet Media Type message/http" anchor="">
3332<iref item="Media Type" subitem="message/http" primary="true"/>
3333<iref item="message/http Media Type" primary="true"/>
3335   The message/http type can be used to enclose a single HTTP request or
3336   response message, provided that it obeys the MIME restrictions for all
3337   "message" types regarding line length and encodings.
3340  <list style="hanging" x:indent="12em">
3341    <t hangText="Type name:">
3342      message
3343    </t>
3344    <t hangText="Subtype name:">
3345      http
3346    </t>
3347    <t hangText="Required parameters:">
3348      none
3349    </t>
3350    <t hangText="Optional parameters:">
3351      version, msgtype
3352      <list style="hanging">
3353        <t hangText="version:">
3354          The HTTP-version number of the enclosed message
3355          (e.g., "1.1"). If not present, the version can be
3356          determined from the first line of the body.
3357        </t>
3358        <t hangText="msgtype:">
3359          The message type &mdash; "request" or "response". If not
3360          present, the type can be determined from the first
3361          line of the body.
3362        </t>
3363      </list>
3364    </t>
3365    <t hangText="Encoding considerations:">
3366      only "7bit", "8bit", or "binary" are permitted
3367    </t>
3368    <t hangText="Security considerations:">
3369      none
3370    </t>
3371    <t hangText="Interoperability considerations:">
3372      none
3373    </t>
3374    <t hangText="Published specification:">
3375      This specification (see <xref target=""/>).
3376    </t>
3377    <t hangText="Applications that use this media type:">
3378    </t>
3379    <t hangText="Additional information:">
3380      <list style="hanging">
3381        <t hangText="Magic number(s):">none</t>
3382        <t hangText="File extension(s):">none</t>
3383        <t hangText="Macintosh file type code(s):">none</t>
3384      </list>
3385    </t>
3386    <t hangText="Person and email address to contact for further information:">
3387      See Authors Section.
3388    </t>
3389    <t hangText="Intended usage:">
3390      COMMON
3391    </t>
3392    <t hangText="Restrictions on usage:">
3393      none
3394    </t>
3395    <t hangText="Author/Change controller:">
3396      IESG
3397    </t>
3398  </list>
3401<section title="Internet Media Type application/http" anchor="">
3402<iref item="Media Type" subitem="application/http" primary="true"/>
3403<iref item="application/http Media Type" primary="true"/>
3405   The application/http type can be used to enclose a pipeline of one or more
3406   HTTP request or response messages (not intermixed).
3409  <list style="hanging" x:indent="12em">
3410    <t hangText="Type name:">
3411      application
3412    </t>
3413    <t hangText="Subtype name:">
3414      http
3415    </t>
3416    <t hangText="Required parameters:">
3417      none
3418    </t>
3419    <t hangText="Optional parameters:">
3420      version, msgtype
3421      <list style="hanging">
3422        <t hangText="version:">
3423          The HTTP-version number of the enclosed messages
3424          (e.g., "1.1"). If not present, the version can be
3425          determined from the first line of the body.
3426        </t>
3427        <t hangText="msgtype:">
3428          The message type &mdash; "request" or "response". If not
3429          present, the type can be determined from the first
3430          line of the body.
3431        </t>
3432      </list>
3433    </t>
3434    <t hangText="Encoding considerations:">
3435      HTTP messages enclosed by this type
3436      are in "binary" format; use of an appropriate
3437      Content-Transfer-Encoding is required when
3438      transmitted via E-mail.
3439    </t>
3440    <t hangText="Security considerations:">
3441      none
3442    </t>
3443    <t hangText="Interoperability considerations:">
3444      none
3445    </t>
3446    <t hangText="Published specification:">
3447      This specification (see <xref target=""/>).
3448    </t>
3449    <t hangText="Applications that use this media type:">
3450    </t>
3451    <t hangText="Additional information:">
3452      <list style="hanging">
3453        <t hangText="Magic number(s):">none</t>
3454        <t hangText="File extension(s):">none</t>
3455        <t hangText="Macintosh file type code(s):">none</t>
3456      </list>
3457    </t>
3458    <t hangText="Person and email address to contact for further information:">
3459      See Authors Section.
3460    </t>
3461    <t hangText="Intended usage:">
3462      COMMON
3463    </t>
3464    <t hangText="Restrictions on usage:">
3465      none
3466    </t>
3467    <t hangText="Author/Change controller:">
3468      IESG
3469    </t>
3470  </list>
3475<section title="Transfer Coding Registry" anchor="transfer.coding.registry">
3477   The HTTP Transfer Coding Registry defines the name space for transfer
3478   coding names.
3481   Registrations &MUST; include the following fields:
3482   <list style="symbols">
3483     <t>Name</t>
3484     <t>Description</t>
3485     <t>Pointer to specification text</t>
3486   </list>
3489   Names of transfer codings &MUST-NOT; overlap with names of content codings
3490   (&content-codings;) unless the encoding transformation is identical, as
3491   is the case for the compression codings defined in
3492   <xref target="compression.codings"/>.
3495   Values to be added to this name space require IETF Review (see
3496   <xref target="RFC5226" x:fmt="of" x:sec="4.1"/>), and &MUST;
3497   conform to the purpose of transfer coding defined in this section.
3498   Use of program names for the identification of encoding formats
3499   is not desirable and is discouraged for future encodings.
3502   The registry itself is maintained at
3503   <eref target=""/>.
3507<section title="Transfer Coding Registrations" anchor="transfer.coding.registration">
3509   The HTTP Transfer Coding Registry shall be updated with the registrations
3510   below:
3512<texttable align="left" suppress-title="true" anchor="iana.transfer.coding.registration.table">
3513   <ttcol>Name</ttcol>
3514   <ttcol>Description</ttcol>
3515   <ttcol>Reference</ttcol>
3516   <c>chunked</c>
3517   <c>Transfer in a series of chunks</c>
3518   <c>
3519      <xref target="chunked.encoding"/>
3520   </c>
3521   <c>compress</c>
3522   <c>UNIX "compress" program method</c>
3523   <c>
3524      <xref target="compress.coding"/>
3525   </c>
3526   <c>deflate</c>
3527   <c>"deflate" compression mechanism (<xref target="RFC1951"/>) used inside
3528   the "zlib" data format (<xref target="RFC1950"/>)
3529   </c>
3530   <c>
3531      <xref target="deflate.coding"/>
3532   </c>
3533   <c>gzip</c>
3534   <c>Same as GNU zip <xref target="RFC1952"/></c>
3535   <c>
3536      <xref target="gzip.coding"/>
3537   </c>
3541<section title="Upgrade Token Registry" anchor="upgrade.token.registry">
3543   The HTTP Upgrade Token Registry defines the name space for protocol-name
3544   tokens used to identify protocols in the <x:ref>Upgrade</x:ref> header
3545   field. Each registered protocol name is associated with contact information
3546   and an optional set of specifications that details how the connection
3547   will be processed after it has been upgraded.
3550   Registrations happen on a "First Come First Served" basis (see
3551   <xref target="RFC5226" x:sec="4.1" x:fmt="of"/>) and are subject to the
3552   following rules:
3553  <list style="numbers">
3554    <t>A protocol-name token, once registered, stays registered forever.</t>
3555    <t>The registration &MUST; name a responsible party for the
3556       registration.</t>
3557    <t>The registration &MUST; name a point of contact.</t>
3558    <t>The registration &MAY; name a set of specifications associated with
3559       that token. Such specifications need not be publicly available.</t>
3560    <t>The registration &SHOULD; name a set of expected "protocol-version"
3561       tokens associated with that token at the time of registration.</t>
3562    <t>The responsible party &MAY; change the registration at any time.
3563       The IANA will keep a record of all such changes, and make them
3564       available upon request.</t>
3565    <t>The IESG &MAY; reassign responsibility for a protocol token.
3566       This will normally only be used in the case when a
3567       responsible party cannot be contacted.</t>
3568  </list>
3571   This registration procedure for HTTP Upgrade Tokens replaces that
3572   previously defined in <xref target="RFC2817" x:fmt="of" x:sec="7.2"/>.
3576<section title="Upgrade Token Registration" anchor="upgrade.token.registration">
3578   The HTTP Upgrade Token Registry shall be updated with the registration
3579   below:
3581<texttable align="left" suppress-title="true">
3582   <ttcol>Value</ttcol>
3583   <ttcol>Description</ttcol>
3584   <ttcol>Expected Version Tokens</ttcol>
3585   <ttcol>Reference</ttcol>
3587   <c>HTTP</c>
3588   <c>Hypertext Transfer Protocol</c>
3589   <c>any DIGIT.DIGIT (e.g, "2.0")</c>
3590   <c><xref target="http.version"/></c>
3593   The responsible party is: "IETF ( - Internet Engineering Task Force".
3599<section title="Security Considerations" anchor="security.considerations">
3601   This section is meant to inform application developers, information
3602   providers, and users of the security limitations in HTTP/1.1 as
3603   described by this document. The discussion does not include
3604   definitive solutions to the problems revealed, though it does make
3605   some suggestions for reducing security risks.
3608<section title="Personal Information" anchor="personal.information">
3610   HTTP clients are often privy to large amounts of personal information,
3611   including both information provided by the user to interact with resources
3612   (e.g., the user's name, location, mail address, passwords, encryption
3613   keys, etc.) and information about the user's browsing activity over
3614   time (e.g., history, bookmarks, etc.). HTTP implementations need to
3615   prevent unintentional leakage of this information.
3619<section title="Abuse of Server Log Information" anchor="abuse.of.server.log.information">
3621   A server is in the position to save personal data about a user's
3622   requests which might identify their reading patterns or subjects of
3623   interest.  In particular, log information gathered at an intermediary
3624   often contains a history of user agent interaction, across a multitude
3625   of sites, that can be traced to individual users.
3628   HTTP log information is confidential in nature; its handling is often
3629   constrained by laws and regulations.  Log information needs to be securely
3630   stored and appropriate guidelines followed for its analysis.
3631   Anonymization of personal information within individual entries helps,
3632   but is generally not sufficient to prevent real log traces from being
3633   re-identified based on correlation with other access characteristics.
3634   As such, access traces that are keyed to a specific client should not
3635   be published even if the key is pseudonymous.
3638   To minimize the risk of theft or accidental publication, log information
3639   should be purged of personally identifiable information, including
3640   user identifiers, IP addresses, and user-provided query parameters,
3641   as soon as that information is no longer necessary to support operational
3642   needs for security, auditing, or fraud control.
3646<section title="Attacks Based On File and Path Names" anchor="attack.pathname">
3648   Implementations of HTTP origin servers &SHOULD; be careful to restrict
3649   the documents returned by HTTP requests to be only those that were
3650   intended by the server administrators. If an HTTP server translates
3651   HTTP URIs directly into file system calls, the server &MUST; take
3652   special care not to serve files that were not intended to be
3653   delivered to HTTP clients. For example, UNIX, Microsoft Windows, and
3654   other operating systems use ".." as a path component to indicate a
3655   directory level above the current one. On such a system, an HTTP
3656   server &MUST; disallow any such construct in the request-target if it
3657   would otherwise allow access to a resource outside those intended to
3658   be accessible via the HTTP server. Similarly, files intended for
3659   reference only internally to the server (such as access control
3660   files, configuration files, and script code) &MUST; be protected from
3661   inappropriate retrieval, since they might contain sensitive
3662   information. Experience has shown that minor bugs in such HTTP server
3663   implementations have turned into security risks.
