source: draft-ietf-httpbis/latest/p1-messaging.xml @ 661

Last change on this file since 661 was 660, checked in by fielding@…, 11 years ago

editorial: move remaining terminology to part 3 for later edit.
update HTML

  • Property svn:eol-style set to native
File size: 215.5 KB
RevLine 
[29]1<?xml version="1.0" encoding="utf-8"?>
[101]2<?xml-stylesheet type='text/xsl' href='../myxml2rfc.xslt'?>
[8]3<!DOCTYPE rfc [
4  <!ENTITY MAY "<bcp14 xmlns='http://purl.org/net/xml2rfc/ext'>MAY</bcp14>">
5  <!ENTITY MUST "<bcp14 xmlns='http://purl.org/net/xml2rfc/ext'>MUST</bcp14>">
6  <!ENTITY MUST-NOT "<bcp14 xmlns='http://purl.org/net/xml2rfc/ext'>MUST NOT</bcp14>">
7  <!ENTITY OPTIONAL "<bcp14 xmlns='http://purl.org/net/xml2rfc/ext'>OPTIONAL</bcp14>">
8  <!ENTITY RECOMMENDED "<bcp14 xmlns='http://purl.org/net/xml2rfc/ext'>RECOMMENDED</bcp14>">
9  <!ENTITY REQUIRED "<bcp14 xmlns='http://purl.org/net/xml2rfc/ext'>REQUIRED</bcp14>">
10  <!ENTITY SHALL "<bcp14 xmlns='http://purl.org/net/xml2rfc/ext'>SHALL</bcp14>">
11  <!ENTITY SHALL-NOT "<bcp14 xmlns='http://purl.org/net/xml2rfc/ext'>SHALL NOT</bcp14>">
12  <!ENTITY SHOULD "<bcp14 xmlns='http://purl.org/net/xml2rfc/ext'>SHOULD</bcp14>">
13  <!ENTITY SHOULD-NOT "<bcp14 xmlns='http://purl.org/net/xml2rfc/ext'>SHOULD NOT</bcp14>">
[29]14  <!ENTITY ID-VERSION "latest">
[599]15  <!ENTITY ID-MONTH "July">
[439]16  <!ENTITY ID-YEAR "2009">
[640]17  <!ENTITY caching-overview       "<xref target='Part6' x:rel='#caching.overview' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
[31]18  <!ENTITY payload                "<xref target='Part3' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
[115]19  <!ENTITY media-types            "<xref target='Part3' x:rel='#media.types' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
20  <!ENTITY content-codings        "<xref target='Part3' x:rel='#content.codings' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
[31]21  <!ENTITY CONNECT                "<xref target='Part2' x:rel='#CONNECT' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
22  <!ENTITY content.negotiation    "<xref target='Part3' x:rel='#content.negotiation' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
23  <!ENTITY diff2045entity         "<xref target='Part3' x:rel='#differences.between.http.entities.and.rfc.2045.entities' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
24  <!ENTITY entity                 "<xref target='Part3' x:rel='#entity' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
[207]25  <!ENTITY entity-body            "<xref target='Part3' x:rel='#entity.body' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
[31]26  <!ENTITY entity-header-fields   "<xref target='Part3' x:rel='#entity.header.fields' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
27  <!ENTITY header-cache-control   "<xref target='Part6' x:rel='#header.cache-control' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
28  <!ENTITY header-expect          "<xref target='Part2' x:rel='#header.expect' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
29  <!ENTITY header-pragma          "<xref target='Part6' x:rel='#header.pragma' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
30  <!ENTITY header-warning         "<xref target='Part6' x:rel='#header.warning' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
31  <!ENTITY idempotent-methods     "<xref target='Part2' x:rel='#idempotent.methods' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
32  <!ENTITY request-header-fields  "<xref target='Part2' x:rel='#request.header.fields' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
33  <!ENTITY response-header-fields "<xref target='Part2' x:rel='#response.header.fields' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
34  <!ENTITY status-codes           "<xref target='Part2' x:rel='#status.codes' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
35  <!ENTITY status-100             "<xref target='Part2' x:rel='#status.100' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
36  <!ENTITY status-1xx             "<xref target='Part2' x:rel='#status.1xx' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
37  <!ENTITY status-414             "<xref target='Part2' x:rel='#status.414' xmlns:x='http://purl.org/net/xml2rfc/ext'/>">
[8]38]>
39<?rfc toc="yes" ?>
[29]40<?rfc symrefs="yes" ?>
41<?rfc sortrefs="yes" ?>
[8]42<?rfc compact="yes"?>
43<?rfc subcompact="no" ?>