3667<section title="DNS-related Attacks" anchor="dns.related.attacks">
3669   HTTP clients rely heavily on the Domain Name Service (DNS), and are thus
3670   generally prone to security attacks based on the deliberate misassociation
3671   of IP addresses and DNS names not protected by DNSSec. Clients need to be
3672   cautious in assuming the validity of an IP number/DNS name association unless
3673   the response is protected by DNSSec (<xref target="RFC4033"/>).
3677<section title="Intermediaries and Caching" anchor="attack.intermediaries">
3679   By their very nature, HTTP intermediaries are men-in-the-middle, and
3680   represent an opportunity for man-in-the-middle attacks. Compromise of
3681   the systems on which the intermediaries run can result in serious security
3682   and privacy problems. Intermediaries have access to security-related
3683   information, personal information about individual users and
3684   organizations, and proprietary information belonging to users and
3685   content providers. A compromised intermediary, or an intermediary
3686   implemented or configured without regard to security and privacy
3687   considerations, might be used in the commission of a wide range of
3688   potential attacks.
3691   Intermediaries that contain a shared cache are especially vulnerable
3692   to cache poisoning attacks.
3695   Implementers need to consider the privacy and security
3696   implications of their design and coding decisions, and of the
3697   configuration options they provide to operators (especially the
3698   default configuration).
3701   Users need to be aware that intermediaries are no more trustworthy than
3702   the people who run them; HTTP itself cannot solve this problem.
3706<section title="Protocol Element Size Overflows" anchor="attack.protocol.element.size.overflows">
3708   Because HTTP uses mostly textual, character-delimited fields, attackers can
3709   overflow buffers in implementations, and/or perform a Denial of Service
3710   against implementations that accept fields with unlimited lengths.
3713   To promote interoperability, this specification makes specific
3714   recommendations for minimum size limits on request-line
3715   (<xref target="request.line"/>)
3716   and blocks of header fields (<xref target="header.fields"/>). These are
3717   minimum recommendations, chosen to be supportable even by implementations
3718   with limited resources; it is expected that most implementations will
3719   choose substantially higher limits.
3722   This specification also provides a way for servers to reject messages that
3723   have request-targets that are too long (&status-414;) or request entities
3724   that are too large (&status-4xx;).
3727   Other fields (including but not limited to request methods, response status
3728   phrases, header field-names, and body chunks) &SHOULD; be limited by
3729   implementations carefully, so as to not impede interoperability.
3734<section title="Acknowledgments" anchor="acks">
3736   This edition of HTTP builds on the many contributions that went into
3737   <xref target="RFC1945" format="none">RFC 1945</xref>,
3738   <xref target="RFC2068" format="none">RFC 2068</xref>,
3739   <xref target="RFC2145" format="none">RFC 2145</xref>, and
3740   <xref target="RFC2616" format="none">RFC 2616</xref>, including
3741   substantial contributions made by the previous authors, editors, and
3742   working group chairs: Tim Berners-Lee, Ari Luotonen, Roy T. Fielding,
3743   Henrik Frystyk Nielsen, Jim Gettys, Jeffrey C. Mogul, Larry Masinter,
3744   Paul J. Leach, and Mark Nottingham.
3745   See <xref target="RFC2616" x:fmt="of" x:sec="16"/> for additional
3746   acknowledgements from prior revisions.
3749   Since 1999, the following contributors have helped improve the HTTP
3750   specification by reporting bugs, asking smart questions, drafting or
3751   reviewing text, and evaluating open issues:
3753<?BEGININC acks ?>
3754<t>Adam Barth,
3755Adam Roach,
3756Addison Phillips,
3757Adrian Chadd,
3758Adrien W. de Croy,
3759Alan Ford,
3760Alan Ruttenberg,
3761Albert Lunde,
3762Alek Storm,
3763Alex Rousskov,
3764Alexandre Morgaut,
3765Alexey Melnikov,
3766Alisha Smith,
3767Amichai Rothman,
3768Amit Klein,
3769Amos Jeffries,
3770Andreas Maier,
3771Andreas Petersson,
3772Anil Sharma,
3773Anne van Kesteren,
3774Anthony Bryan,
3775Asbjorn Ulsberg,
3776Balachander Krishnamurthy,
3777Barry Leiba,
3778Ben Laurie,
3779Benjamin Niven-Jenkins,
3780Bil Corry,
3781Bill Burke,
3782Bjoern Hoehrmann,
3783Bob Scheifler,
3784Boris Zbarsky,
3785Brett Slatkin,
3786Brian Kell,
3787Brian McBarron,
3788Brian Pane,
3789Brian Smith,
3790Bryce Nesbitt,
3791Cameron Heavon-Jones,
3792Carl Kugler,
3793Carsten Bormann,
3794Charles Fry,
3795Chris Newman,
3796Cyrus Daboo,
3797Dale Robert Anderson,
3798Dan Wing,
3799Dan Winship,
3800Daniel Stenberg,
3801Dave Cridland,
3802Dave Crocker,
3803Dave Kristol,
3804David Booth,
3805David Singer,
3806David W. Morris,
3807Diwakar Shetty,
3808Dmitry Kurochkin,
3809Drummond Reed,
3810Duane Wessels,
3811Edward Lee,
3812Eliot Lear,
3813Eran Hammer-Lahav,
3814Eric D. Williams,
3815Eric J. Bowman,
3816Eric Lawrence,
3817Eric Rescorla,
3818Erik Aronesty,
3819Florian Weimer,
3820Frank Ellermann,
3821Fred Bohle,
3822Gabriel Montenegro,
3823Geoffrey Sneddon,
3824Gervase Markham,
3825Grahame Grieve,
3826Greg Wilkins,
3827Harald Tveit Alvestrand,
3828Harry Halpin,
3829Helge Hess,
3830Henrik Nordstrom,
3831Henry S. Thompson,
3832Henry Story,
3833Herbert van de Sompel,
3834Howard Melman,
3835Hugo Haas,
3836Ian Fette,
3837Ian Hickson,
3838Ido Safruti,
3839Ingo Struck,
3840J. Ross Nicoll,
3841James H. Manger,
3842James Lacey,
3843James M. Snell,
3844Jamie Lokier,
3845Jan Algermissen,
3846Jeff Hodges (who came up with the term 'effective Request-URI'),
3847Jeff Walden,
3848Jim Luther,
3849Joe D. Williams,
3850Joe Gregorio,
3851Joe Orton,
3852John C. Klensin,
3853John C. Mallery,
3854John Cowan,
3855John Kemp,
3856John Panzer,
3857John Schneider,
3858John Stracke,
3859John Sullivan,
3860Jonas Sicking,
3861Jonathan Billington,
3862Jonathan Moore,
3863Jonathan Rees,
3864Jonathan Silvera,
3865Jordi Ros,
3866Joris Dobbelsteen,
3867Josh Cohen,
3868Julien Pierre,
3869Jungshik Shin,
3870Justin Chapweske,
3871Justin Erenkrantz,
3872Justin James,
3873Kalvinder Singh,
3874Karl Dubost,
3875Keith Hoffman,
3876Keith Moore,
3877Koen Holtman,
3878Konstantin Voronkov,
3879Kris Zyp,
3880Lisa Dusseault,
3881Maciej Stachowiak,
3882Marc Schneider,
3883Marc Slemko,
3884Mark Baker,
3885Mark Pauley,
3886Mark Watson,
3887Markus Isomaki,
3888Markus Lanthaler,
3889Martin J. Duerst,
3890Martin Musatov,
3891Martin Nilsson,
3892Martin Thomson,
3893Matt Lynch,
3894Matthew Cox,
3895Max Clark,
3896Michael Burrows,
3897Michael Hausenblas,
3898Mike Amundsen,
3899Mike Belshe,
3900Mike Kelly,
3901Mike Schinkel,
3902Miles Sabin,
3903Murray S. Kucherawy,
3904Mykyta Yevstifeyev,
3905Nathan Rixham,
3906Nicholas Shanks,
3907Nico Williams,
3908Nicolas Alvarez,
3909Nicolas Mailhot,
3910Noah Slater,
3911Pablo Castro,
3912Pat Hayes,
3913Patrick R. McManus,
3914Paul E. Jones,
3915Paul Hoffman,
3916Paul Marquess,
3917Peter Lepeska,
3918Peter Saint-Andre,
3919Peter Watkins,
3920Phil Archer,
3921Philippe Mougin,
3922Phillip Hallam-Baker,
3923Poul-Henning Kamp,
3924Preethi Natarajan,
3925Rajeev Bector,
3926Ray Polk,
3927Reto Bachmann-Gmuer,
3928Richard Cyganiak,
3929Robert Brewer,
3930Robert Collins,
3931Robert O'Callahan,
3932Robert Olofsson,
3933Robert Sayre,
3934Robert Siemer,
3935Robert de Wilde,
3936Roberto Javier Godoy,
3937Roberto Peon,
3938Ronny Widjaja,
3939S. Mike Dierken,
3940Salvatore Loreto,
3941Sam Johnston,
3942Sam Ruby,
3943Scott Lawrence (who maintained the original issues list),
3944Sean B. Palmer,
3945Shane McCarron,
3946Stefan Eissing,
3947Stefan Tilkov,
3948Stefanos Harhalakis,
3949Stephane Bortzmeyer,
3950Stephen Farrell,
3951Stephen Ludin,
3952Stuart Williams,
3953Subbu Allamaraju,
3954Sylvain Hellegouarch,
3955Tapan Divekar,
3956Tatsuya Hayashi,
3957Ted Hardie,
3958Thomas Broyer,
3959Thomas Nordin,
3960Thomas Roessler,
3961Tim Bray,
3962Tim Morgan,
3963Tim Olsen,
3964Tom Zhou,
3965Travis Snoozy,
3966Tyler Close,
3967Vincent Murphy,
3968Wenbo Zhu,
3969Werner Baumann,
3970Wilbur Streett,
3971Wilfredo Sanchez Vega,
3972William A. Rowe Jr.,
3973William Chan,
3974Willy Tarreau,
3975Xiaoshu Wang,
3976Yaron Goland,
3977Yngve Nysaeter Pettersen,
3978Yoav Nir,
3979Yogesh Bang,
3980Yutaka Oiwa,
3981Zed A. Shaw, and
3982Zhong Yu.
3984<?ENDINC acks ?>
3990<references title="Normative References">
3992<reference anchor="Part2">
3993  <front>
3994    <title>HTTP/1.1, part 2: Semantics and Payloads</title>
3995    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
3996      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
3997      <address><email></email></address>
3998    </author>
3999    <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
4000      <organization abbrev="W3C">World Wide Web Consortium</organization>
4001      <address><email></email></address>
4002    </author>
4003    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4004      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4005      <address><email></email></address>
4006    </author>
4007    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4008  </front>
4009  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p2-semantics-&ID-VERSION;"/>
4010  <x:source href="p2-semantics.xml" basename="p2-semantics">
4011    <x:defines>1xx (Informational)</x:defines>
4012    <x:defines>1xx</x:defines>
4013    <x:defines>100 (Continue)</x:defines>
4014    <x:defines>101 (Switching Protocols)</x:defines>
4015    <x:defines>2xx (Successful)</x:defines>
4016    <x:defines>2xx</x:defines>
4017    <x:defines>200 (OK)</x:defines>
4018    <x:defines>204 (No Content)</x:defines>
4019    <x:defines>3xx (Redirection)</x:defines>
4020    <x:defines>3xx</x:defines>
4021    <x:defines>301 (Moved Permanently)</x:defines>
4022    <x:defines>4xx (Client Error)</x:defines>
4023    <x:defines>4xx</x:defines>
4024    <x:defines>400 (Bad Request)</x:defines>
4025    <x:defines>405 (Method Not Allowed)</x:defines>
4026    <x:defines>411 (Length Required)</x:defines>
4027    <x:defines>414 (URI Too Long)</x:defines>
4028    <x:defines>417 (Expectation Failed)</x:defines>
4029    <x:defines>426 (Upgrade Required)</x:defines>
4030    <x:defines>501 (Not Implemented)</x:defines>
4031    <x:defines>502 (Bad Gateway)</x:defines>
4032    <x:defines>505 (HTTP Version Not Supported)</x:defines>
4033    <x:defines>Allow</x:defines>
4034    <x:defines>Content-Encoding</x:defines>
4035    <x:defines>Content-Location</x:defines>
4036    <x:defines>Content-Type</x:defines>
4037    <x:defines>Date</x:defines>
4038    <x:defines>Expect</x:defines>
4039    <x:defines>Location</x:defines>
4040    <x:defines>Server</x:defines>
4041    <x:defines>User-Agent</x:defines>
4042  </x:source>
4045<reference anchor="Part4">
4046  <front>
4047    <title>HTTP/1.1, part 4: Conditional Requests</title>
4048    <author fullname="Roy T. Fielding" initials="R." role="editor" surname="Fielding">
4049      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4050      <address><email></email></address>
4051    </author>
4052    <author fullname="Yves Lafon" initials="Y." role="editor" surname="Lafon">
4053      <organization abbrev="W3C">World Wide Web Consortium</organization>
4054      <address><email></email></address>
4055    </author>
4056    <author fullname="Julian F. Reschke" initials="J. F." role="editor" surname="Reschke">
4057      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4058      <address><email></email></address>
4059    </author>
4060    <date month="&ID-MONTH;" year="&ID-YEAR;" />
4061  </front>
4062  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p4-conditional-&ID-VERSION;" />
4063  <x:source basename="p4-conditional" href="p4-conditional.xml">
4064    <x:defines>304 (Not Modified)</x:defines>
4065    <x:defines>ETag</x:defines>
4066    <x:defines>Last-Modified</x:defines>
4067  </x:source>
4070<reference anchor="Part5">
4071  <front>
4072    <title>HTTP/1.1, part 5: Range Requests</title>
4073    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4074      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4075      <address><email></email></address>
4076    </author>
4077    <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
4078      <organization abbrev="W3C">World Wide Web Consortium</organization>
4079      <address><email></email></address>
4080    </author>
4081    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4082      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4083      <address><email></email></address>
4084    </author>
4085    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4086  </front>
4087  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p5-range-&ID-VERSION;"/>
4088  <x:source href="p5-range.xml" basename="p5-range">
4089    <x:defines>Content-Range</x:defines>
4090  </x:source>
4093<reference anchor="Part6">
4094  <front>
4095    <title>HTTP/1.1, part 6: Caching</title>
4096    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4097      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4098      <address><email></email></address>
4099    </author>
4100    <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
4101      <organization abbrev="W3C">World Wide Web Consortium</organization>
4102      <address><email></email></address>
4103    </author>
4104    <author initials="M." surname="Nottingham" fullname="Mark Nottingham" role="editor">
4105      <organization>Rackspace</organization>
4106      <address><email></email></address>
4107    </author>
4108    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4109      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4110      <address><email></email></address>
4111    </author>
4112    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4113  </front>
4114  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p6-cache-&ID-VERSION;"/>
4115  <x:source href="p6-cache.xml" basename="p6-cache">
4116    <x:defines>Expires</x:defines>
4117  </x:source>
4120<reference anchor="Part7">
4121  <front>
4122    <title>HTTP/1.1, part 7: Authentication</title>
4123    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
4124      <organization abbrev="Adobe">Adobe Systems Incorporated</organization>
4125      <address><email></email></address>
4126    </author>
4127    <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
4128      <organization abbrev="W3C">World Wide Web Consortium</organization>
4129      <address><email></email></address>
4130    </author>
4131    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
4132      <organization abbrev="greenbytes">greenbytes GmbH</organization>
4133      <address><email></email></address>
4134    </author>
4135    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
4136  </front>
4137  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p7-auth-&ID-VERSION;"/>
4138  <x:source href="p7-auth.xml" basename="p7-auth">
4139    <x:defines>Proxy-Authenticate</x:defines>
4140    <x:defines>Proxy-Authorization</x:defines>
4141  </x:source>
4144<reference anchor="RFC5234">
4145  <front>
4146    <title abbrev="ABNF for Syntax Specifications">Augmented BNF for Syntax Specifications: ABNF</title>
4147    <author initials="D." surname="Crocker" fullname="Dave Crocker" role="editor">
4148      <organization>Brandenburg InternetWorking</organization>
4149      <address>
4150        <email></email>
4151      </address> 
4152    </author>
4153    <author initials="P." surname="Overell" fullname="Paul Overell">
4154      <organization>THUS plc.</organization>
4155      <address>
4156        <email></email>
4157      </address>
4158    </author>
4159    <date month="January" year="2008"/>
4160  </front>
4161  <seriesInfo name="STD" value="68"/>
4162  <seriesInfo name="RFC" value="5234"/>
4165<reference anchor="RFC2119">
4166  <front>
4167    <title>Key words for use in RFCs to Indicate Requirement Levels</title>
4168    <author initials="S." surname="Bradner" fullname="Scott Bradner">
4169      <organization>Harvard University</organization>
4170      <address><email></email></address>
4171    </author>
4172    <date month="March" year="1997"/>
4173  </front>
4174  <seriesInfo name="BCP" value="14"/>
4175  <seriesInfo name="RFC" value="2119"/>
4178<reference anchor="RFC3986">
4179 <front>
4180  <title abbrev='URI Generic Syntax'>Uniform Resource Identifier (URI): Generic Syntax</title>
4181  <author initials='T.' surname='Berners-Lee' fullname='Tim Berners-Lee'>
4182    <organization abbrev="W3C/MIT">World Wide Web Consortium</organization>
4183    <address>
4184       <email></email>
4185       <uri></uri>
4186    </address>
4187  </author>
4188  <author initials='R.' surname='Fielding' fullname='Roy T. Fielding'>
4189    <organization abbrev="Day Software">Day Software</organization>
4190    <address>
4191      <email></email>
4192      <uri></uri>
4193    </address>
4194  </author>
4195  <author initials='L.' surname='Masinter' fullname='Larry Masinter'>
4196    <organization abbrev="Adobe Systems">Adobe Systems Incorporated</organization>
4197    <address>
4198      <email></email>
4199      <uri></uri>
4200    </address>
4201  </author>
4202  <date month='January' year='2005'></date>
4203 </front>
4204 <seriesInfo name="STD" value="66"/>
4205 <seriesInfo name="RFC" value="3986"/>
4208<reference anchor="USASCII">
4209  <front>
4210    <title>Coded Character Set -- 7-bit American Standard Code for Information Interchange</title>
4211    <author>
4212      <organization>American National Standards Institute</organization>
4213    </author>
4214    <date year="1986"/>
4215  </front>
4216  <seriesInfo name="ANSI" value="X3.4"/>
4219<reference anchor="RFC1950">
4220  <front>
4221    <title>ZLIB Compressed Data Format Specification version 3.3</title>
4222    <author initials="L.P." surname="Deutsch" fullname="L. Peter Deutsch">
4223      <organization>Aladdin Enterprises</organization>
4224      <address><email></email></address>
4225    </author>
4226    <author initials="J-L." surname="Gailly" fullname="Jean-Loup Gailly"/>
4227    <date month="May" year="1996"/>
4228  </front>
4229  <seriesInfo name="RFC" value="1950"/>
4230  <!--<annotation>
4231    RFC 1950 is an Informational RFC, thus it might be less stable than
4232    this specification. On the other hand, this downward reference was
4233    present since the publication of <xref target="RFC2068" x:fmt="none">RFC 2068</xref> in 1997,
4234    therefore it is unlikely to cause problems in practice. See also
4235    <xref target="BCP97"/>.
4236  </annotation>-->
4239<reference anchor="RFC1951">
4240  <front>
4241    <title>DEFLATE Compressed Data Format Specification version 1.3</title>
4242    <author initials="P." surname="Deutsch" fullname="L. Peter Deutsch">
4243      <organization>Aladdin Enterprises</organization>
4244      <address><email></email></address>
4245    </author>
4246    <date month="May" year="1996"/>
4247  </front>
4248  <seriesInfo name="RFC" value="1951"/>
4249  <!--<annotation>
4250    RFC 1951 is an Informational RFC, thus it might be less stable than
4251    this specification. On the other hand, this downward reference was
4252    present since the publication of <xref target="RFC2068" x:fmt="none">RFC 2068</xref> in 1997,
4253    therefore it is unlikely to cause problems in practice. See also
4254    <xref target="BCP97"/>.
4255  </annotation>-->
4258<reference anchor="RFC1952">
4259  <front>
4260    <title>GZIP file format specification version 4.3</title>
4261    <author initials="P." surname="Deutsch" fullname="L. Peter Deutsch">
4262      <organization>Aladdin Enterprises</organization>
4263      <address><email></email></address>
4264    </author>
4265    <author initials="J-L." surname="Gailly" fullname="Jean-Loup Gailly">
4266      <address><email></email></address>
4267    </author>
4268    <author initials="M." surname="Adler" fullname="Mark Adler">
4269      <address><email></email></address>
4270    </author>
4271    <author initials="L.P." surname="Deutsch" fullname="L. Peter Deutsch">
4272      <address><email></email></address>
4273    </author>
4274    <author initials="G." surname="Randers-Pehrson" fullname="Glenn Randers-Pehrson">
4275      <address><email></email></address>
4276    </author>
4277    <date month="May" year="1996"/>
4278  </front>
4279  <seriesInfo name="RFC" value="1952"/>
4280  <!--<annotation>
4281    RFC 1952 is an Informational RFC, thus it might be less stable than
4282    this specification. On the other hand, this downward reference was
4283    present since the publication of <xref target="RFC2068" x:fmt="none">RFC 2068</xref> in 1997,
4284    therefore it is unlikely to cause problems in practice. See also
4285    <xref target="BCP97"/>.
4286  </annotation>-->
4291<references title="Informative References">
4293<reference anchor="ISO-8859-1">
4294  <front>
4295    <title>
4296     Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin alphabet No. 1
4297    </title>
4298    <author>
4299      <organization>International Organization for Standardization</organization>
4300    </author>
4301    <date year="1998"/>
4302  </front>
4303  <seriesInfo name="ISO/IEC" value="8859-1:1998"/>
4306<reference anchor='RFC1919'>
4307  <front>
4308    <title>Classical versus Transparent IP Proxies</title>
4309    <author initials='M.' surname='Chatel' fullname='Marc Chatel'>
4310      <address><email></email></address>
4311    </author>
4312    <date year='1996' month='March' />
4313  </front>
4314  <seriesInfo name='RFC' value='1919' />
4317<reference anchor="RFC1945">
4318  <front>
4319    <title abbrev="HTTP/1.0">Hypertext Transfer Protocol -- HTTP/1.0</title>
4320    <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
4321      <organization>MIT, Laboratory for Computer Science</organization>
4322      <address><email></email></address>
4323    </author>
4324    <author initials="R.T." surname="Fielding" fullname="Roy T. Fielding">
4325      <organization>University of California, Irvine, Department of Information and Computer Science</organization>
4326      <address><email></email></address>
4327    </author>
4328    <author initials="H.F." surname="Nielsen" fullname="Henrik Frystyk Nielsen">
4329      <organization>W3 Consortium, MIT Laboratory for Computer Science</organization>
4330      <address><email></email></address>
4331    </author>
4332    <date month="May" year="1996"/>
4333  </front>
4334  <seriesInfo name="RFC" value="1945"/>
4337<reference anchor="RFC2045">
4338  <front>
4339    <title abbrev="Internet Message Bodies">Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies</title>
4340    <author initials="N." surname="Freed" fullname="Ned Freed">
4341      <organization>Innosoft International, Inc.</organization>
4342      <address><email></email></address>
4343    </author>
4344    <author initials="N.S." surname="Borenstein" fullname="Nathaniel S. Borenstein">
4345      <organization>First Virtual Holdings</organization>
4346      <address><email></email></address>
4347    </author>
4348    <date month="November" year="1996"/>
4349  </front>
4350  <seriesInfo name="RFC" value="2045"/>
4353<reference anchor="RFC2047">
4354  <front>
4355    <title abbrev="Message Header Extensions">MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text</title>
4356    <author initials="K." surname="Moore" fullname="Keith Moore">
4357      <organization>University of Tennessee</organization>
4358      <address><email></email></address>
4359    </author>
4360    <date month="November" year="1996"/>
4361  </front>
4362  <seriesInfo name="RFC" value="2047"/>
4365<reference anchor="RFC2068">
4366  <front>
4367    <title>Hypertext Transfer Protocol -- HTTP/1.1</title>
4368    <author initials="R." surname="Fielding" fullname="Roy T. Fielding">
4369      <organization>University of California, Irvine, Department of Information and Computer Science</organization>
4370      <address><email></email></address>
4371    </author>
4372    <author initials="J." surname="Gettys" fullname="Jim Gettys">
4373      <organization>MIT Laboratory for Computer Science</organization>
4374      <address><email></email></address>
4375    </author>
4376    <author initials="J." surname="Mogul" fullname="Jeffrey C. Mogul">
4377      <organization>Digital Equipment Corporation, Western Research Laboratory</organization>
4378      <address><email></email></address>
4379    </author>
4380    <author initials="H." surname="Nielsen" fullname="Henrik Frystyk Nielsen">
4381      <organization>MIT Laboratory for Computer Science</organization>
4382      <address><email></email></address>
4383    </author>
4384    <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
4385      <organization>MIT Laboratory for Computer Science</organization>
4386      <address><email></email></address>
4387    </author>
4388    <date month="January" year="1997"/>
4389  </front>
4390  <seriesInfo name="RFC" value="2068"/>
4393<reference anchor="RFC2145">
4394  <front>
4395    <title abbrev="HTTP Version Numbers">Use and Interpretation of HTTP Version Numbers</title>
4396    <author initials="J.C." surname="Mogul" fullname="Jeffrey C. Mogul">
4397      <organization>Western Research Laboratory</organization>
4398      <address><email></email></address>
4399    </author>
4400    <author initials="R.T." surname="Fielding" fullname="Roy T. Fielding">
4401      <organization>Department of Information and Computer Science</organization>
4402      <address><email></email></address>
4403    </author>
4404    <author initials="J." surname="Gettys" fullname="Jim Gettys">
4405      <organization>MIT Laboratory for Computer Science</organization>
4406      <address><email></email></address>
4407    </author>
4408    <author initials="H.F." surname="Nielsen" fullname="Henrik Frystyk Nielsen">
4409      <organization>W3 Consortium</organization>
4410      <address><email></email></address>
4411    </author>
4412    <date month="May" year="1997"/>
4413  </front>
4414  <seriesInfo name="RFC" value="2145"/>
4417<reference anchor="RFC2616">
4418  <front>
4419    <title>Hypertext Transfer Protocol -- HTTP/1.1</title>
4420    <author initials="R." surname="Fielding" fullname="R. Fielding">
4421      <organization>University of California, Irvine</organization>
4422      <address><email></email></address>
4423    </author>
4424    <author initials="J." surname="Gettys" fullname="J. Gettys">
4425      <organization>W3C</organization>
4426      <address><email></email></address>
4427    </author>
4428    <author initials="J." surname="Mogul" fullname="J. Mogul">
4429      <organization>Compaq Computer Corporation</organization>
4430      <address><email></email></address>
4431    </author>
4432    <author initials="H." surname="Frystyk" fullname="H. Frystyk">
4433      <organization>MIT Laboratory for Computer Science</organization>
4434      <address><email></email></address>
4435    </author>
4436    <author initials="L." surname="Masinter" fullname="L. Masinter">
4437      <organization>Xerox Corporation</organization>
4438      <address><email></email></address>
4439    </author>
4440    <author initials="P." surname="Leach" fullname="P. Leach">
4441      <organization>Microsoft Corporation</organization>
4442      <address><email></email></address>
4443    </author>
4444    <author initials="T." surname="Berners-Lee" fullname="T. Berners-Lee">
4445      <organization>W3C</organization>
4446      <address><email></email></address>
4447    </author>
4448    <date month="June" year="1999"/>
4449  </front>
4450  <seriesInfo name="RFC" value="2616"/>
4453<reference anchor='RFC2817'>
4454  <front>
4455    <title>Upgrading to TLS Within HTTP/1.1</title>
4456    <author initials='R.' surname='Khare' fullname='R. Khare'>
4457      <organization>4K Associates / UC Irvine</organization>
4458      <address><email></email></address>
4459    </author>
4460    <author initials='S.' surname='Lawrence' fullname='S. Lawrence'>
4461      <organization>Agranat Systems, Inc.</organization>
4462      <address><email></email></address>
4463    </author>
4464    <date year='2000' month='May' />
4465  </front>
4466  <seriesInfo name='RFC' value='2817' />
4469<reference anchor='RFC2818'>
4470  <front>
4471    <title>HTTP Over TLS</title>
4472    <author initials='E.' surname='Rescorla' fullname='Eric Rescorla'>
4473      <organization>RTFM, Inc.</organization>
4474      <address><email></email></address>
4475    </author>
4476    <date year='2000' month='May' />
4477  </front>
4478  <seriesInfo name='RFC' value='2818' />
4481<reference anchor='RFC2965'>
4482  <front>
4483    <title>HTTP State Management Mechanism</title>
4484    <author initials='D. M.' surname='Kristol' fullname='David M. Kristol'>
4485      <organization>Bell Laboratories, Lucent Technologies</organization>
4486      <address><email></email></address>
4487    </author>
4488    <author initials='L.' surname='Montulli' fullname='Lou Montulli'>
4489      <organization>, Inc.</organization>
4490      <address><email></email></address>
4491    </author>
4492    <date year='2000' month='October' />
4493  </front>
4494  <seriesInfo name='RFC' value='2965' />
4497<reference anchor='RFC3040'>
4498  <front>
4499    <title>Internet Web Replication and Caching Taxonomy</title>
4500    <author initials='I.' surname='Cooper' fullname='I. Cooper'>
4501      <organization>Equinix, Inc.</organization>
4502    </author>
4503    <author initials='I.' surname='Melve' fullname='I. Melve'>
4504      <organization>UNINETT</organization>
4505    </author>
4506    <author initials='G.' surname='Tomlinson' fullname='G. Tomlinson'>
4507      <organization>CacheFlow Inc.</organization>
4508    </author>
4509    <date year='2001' month='January' />
4510  </front>
4511  <seriesInfo name='RFC' value='3040' />
4514<reference anchor='RFC3864'>
4515  <front>
4516    <title>Registration Procedures for Message Header Fields</title>
4517    <author initials='G.' surname='Klyne' fullname='G. Klyne'>
4518      <organization>Nine by Nine</organization>
4519      <address><email></email></address>
4520    </author>
4521    <author initials='M.' surname='Nottingham' fullname='M. Nottingham'>
4522      <organization>BEA Systems</organization>
4523      <address><email></email></address>
4524    </author>
4525    <author initials='J.' surname='Mogul' fullname='J. Mogul'>
4526      <organization>HP Labs</organization>
4527      <address><email></email></address>
4528    </author>
4529    <date year='2004' month='September' />
4530  </front>
4531  <seriesInfo name='BCP' value='90' />
4532  <seriesInfo name='RFC' value='3864' />
4535<reference anchor='RFC4033'>
4536  <front>
4537    <title>DNS Security Introduction and Requirements</title>
4538    <author initials='R.' surname='Arends' fullname='R. Arends'/>
4539    <author initials='R.' surname='Austein' fullname='R. Austein'/>
4540    <author initials='M.' surname='Larson' fullname='M. Larson'/>
4541    <author initials='D.' surname='Massey' fullname='D. Massey'/>
4542    <author initials='S.' surname='Rose' fullname='S. Rose'/>
4543    <date year='2005' month='March' />
4544  </front>
4545  <seriesInfo name='RFC' value='4033' />
4548<reference anchor="RFC4288">
4549  <front>
4550    <title>Media Type Specifications and Registration Procedures</title>
4551    <author initials="N." surname="Freed" fullname="N. Freed">
4552      <organization>Sun Microsystems</organization>
4553      <address>
4554        <email></email>
4555      </address>
4556    </author>
4557    <author initials="J." surname="Klensin" fullname="J. Klensin">
4558      <address>
4559        <email></email>
4560      </address>
4561    </author>
4562    <date year="2005" month="December"/>
4563  </front>
4564  <seriesInfo name="BCP" value="13"/>
4565  <seriesInfo name="RFC" value="4288"/>
4568<reference anchor='RFC4395'>
4569  <front>
4570    <title>Guidelines and Registration Procedures for New URI Schemes</title>
4571    <author initials='T.' surname='Hansen' fullname='T. Hansen'>
4572      <organization>AT&amp;T Laboratories</organization>
4573      <address>
4574        <email></email>
4575      </address>
4576    </author>
4577    <author initials='T.' surname='Hardie' fullname='T. Hardie'>
4578      <organization>Qualcomm, Inc.</organization>
4579      <address>
4580        <email></email>
4581      </address>
4582    </author>
4583    <author initials='L.' surname='Masinter' fullname='L. Masinter'>
4584      <organization>Adobe Systems</organization>
4585      <address>
4586        <email></email>
4587      </address>
4588    </author>
4589    <date year='2006' month='February' />
4590  </front>
4591  <seriesInfo name='BCP' value='115' />
4592  <seriesInfo name='RFC' value='4395' />
4595<reference anchor='RFC4559'>
4596  <front>
4597    <title>SPNEGO-based Kerberos and NTLM HTTP Authentication in Microsoft Windows</title>
4598    <author initials='K.' surname='Jaganathan' fullname='K. Jaganathan'/>
4599    <author initials='L.' surname='Zhu' fullname='L. Zhu'/>
4600    <author initials='J.' surname='Brezak' fullname='J. Brezak'/>
4601    <date year='2006' month='June' />
4602  </front>
4603  <seriesInfo name='RFC' value='4559' />
4606<reference anchor='RFC5226'>
4607  <front>
4608    <title>Guidelines for Writing an IANA Considerations Section in RFCs</title>
4609    <author initials='T.' surname='Narten' fullname='T. Narten'>
4610      <organization>IBM</organization>
4611      <address><email></email></address>
4612    </author>
4613    <author initials='H.' surname='Alvestrand' fullname='H. Alvestrand'>
4614      <organization>Google</organization>
4615      <address><email></email></address>
4616    </author>
4617    <date year='2008' month='May' />
4618  </front>
4619  <seriesInfo name='BCP' value='26' />
4620  <seriesInfo name='RFC' value='5226' />
4623<reference anchor="RFC5322">
4624  <front>
4625    <title>Internet Message Format</title>
4626    <author initials="P." surname="Resnick" fullname="P. Resnick">
4627      <organization>Qualcomm Incorporated</organization>
4628    </author>
4629    <date year="2008" month="October"/>
4630  </front>
4631  <seriesInfo name="RFC" value="5322"/>
4634<reference anchor="RFC6265">
4635  <front>
4636    <title>HTTP State Management Mechanism</title>
4637    <author initials="A." surname="Barth" fullname="Adam Barth">
4638      <organization abbrev="U.C. Berkeley">
4639        University of California, Berkeley
4640      </organization>
4641      <address><email></email></address>
4642    </author>
4643    <date year="2011" month="April" />
4644  </front>
4645  <seriesInfo name="RFC" value="6265"/>
4648<!--<reference anchor='BCP97'>
4649  <front>
4650    <title>Handling Normative References to Standards-Track Documents</title>
4651    <author initials='J.' surname='Klensin' fullname='J. Klensin'>
4652      <address>
4653        <email></email>
4654      </address>
4655    </author>
4656    <author initials='S.' surname='Hartman' fullname='S. Hartman'>
4657      <organization>MIT</organization>
4658      <address>
4659        <email></email>
4660      </address>
4661    </author>
4662    <date year='2007' month='June' />
4663  </front>
4664  <seriesInfo name='BCP' value='97' />
4665  <seriesInfo name='RFC' value='4897' />
4668<reference anchor="Kri2001" target="">
4669  <front>
4670    <title>HTTP Cookies: Standards, Privacy, and Politics</title>
4671    <author initials="D." surname="Kristol" fullname="David M. Kristol"/>
4672    <date year="2001" month="November"/>
4673  </front>
4674  <seriesInfo name="ACM Transactions on Internet Technology" value="Vol. 1, #2"/>
4680<section title="HTTP Version History" anchor="compatibility">
4682   HTTP has been in use by the World-Wide Web global information initiative
4683   since 1990. The first version of HTTP, later referred to as HTTP/0.9,
4684   was a simple protocol for hypertext data transfer across the Internet
4685   with only a single request method (GET) and no metadata.
4686   HTTP/1.0, as defined by <xref target="RFC1945"/>, added a range of request
4687   methods and MIME-like messaging that could include metadata about the data
4688   transferred and modifiers on the request/response semantics. However,
4689   HTTP/1.0 did not sufficiently take into consideration the effects of
4690   hierarchical proxies, caching, the need for persistent connections, or
4691   name-based virtual hosts. The proliferation of incompletely-implemented
4692   applications calling themselves "HTTP/1.0" further necessitated a
4693   protocol version change in order for two communicating applications
4694   to determine each other's true capabilities.
4697   HTTP/1.1 remains compatible with HTTP/1.0 by including more stringent
4698   requirements that enable reliable implementations, adding only
4699   those new features that will either be safely ignored by an HTTP/1.0
4700   recipient or only sent when communicating with a party advertising
4701   conformance with HTTP/1.1.
4704   It is beyond the scope of a protocol specification to mandate
4705   conformance with previous versions. HTTP/1.1 was deliberately
4706   designed, however, to make supporting previous versions easy.
4707   We would expect a general-purpose HTTP/1.1 server to understand
4708   any valid request in the format of HTTP/1.0 and respond appropriately
4709   with an HTTP/1.1 message that only uses features understood (or
4710   safely ignored) by HTTP/1.0 clients.  Likewise, we would expect
4711   an HTTP/1.1 client to understand any valid HTTP/1.0 response.
4714   Since HTTP/0.9 did not support header fields in a request,
4715   there is no mechanism for it to support name-based virtual
4716   hosts (selection of resource by inspection of the <x:ref>Host</x:ref> header
4717   field).  Any server that implements name-based virtual hosts
4718   ought to disable support for HTTP/0.9.  Most requests that
4719   appear to be HTTP/0.9 are, in fact, badly constructed HTTP/1.x
4720   requests wherein a buggy client failed to properly encode
4721   linear whitespace found in a URI reference and placed in
4722   the request-target.
4725<section title="Changes from HTTP/1.0" anchor="changes.from.1.0">
4727   This section summarizes major differences between versions HTTP/1.0
4728   and HTTP/1.1.
4731<section title="Multi-homed Web Servers" anchor="">
4733   The requirements that clients and servers support the <x:ref>Host</x:ref>
4734   header field (<xref target=""/>), report an error if it is
4735   missing from an HTTP/1.1 request, and accept absolute URIs (<xref target="request-target"/>)
4736   are among the most important changes defined by HTTP/1.1.
4739   Older HTTP/1.0 clients assumed a one-to-one relationship of IP
4740   addresses and servers; there was no other established mechanism for
4741   distinguishing the intended server of a request than the IP address
4742   to which that request was directed. The <x:ref>Host</x:ref> header field was
4743   introduced during the development of HTTP/1.1 and, though it was
4744   quickly implemented by most HTTP/1.0 browsers, additional requirements
4745   were placed on all HTTP/1.1 requests in order to ensure complete
4746   adoption.  At the time of this writing, most HTTP-based services
4747   are dependent upon the Host header field for targeting requests.
4751<section title="Keep-Alive Connections" anchor="compatibility.with.http.1.0.persistent.connections">
4753   In HTTP/1.0, each connection is established by the client prior to the
4754   request and closed by the server after sending the response. However, some
4755   implementations implement the explicitly negotiated ("Keep-Alive") version
4756   of persistent connections described in <xref x:sec="19.7.1" x:fmt="of"
4757   target="RFC2068"/>.
4760   Some clients and servers might wish to be compatible with these previous
4761   approaches to persistent connections, by explicitly negotiating for them
4762   with a "Connection: keep-alive" request header field. However, some
4763   experimental implementations of HTTP/1.0 persistent connections are faulty;
4764   for example, if a HTTP/1.0 proxy server doesn't understand
4765   <x:ref>Connection</x:ref>, it will erroneously forward that header field
4766   to the next inbound server, which would result in a hung connection.
4769   One attempted solution was the introduction of a Proxy-Connection header
4770   field, targeted specifically at proxies. In practice, this was also
4771   unworkable, because proxies are often deployed in multiple layers, bringing
4772   about the same problem discussed above.
4775   As a result, clients are encouraged not to send the Proxy-Connection header
4776   field in any requests.
4779   Clients are also encouraged to consider the use of Connection: keep-alive
4780   in requests carefully; while they can enable persistent connections with
4781   HTTP/1.0 servers, clients using them need will need to monitor the
4782   connection for "hung" requests (which indicate that the client ought stop
4783   sending the header field), and this mechanism ought not be used by clients
4784   at all when a proxy is being used.
4788<section title="Introduction of Transfer-Encoding" anchor="introduction.of.transfer-encoding">
4790   HTTP/1.1 introduces the <x:ref>Transfer-Encoding</x:ref> header field
4791   (<xref target="header.transfer-encoding"/>). Proxies/gateways &MUST; remove
4792   any transfer-coding prior to forwarding a message via a MIME-compliant
4793   protocol.
4799<section title="Changes from RFC 2616" anchor="changes.from.rfc.2616">
4801  Clarify that the string "HTTP" in the HTTP-version ABNF production is case
4802  sensitive. Restrict the version numbers to be single digits due to the fact
4803  that implementations are known to handle multi-digit version numbers
4804  incorrectly.
4805  (<xref target="http.version"/>)
4808  Update use of abs_path production from RFC 1808 to the path-absolute + query
4809  components of RFC 3986. State that the asterisk form is allowed for the OPTIONS
4810  request method only.
4811  (<xref target="request-target"/>)
4814  Require that invalid whitespace around field-names be rejected.
4815  (<xref target="header.fields"/>)
4818  Rules about implicit linear whitespace between certain grammar productions
4819  have been removed; now whitespace is only allowed where specifically
4820  defined in the ABNF.
4821  (<xref target="whitespace"/>)
4824  The NUL octet is no longer allowed in comment and quoted-string
4825  text. The quoted-pair rule no longer allows escaping control characters other than HTAB.
4826  Non-ASCII content in header fields and reason phrase has been obsoleted and
4827  made opaque (the TEXT rule was removed).
4828  (<xref target="field.components"/>)
4831  Empty list elements in list productions have been deprecated.
4832  (<xref target="abnf.extension"/>)
4835  Require recipients to handle bogus <x:ref>Content-Length</x:ref> header
4836  fields as errors.
4837  (<xref target="message.body"/>)
4840  Remove reference to non-existent identity transfer-coding value tokens.
4841  (Sections <xref format="counter" target="message.body"/> and
4842  <xref format="counter" target="transfer.codings"/>)
4845  Clarification that the chunk length does not include the count of the octets
4846  in the chunk header and trailer. Furthermore disallowed line folding
4847  in chunk extensions, and deprecate their use.
4848  (<xref target="chunked.encoding"/>)
4851  Registration of Transfer Codings now requires IETF Review
4852  (<xref target="transfer.coding.registry"/>)
4855  Remove hard limit of two connections per server.
4856  Remove requirement to retry a sequence of requests as long it was idempotent.
4857  Remove requirements about when servers are allowed to close connections
4858  prematurely.
4859  (<xref target="persistent.connections"/>)
4862  Remove requirement to retry requests under certain circumstances when the
4863  server prematurely closes the connection.
4864  (<xref target="persistent.reuse"/>)
4867  Change ABNF productions for header fields to only define the field value.
4870  Clarify exactly when "close" connection options have to be sent.
4871  (<xref target="header.connection"/>)
4874  Define the semantics of the <x:ref>Upgrade</x:ref> header field in responses
4875  other than 101 (this was incorporated from <xref target="RFC2817"/>).
4876  (<xref target="header.upgrade"/>)
4879  Take over the Upgrade Token Registry, previously defined in
4880  <xref target="RFC2817" x:fmt="of" x:sec="7.2"/>.
4881  (<xref target="upgrade.token.registry"/>)
4886<section title="ABNF list extension: #rule" anchor="abnf.extension">
4888  A #rule extension to the ABNF rules of <xref target="RFC5234"/> is used to
4889  improve readability in the definitions of some header field values.
4892  A construct "#" is defined, similar to "*", for defining comma-delimited
4893  lists of elements. The full form is "&lt;n&gt;#&lt;m&gt;element" indicating
4894  at least &lt;n&gt; and at most &lt;m&gt; elements, each separated by a single
4895  comma (",") and optional whitespace (OWS).   
4898  Thus,
4899</preamble><artwork type="example">
4900  1#element =&gt; element *( OWS "," OWS element )
4903  and:
4904</preamble><artwork type="example">
4905  #element =&gt; [ 1#element ]
4908  and for n &gt;= 1 and m &gt; 1:
4909</preamble><artwork type="example">
4910  &lt;n&gt;#&lt;m&gt;element =&gt; element &lt;n-1&gt;*&lt;m-1&gt;( OWS "," OWS element )
4913  For compatibility with legacy list rules, recipients &SHOULD; accept empty
4914  list elements. In other words, consumers would follow the list productions:
4916<figure><artwork type="example">
4917  #element =&gt; [ ( "," / element ) *( OWS "," [ OWS element ] ) ]
4919  1#element =&gt; *( "," OWS ) element *( OWS "," [ OWS element ] )
4922  Note that empty elements do not contribute to the count of elements present,
4923  though.
4926  For example, given these ABNF productions:
4928<figure><artwork type="example">
4929  example-list      = 1#example-list-elmt
4930  example-list-elmt = token ; see <xref target="field.components"/>
4933  Then these are valid values for example-list (not including the double
4934  quotes, which are present for delimitation only):
4936<figure><artwork type="example">
4937  "foo,bar"
4938  "foo ,bar,"
4939  "foo , ,bar,charlie   "
4942  But these values would be invalid, as at least one non-empty element is
4943  required:
4945<figure><artwork type="example">
4946  ""
4947  ","
4948  ",   ,"
4951  <xref target="collected.abnf"/> shows the collected ABNF, with the list rules
4952  expanded as explained above.
4956<?BEGININC p1-messaging.abnf-appendix ?>
4957<section xmlns:x="" title="Collected ABNF" anchor="collected.abnf">
4959<artwork type="abnf" name="p1-messaging.parsed-abnf">
4960<x:ref>BWS</x:ref> = OWS
4962<x:ref>Connection</x:ref> = *( "," OWS ) connection-option *( OWS "," [ OWS
4963 connection-option ] )
4964<x:ref>Content-Length</x:ref> = 1*DIGIT
4966<x:ref>HTTP-message</x:ref> = start-line *( header-field CRLF ) CRLF [ message-body
4967 ]
4968<x:ref>HTTP-name</x:ref> = %x48.54.54.50 ; HTTP
4969<x:ref>HTTP-version</x:ref> = HTTP-name "/" DIGIT "." DIGIT
4970<x:ref>Host</x:ref> = uri-host [ ":" port ]
4972<x:ref>OWS</x:ref> = *( SP / HTAB )
4974<x:ref>RWS</x:ref> = 1*( SP / HTAB )
4976<x:ref>TE</x:ref> = [ ( "," / t-codings ) *( OWS "," [ OWS t-codings ] ) ]
4977<x:ref>Trailer</x:ref> = *( "," OWS ) field-name *( OWS "," [ OWS field-name ] )
4978<x:ref>Transfer-Encoding</x:ref> = *( "," OWS ) transfer-coding *( OWS "," [ OWS
4979 transfer-coding ] )
4981<x:ref>URI-reference</x:ref> = &lt;URI-reference, defined in [RFC3986], Section 4.1&gt;
4982<x:ref>Upgrade</x:ref> = *( "," OWS ) protocol *( OWS "," [ OWS protocol ] )
4984<x:ref>Via</x:ref> = *( "," OWS ) ( received-protocol RWS received-by [ RWS comment
4985 ] ) *( OWS "," [ OWS ( received-protocol RWS received-by [ RWS
4986 comment ] ) ] )
4988<x:ref>absolute-URI</x:ref> = &lt;absolute-URI, defined in [RFC3986], Section 4.3&gt;
4989<x:ref>absolute-form</x:ref> = absolute-URI
4990<x:ref>asterisk-form</x:ref> = "*"
4991<x:ref>attribute</x:ref> = token
4992<x:ref>authority</x:ref> = &lt;authority, defined in [RFC3986], Section 3.2&gt;
4993<x:ref>authority-form</x:ref> = authority
4995<x:ref>chunk</x:ref> = chunk-size [ chunk-ext ] CRLF chunk-data CRLF
4996<x:ref>chunk-data</x:ref> = 1*OCTET
4997<x:ref>chunk-ext</x:ref> = *( ";" chunk-ext-name [ "=" chunk-ext-val ] )
4998<x:ref>chunk-ext-name</x:ref> = token
4999<x:ref>chunk-ext-val</x:ref> = token / quoted-str-nf
5000<x:ref>chunk-size</x:ref> = 1*HEXDIG
5001<x:ref>chunked-body</x:ref> = *chunk last-chunk trailer-part CRLF
5002<x:ref>comment</x:ref> = "(" *( ctext / quoted-cpair / comment ) ")"
5003<x:ref>connection-option</x:ref> = token
5004<x:ref>ctext</x:ref> = OWS / %x21-27 ; '!'-'''
5005 / %x2A-5B ; '*'-'['
5006 / %x5D-7E ; ']'-'~'
5007 / obs-text
5009<x:ref>field-content</x:ref> = *( HTAB / SP / VCHAR / obs-text )
5010<x:ref>field-name</x:ref> = token
5011<x:ref>field-value</x:ref> = *( field-content / obs-fold )
5013<x:ref>header-field</x:ref> = field-name ":" OWS field-value BWS
5014<x:ref>http-URI</x:ref> = "http://" authority path-abempty [ "?" query ]
5015<x:ref>https-URI</x:ref> = "https://" authority path-abempty [ "?" query ]
5017<x:ref>last-chunk</x:ref> = 1*"0" [ chunk-ext ] CRLF
5019<x:ref>message-body</x:ref> = *OCTET
5020<x:ref>method</x:ref> = token
5022<x:ref>obs-fold</x:ref> = CRLF ( SP / HTAB )
5023<x:ref>obs-text</x:ref> = %x80-FF
5024<x:ref>origin-form</x:ref> = path-absolute [ "?" query ]
5026<x:ref>partial-URI</x:ref> = relative-part [ "?" query ]
5027<x:ref>path-abempty</x:ref> = &lt;path-abempty, defined in [RFC3986], Section 3.3&gt;
5028<x:ref>path-absolute</x:ref> = &lt;path-absolute, defined in [RFC3986], Section 3.3&gt;
5029<x:ref>port</x:ref> = &lt;port, defined in [RFC3986], Section 3.2.3&gt;
5030<x:ref>protocol</x:ref> = protocol-name [ "/" protocol-version ]
5031<x:ref>protocol-name</x:ref> = token
5032<x:ref>protocol-version</x:ref> = token
5033<x:ref>pseudonym</x:ref> = token
5035<x:ref>qdtext</x:ref> = OWS / "!" / %x23-5B ; '#'-'['
5036 / %x5D-7E ; ']'-'~'
5037 / obs-text
5038<x:ref>qdtext-nf</x:ref> = HTAB / SP / "!" / %x23-5B ; '#'-'['
5039 / %x5D-7E ; ']'-'~'
5040 / obs-text
5041<x:ref>query</x:ref> = &lt;query, defined in [RFC3986], Section 3.4&gt;
5042<x:ref>quoted-cpair</x:ref> = "\" ( HTAB / SP / VCHAR / obs-text )
5043<x:ref>quoted-pair</x:ref> = "\" ( HTAB / SP / VCHAR / obs-text )
5044<x:ref>quoted-str-nf</x:ref> = DQUOTE *( qdtext-nf / quoted-pair ) DQUOTE
5045<x:ref>quoted-string</x:ref> = DQUOTE *( qdtext / quoted-pair ) DQUOTE
5047<x:ref>rank</x:ref> = ( "0" [ "." *3DIGIT ] ) / ( "1" [ "." *3"0" ] )
5048<x:ref>reason-phrase</x:ref> = *( HTAB / SP / VCHAR / obs-text )
5049<x:ref>received-by</x:ref> = ( uri-host [ ":" port ] ) / pseudonym
5050<x:ref>received-protocol</x:ref> = [ protocol-name "/" ] protocol-version
5051<x:ref>relative-part</x:ref> = &lt;relative-part, defined in [RFC3986], Section 4.2&gt;
5052<x:ref>request-line</x:ref> = method SP request-target SP HTTP-version CRLF
5053<x:ref>request-target</x:ref> = origin-form / absolute-form / authority-form /
5054 asterisk-form
5056<x:ref>special</x:ref> = "(" / ")" / "&lt;" / "&gt;" / "@" / "," / ";" / ":" / "\" /
5057 DQUOTE / "/" / "[" / "]" / "?" / "=" / "{" / "}"
5058<x:ref>start-line</x:ref> = request-line / status-line
5059<x:ref>status-code</x:ref> = 3DIGIT
5060<x:ref>status-line</x:ref> = HTTP-version SP status-code SP reason-phrase CRLF
5062<x:ref>t-codings</x:ref> = "trailers" / ( transfer-coding [ t-ranking ] )
5063<x:ref>t-ranking</x:ref> = OWS ";" OWS "q=" rank
5064<x:ref>tchar</x:ref> = "!" / "#" / "$" / "%" / "&amp;" / "'" / "*" / "+" / "-" / "." /
5065 "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
5066<x:ref>token</x:ref> = 1*tchar
5067<x:ref>trailer-part</x:ref> = *( header-field CRLF )
5068<x:ref>transfer-coding</x:ref> = "chunked" / "compress" / "deflate" / "gzip" /
5069 transfer-extension
5070<x:ref>transfer-extension</x:ref> = token *( OWS ";" OWS transfer-parameter )
5071<x:ref>transfer-parameter</x:ref> = attribute BWS "=" BWS value
5073<x:ref>uri-host</x:ref> = &lt;host, defined in [RFC3986], Section 3.2.2&gt;
5075<x:ref>value</x:ref> = word
5077<x:ref>word</x:ref> = token / quoted-string
5081<?ENDINC p1-messaging.abnf-appendix ?>
5083<section title="Change Log (to be removed by RFC Editor before publication)" anchor="change.log">
5085<section title="Since RFC 2616">
5087  Extracted relevant partitions from <xref target="RFC2616"/>.
5091<section title="Since draft-ietf-httpbis-p1-messaging-00">
5093  Closed issues:
5094  <list style="symbols">
5095    <t>
5096      <eref target=""/>:
5097      "HTTP Version should be case sensitive"
5098      (<eref target=""/>)
5099    </t>
5100    <t>
5101      <eref target=""/>:
5102      "'unsafe' characters"
5103      (<eref target=""/>)
5104    </t>
5105    <t>
5106      <eref target=""/>:
5107      "Chunk Size Definition"
5108      (<eref target=""/>)
5109    </t>
5110    <t>
5111      <eref target=""/>:
5112      "Message Length"
5113      (<eref target=""/>)
5114    </t>
5115    <t>
5116      <eref target=""/>:
5117      "Media Type Registrations"
5118      (<eref target=""/>)
5119    </t>
5120    <t>
5121      <eref target=""/>:
5122      "URI includes query"
5123      (<eref target=""/>)
5124    </t>
5125    <t>
5126      <eref target=""/>:
5127      "No close on 1xx responses"
5128      (<eref target=""/>)
5129    </t>
5130    <t>
5131      <eref target=""/>:
5132      "Remove 'identity' token references"
5133      (<eref target=""/>)
5134    </t>
5135    <t>
5136      <eref target=""/>:
5137      "Import query BNF"
5138    </t>
5139    <t>
5140      <eref target=""/>:
5141      "qdtext BNF"
5142    </t>
5143    <t>
5144      <eref target=""/>:
5145      "Normative and Informative references"
5146    </t>
5147    <t>
5148      <eref target=""/>:
5149      "RFC2606 Compliance"
5150    </t>
5151    <t>
5152      <eref target=""/>:
5153      "RFC977 reference"
5154    </t>
5155    <t>
5156      <eref target=""/>:
5157      "RFC1700 references"
5158    </t>
5159    <t>
5160      <eref target=""/>:
5161      "inconsistency in date format explanation"
5162    </t>
5163    <t>
5164      <eref target=""/>:
5165      "Date reference typo"
5166    </t>
5167    <t>
5168      <eref target=""/>:
5169      "Informative references"
5170    </t>
5171    <t>
5172      <eref target=""/>:
5173      "ISO-8859-1 Reference"
5174    </t>
5175    <t>
5176      <eref target=""/>:
5177      "Normative up-to-date references"
5178    </t>
5179  </list>
5182  Other changes:
5183  <list style="symbols">
5184    <t>
5185      Update media type registrations to use RFC4288 template.
5186    </t>
5187    <t>
5188      Use names of RFC4234 core rules DQUOTE and HTAB,
5189      fix broken ABNF for chunk-data
5190      (work in progress on <eref target=""/>)
5191    </t>
5192  </list>
5196<section title="Since draft-ietf-httpbis-p1-messaging-01">
5198  Closed issues:
5199  <list style="symbols">
5200    <t>
5201      <eref target=""/>:
5202      "Bodies on GET (and other) requests"
5203    </t>
5204    <t>
5205      <eref target=""/>:
5206      "Updating to RFC4288"
5207    </t>
5208    <t>
5209      <eref target=""/>:
5210      "Status Code and Reason Phrase"
5211    </t>
5212    <t>
5213      <eref target=""/>:
5214      "rel_path not used"
5215    </t>
5216  </list>
5219  Ongoing work on ABNF conversion (<eref target=""/>):
5220  <list style="symbols">
5221    <t>
5222      Get rid of duplicate BNF rule names ("host" -> "uri-host", "trailer" ->
5223      "trailer-part").
5224    </t>
5225    <t>
5226      Avoid underscore character in rule names ("http_URL" ->
5227      "http-URL", "abs_path" -> "path-absolute").
5228    </t>
5229    <t>
5230      Add rules for terms imported from URI spec ("absoluteURI", "authority",
5231      "path-absolute", "port", "query", "relativeURI", "host) &mdash; these will
5232      have to be updated when switching over to RFC3986.
5233    </t>
5234    <t>
5235      Synchronize core rules with RFC5234.
5236    </t>
5237    <t>
5238      Get rid of prose rules that span multiple lines.
5239    </t>
5240    <t>
5241      Get rid of unused rules LOALPHA and UPALPHA.
5242    </t>
5243    <t>
5244      Move "Product Tokens" section (back) into Part 1, as "token" is used
5245      in the definition of the Upgrade header field.
5246    </t>
5247    <t>
5248      Add explicit references to BNF syntax and rules imported from other parts of the specification.
5249    </t>
5250    <t>
5251      Rewrite prose rule "token" in terms of "tchar", rewrite prose rule "TEXT".
5252    </t>
5253  </list>
5257<section title="Since draft-ietf-httpbis-p1-messaging-02" anchor="changes.since.02">
5259  Closed issues:
5260  <list style="symbols">
5261    <t>
5262      <eref target=""/>:
5263      "HTTP-date vs. rfc1123-date"
5264    </t>
5265    <t>
5266      <eref target=""/>:
5267      "WS in quoted-pair"
5268    </t>
5269  </list>
5272  Ongoing work on IANA Message Header Field Registration (<eref target=""/>):
5273  <list style="symbols">
5274    <t>
5275      Reference RFC 3984, and update header field registrations for header
5276      fields defined in this document.
5277    </t>
5278  </list>
5281  Ongoing work on ABNF conversion (<eref target=""/>):
5282  <list style="symbols">
5283    <t>
5284      Replace string literals when the string really is case-sensitive (HTTP-version).
5285    </t>
5286  </list>
5290<section title="Since draft-ietf-httpbis-p1-messaging-03" anchor="changes.since.03">
5292  Closed issues:
5293  <list style="symbols">
5294    <t>
5295      <eref target=""/>:
5296      "Connection closing"
5297    </t>
5298    <t>
5299      <eref target=""/>:
5300      "Move registrations and registry information to IANA Considerations"
5301    </t>
5302    <t>
5303      <eref target=""/>:
5304      "need new URL for PAD1995 reference"
5305    </t>
5306    <t>
5307      <eref target=""/>:
5308      "IANA Considerations: update HTTP URI scheme registration"
5309    </t>
5310    <t>
5311      <eref target=""/>:
5312      "Cite HTTPS URI scheme definition"
5313    </t>
5314    <t>
5315      <eref target=""/>:
5316      "List-type header fields vs Set-Cookie"
5317    </t>
5318  </list>
5321  Ongoing work on ABNF conversion (<eref target=""/>):
5322  <list style="symbols">
5323    <t>
5324      Replace string literals when the string really is case-sensitive (HTTP-Date).
5325    </t>
5326    <t>
5327      Replace HEX by HEXDIG for future consistence with RFC 5234's core rules.
5328    </t>
5329  </list>
5333<section title="Since draft-ietf-httpbis-p1-messaging-04" anchor="changes.since.04">
5335  Closed issues:
5336  <list style="symbols">
5337    <t>
5338      <eref target=""/>:
5339      "Out-of-date reference for URIs"
5340    </t>
5341    <t>
5342      <eref target=""/>:
5343      "RFC 2822 is updated by RFC 5322"
5344    </t>
5345  </list>
5348  Ongoing work on ABNF conversion (<eref target=""/>):
5349  <list style="symbols">
5350    <t>
5351      Use "/" instead of "|" for alternatives.
5352    </t>
5353    <t>
5354      Get rid of RFC822 dependency; use RFC5234 plus extensions instead.
5355    </t>
5356    <t>
5357      Only reference RFC 5234's core rules.
5358    </t>
5359    <t>
5360      Introduce new ABNF rules for "bad" whitespace ("BWS"), optional
5361      whitespace ("OWS") and required whitespace ("RWS").
5362    </t>
5363    <t>
5364      Rewrite ABNFs to spell out whitespace rules, factor out
5365      header field value format definitions.
5366    </t>
5367  </list>
5371<section title="Since draft-ietf-httpbis-p1-messaging-05" anchor="changes.since.05">
5373  Closed issues:
5374  <list style="symbols">
5375    <t>
5376      <eref target=""/>:
5377      "Header LWS"
5378    </t>
5379    <t>
5380      <eref target=""/>:
5381      "Sort 1.3 Terminology"
5382    </t>
5383    <t>
5384      <eref target=""/>:
5385      "RFC2047 encoded words"
5386    </t>
5387    <t>
5388      <eref target=""/>:
5389      "Character Encodings in TEXT"
5390    </t>
5391    <t>
5392      <eref target=""/>:
5393      "Line Folding"
5394    </t>
5395    <t>
5396      <eref target=""/>:
5397      "OPTIONS * and proxies"
5398    </t>
5399    <t>
5400      <eref target=""/>:
5401      "reason-phrase BNF"
5402    </t>
5403    <t>
5404      <eref target=""/>:
5405      "Use of TEXT"
5406    </t>
5407    <t>
5408      <eref target=""/>:
5409      "Join "Differences Between HTTP Entities and RFC 2045 Entities"?"
5410    </t>
5411    <t>
5412      <eref target=""/>:
5413      "RFC822 reference left in discussion of date formats"
5414    </t>
5415  </list>
5418  Final work on ABNF conversion (<eref target=""/>):
5419  <list style="symbols">
5420    <t>
5421      Rewrite definition of list rules, deprecate empty list elements.
5422    </t>
5423    <t>
5424      Add appendix containing collected and expanded ABNF.
5425    </t>
5426  </list>
5429  Other changes:
5430  <list style="symbols">
5431    <t>
5432      Rewrite introduction; add mostly new Architecture Section.
5433    </t>
5434    <t>
5435      Move definition of quality values from Part 3 into Part 1;
5436      make TE request header field grammar independent of accept-params (defined in Part 3).
5437    </t>
5438  </list>
5442<section title="Since draft-ietf-httpbis-p1-messaging-06" anchor="changes.since.06">
5444  Closed issues:
5445  <list style="symbols">
5446    <t>
5447      <eref target=""/>:
5448      "base for numeric protocol elements"
5449    </t>
5450    <t>
5451      <eref target=""/>:
5452      "comment ABNF"
5453    </t>
5454  </list>
5457  Partly resolved issues:
5458  <list style="symbols">
5459    <t>
5460      <eref target=""/>:
5461      "205 Bodies" (took out language that implied that there might be
5462      methods for which a request body MUST NOT be included)
5463    </t>
5464    <t>
5465      <eref target=""/>:
5466      "editorial improvements around HTTP-date"
5467    </t>
5468  </list>
5472<section title="Since draft-ietf-httpbis-p1-messaging-07" anchor="changes.since.07">
5474  Closed issues:
5475  <list style="symbols">
5476    <t>
5477      <eref target=""/>:
5478      "Repeating single-value header fields"
5479    </t>
5480    <t>
5481      <eref target=""/>:
5482      "increase connection limit"
5483    </t>
5484    <t>
5485      <eref target=""/>:
5486      "IP addresses in URLs"
5487    </t>
5488    <t>
5489      <eref target=""/>:
5490      "take over HTTP Upgrade Token Registry"
5491    </t>
5492    <t>
5493      <eref target=""/>:
5494      "CR and LF in chunk extension values"
5495    </t>
5496    <t>
5497      <eref target=""/>:
5498      "HTTP/0.9 support"
5499    </t>
5500    <t>
5501      <eref target=""/>:
5502      "pick IANA policy (RFC5226) for Transfer Coding / Content Coding"
5503    </t>
5504    <t>
5505      <eref target=""/>:
5506      "move definitions of gzip/deflate/compress to part 1"
5507    </t>
5508    <t>
5509      <eref target=""/>:
5510      "disallow control characters in quoted-pair"
5511    </t>
5512  </list>
5515  Partly resolved issues:
5516  <list style="symbols">
5517    <t>
5518      <eref target=""/>:
5519      "update IANA requirements wrt Transfer-Coding values" (add the
5520      IANA Considerations subsection)
5521    </t>
5522  </list>
5526<section title="Since draft-ietf-httpbis-p1-messaging-08" anchor="changes.since.08">
5528  Closed issues:
5529  <list style="symbols">
5530    <t>
5531      <eref target=""/>:
5532      "header parsing, treatment of leading and trailing OWS"
5533    </t>
5534  </list>
5537  Partly resolved issues:
5538  <list style="symbols">
5539    <t>
5540      <eref target=""/>:
5541      "Placement of 13.5.1 and 13.5.2"
5542    </t>
5543    <t>
5544      <eref target=""/>:
5545      "use of term "word" when talking about header field structure"
5546    </t>
5547  </list>
5551<section title="Since draft-ietf-httpbis-p1-messaging-09" anchor="changes.since.09">
5553  Closed issues:
5554  <list style="symbols">
5555    <t>
5556      <eref target=""/>:
5557      "Clarification of the term 'deflate'"
5558    </t>
5559    <t>
5560      <eref target=""/>:
5561      "OPTIONS * and proxies"
5562    </t>
5563    <t>
5564      <eref target=""/>:
5565      "MIME-Version not listed in P1, general header fields"
5566    </t>
5567    <t>
5568      <eref target=""/>:
5569      "IANA registry for content/transfer encodings"
5570    </t>
5571    <t>
5572      <eref target=""/>:
5573      "Case-sensitivity of HTTP-date"
5574    </t>
5575    <t>
5576      <eref target=""/>:
5577      "use of term "word" when talking about header field structure"
5578    </t>
5579  </list>
5582  Partly resolved issues:
5583  <list style="symbols">
5584    <t>
5585      <eref target=""/>:
5586      "Term for the requested resource's URI"
5587    </t>
5588  </list>
5592<section title="Since draft-ietf-httpbis-p1-messaging-10" anchor="changes.since.10">
5594  Closed issues:
5595  <list style="symbols">
5596    <t>
5597      <eref target=""/>:
5598      "Connection Closing"
5599    </t>
5600    <t>
5601      <eref target=""/>:
5602      "Delimiting messages with multipart/byteranges"
5603    </t>
5604    <t>
5605      <eref target=""/>:
5606      "Handling multiple Content-Length header fields"
5607    </t>
5608    <t>
5609      <eref target=""/>:
5610      "Clarify entity / representation / variant terminology"
5611    </t>
5612    <t>
5613      <eref target=""/>:
5614      "consider removing the 'changes from 2068' sections"
5615    </t>
5616  </list>
5619  Partly resolved issues:
5620  <list style="symbols">
5621    <t>
5622      <eref target=""/>:
5623      "HTTP(s) URI scheme definitions"
5624    </t>
5625  </list>
5629<section title="Since draft-ietf-httpbis-p1-messaging-11" anchor="changes.since.11">
5631  Closed issues:
5632  <list style="symbols">
5633    <t>
5634      <eref target=""/>:
5635      "Trailer requirements"
5636    </t>
5637    <t>
5638      <eref target=""/>:
5639      "Text about clock requirement for caches belongs in p6"
5640    </t>
5641    <t>
5642      <eref target=""/>:
5643      "effective request URI: handling of missing host in HTTP/1.0"
5644    </t>
5645    <t>
5646      <eref target=""/>:
5647      "confusing Date requirements for clients"
5648    </t>
5649  </list>
5652  Partly resolved issues:
5653  <list style="symbols">
5654    <t>
5655      <eref target=""/>:
5656      "Handling multiple Content-Length header fields"
5657    </t>
5658  </list>
5662<section title="Since draft-ietf-httpbis-p1-messaging-12" anchor="changes.since.12">
5664  Closed issues:
5665  <list style="symbols">
5666    <t>
5667      <eref target=""/>:
5668      "RFC2145 Normative"
5669    </t>
5670    <t>
5671      <eref target=""/>:
5672      "HTTP(s) URI scheme definitions" (tune the requirements on userinfo)
5673    </t>
5674    <t>
5675      <eref target=""/>:
5676      "define 'transparent' proxy"
5677    </t>
5678    <t>
5679      <eref target=""/>:
5680      "Header Field Classification"
5681    </t>
5682    <t>
5683      <eref target=""/>:
5684      "Is * usable as a request-uri for new methods?"
5685    </t>
5686    <t>
5687      <eref target=""/>:
5688      "Migrate Upgrade details from RFC2817"
5689    </t>
5690    <t>
5691      <eref target=""/>:
5692      "untangle ABNFs for header fields"
5693    </t>
5694    <t>
5695      <eref target=""/>:
5696      "update RFC 2109 reference"
5697    </t>
5698  </list>
5702<section title="Since draft-ietf-httpbis-p1-messaging-13" anchor="changes.since.13">
5704  Closed issues:
5705  <list style="symbols">
5706    <t>
5707      <eref target=""/>:
5708      "Allow is not in 13.5.2"
5709    </t>
5710    <t>
5711      <eref target=""/>:
5712      "Handling multiple Content-Length header fields"
5713    </t>
5714    <t>
5715      <eref target=""/>:
5716      "untangle ABNFs for header fields"
5717    </t>
5718    <t>
5719      <eref target=""/>:
5720      "Content-Length ABNF broken"
5721    </t>
5722  </list>
5726<section title="Since draft-ietf-httpbis-p1-messaging-14" anchor="changes.since.14">
5728  Closed issues:
5729  <list style="symbols">
5730    <t>
5731      <eref target=""/>:
5732      "HTTP-version should be redefined as fixed length pair of DIGIT . DIGIT"
5733    </t>
5734    <t>
5735      <eref target=""/>:
5736      "Recommend minimum sizes for protocol elements"
5737    </t>
5738    <t>
5739      <eref target=""/>:
5740      "Set expectations around buffering"
5741    </t>
5742    <t>
5743      <eref target=""/>:
5744      "Considering messages in isolation"
5745    </t>
5746  </list>
5750<section title="Since draft-ietf-httpbis-p1-messaging-15" anchor="changes.since.15">
5752  Closed issues:
5753  <list style="symbols">
5754    <t>
5755      <eref target=""/>:
5756      "DNS Spoofing / DNS Binding advice"
5757    </t>
5758    <t>
5759      <eref target=""/>:
5760      "move RFCs 2145, 2616, 2817 to Historic status"
5761    </t>
5762    <t>
5763      <eref target=""/>:
5764      "\-escaping in quoted strings"
5765    </t>
5766    <t>
5767      <eref target=""/>:
5768      "'Close' should be reserved in the HTTP header field registry"
5769    </t>
5770  </list>
5774<section title="Since draft-ietf-httpbis-p1-messaging-16" anchor="changes.since.16">
5776  Closed issues:
5777  <list style="symbols">
5778    <t>
5779      <eref target=""/>:
5780      "Document HTTP's error-handling philosophy"
5781    </t>
5782    <t>
5783      <eref target=""/>:
5784      "Explain header field registration"
5785    </t>
5786    <t>
5787      <eref target=""/>:
5788      "Revise Acknowledgements Sections"
5789    </t>
5790    <t>
5791      <eref target=""/>:
5792      "Retrying Requests"
5793    </t>
5794    <t>
5795      <eref target=""/>:
5796      "Closing the connection on server error"
5797    </t>
5798  </list>
5802<section title="Since draft-ietf-httpbis-p1-messaging-17" anchor="changes.since.17">
5804  Closed issues:
5805  <list style="symbols">
5806    <t>
5807      <eref target=""/>:
5808      "Proxy-Connection and Keep-Alive"
5809    </t>
5810    <t>
5811      <eref target=""/>:
5812      "Clarify 'User Agent'"
5813    </t>
5814    <t>
5815      <eref target=""/>:
5816      "Define non-final responses"
5817    </t>
5818    <t>
5819      <eref target=""/>:
5820      "intended maturity level vs normative references"
5821    </t>
5822    <t>
5823      <eref target=""/>:
5824      "Intermediary rewriting of queries"
5825    </t>
5826  </list>
5830<section title="Since draft-ietf-httpbis-p1-messaging-18" anchor="changes.since.18">
5832  Closed issues:
5833  <list style="symbols">
5834    <t>
5835      <eref target=""/>:
5836      "message-body in CONNECT response"
5837    </t>
5838    <t>
5839      <eref target=""/>:
5840      "Misplaced text on connection handling in p2"
5841    </t>
5842    <t>
5843      <eref target=""/>:
5844      "wording of line folding rule"
5845    </t>
5846    <t>
5847      <eref target=""/>:
5848      "chunk-extensions"
5849    </t>
5850    <t>
5851      <eref target=""/>:
5852      "make IANA policy definitions consistent"
5853    </t>
5854  </list>
5858<section title="Since draft-ietf-httpbis-p1-messaging-19" anchor="changes.since.19">
5860  Closed issues:
5861  <list style="symbols">
5862    <t>
5863      <eref target=""/>:
5864      "make IANA policy definitions consistent"
5865    </t>
5866    <t>
5867      <eref target=""/>:
5868      "clarify connection header field values are case-insensitive"
5869    </t>
5870    <t>
5871      <eref target=""/>:
5872      "ABNF requirements for recipients"
5873    </t>
5874    <t>
5875      <eref target=""/>:
5876      "note introduction of new IANA registries as normative changes"
5877    </t>
5878    <t>
5879      <eref target=""/>:
5880      "Reference to ISO-8859-1 is informative"
5881    </t>
5882  </list>
5886<section title="Since draft-ietf-httpbis-p1-messaging-20" anchor="changes.since.20">
5888  None yet.
Note: See TracBrowser for help on using the repository browser.