44<?rfc linkmailto="no" ?>
45<?rfc editing="no" ?>
[203]46<?rfc comments="yes"?>
47<?rfc inline="yes"?>
[8]48<?rfc-ext allow-markup-in-artwork="yes" ?>
49<?rfc-ext include-references-in-index="yes" ?>
[308]50<rfc obsoletes="2616" category="std" x:maturity-level="draft"
[446]51     ipr="pre5378Trust200902" docName="draft-ietf-httpbis-p1-messaging-&ID-VERSION;"
[153]52     xmlns:x='http://purl.org/net/xml2rfc/ext'>
[8]53<front>
54
[120]55  <title abbrev="HTTP/1.1, Part 1">HTTP/1.1, part 1: URIs, Connections, and Message Parsing</title>
[8]56
[29]57  <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
58    <organization abbrev="Day Software">Day Software</organization>
[8]59    <address>
60      <postal>
[29]61        <street>23 Corporate Plaza DR, Suite 280</street>
62        <city>Newport Beach</city>
[8]63        <region>CA</region>
[29]64        <code>92660</code>
65        <country>USA</country>
[8]66      </postal>
[29]67      <phone>+1-949-706-5300</phone>
68      <facsimile>+1-949-706-5305</facsimile>
69      <email>fielding@gbiv.com</email>
70      <uri>http://roy.gbiv.com/</uri>
[8]71    </address>
72  </author>
73
[29]74  <author initials="J." surname="Gettys" fullname="Jim Gettys">
75    <organization>One Laptop per Child</organization>
[8]76    <address>
77      <postal>
[29]78        <street>21 Oak Knoll Road</street>
79        <city>Carlisle</city>
[8]80        <region>MA</region>
[29]81        <code>01741</code>
82        <country>USA</country>
[8]83      </postal>
[29]84      <email>jg@laptop.org</email>
85      <uri>http://www.laptop.org/</uri>
[8]86    </address>
87  </author>
88 
89  <author initials="J." surname="Mogul" fullname="Jeffrey C. Mogul">
[29]90    <organization abbrev="HP">Hewlett-Packard Company</organization>
[8]91    <address>
92      <postal>
[29]93        <street>HP Labs, Large Scale Systems Group</street>
94        <street>1501 Page Mill Road, MS 1177</street>
[8]95        <city>Palo Alto</city>
96        <region>CA</region>
[29]97        <code>94304</code>
98        <country>USA</country>
[8]99      </postal>
[29]100      <email>JeffMogul@acm.org</email>
[8]101    </address>
102  </author>
103
104  <author initials="H." surname="Frystyk" fullname="Henrik Frystyk Nielsen">
[29]105    <organization abbrev="Microsoft">Microsoft Corporation</organization>
[8]106    <address>
107      <postal>
[29]108        <street>1 Microsoft Way</street>
109        <city>Redmond</city>
110        <region>WA</region>
111        <code>98052</code>
112        <country>USA</country>
[8]113      </postal>
[29]114      <email>henrikn@microsoft.com</email>
[8]115    </address>
116  </author>
117
118  <author initials="L." surname="Masinter" fullname="Larry Masinter">
[29]119    <organization abbrev="Adobe Systems">Adobe Systems, Incorporated</organization>
[8]120    <address>
121      <postal>
[29]122        <street>345 Park Ave</street>
123        <city>San Jose</city>
[8]124        <region>CA</region>
[29]125        <code>95110</code>
126        <country>USA</country>
[8]127      </postal>
[29]128      <email>LMM@acm.org</email>
129      <uri>http://larry.masinter.net/</uri>
[8]130    </address>
131  </author>
132 
133  <author initials="P." surname="Leach" fullname="Paul J. Leach">
134    <organization abbrev="Microsoft">Microsoft Corporation</organization>
135    <address>
136      <postal>
137        <street>1 Microsoft Way</street>
138        <city>Redmond</city>
139        <region>WA</region>
140        <code>98052</code>
141      </postal>
142      <email>paulle@microsoft.com</email>
143    </address>
144  </author>
145   
146  <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
147    <organization abbrev="W3C/MIT">World Wide Web Consortium</organization>
148    <address>
149      <postal>
[34]150        <street>MIT Computer Science and Artificial Intelligence Laboratory</street>
151        <street>The Stata Center, Building 32</street>
152        <street>32 Vassar Street</street>
[8]153        <city>Cambridge</city>
154        <region>MA</region>
155        <code>02139</code>
[29]156        <country>USA</country>
[8]157      </postal>
158      <email>timbl@w3.org</email>
[34]159      <uri>http://www.w3.org/People/Berners-Lee/</uri>
[8]160    </address>
161  </author>
162
[95]163  <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
[94]164    <organization abbrev="W3C">World Wide Web Consortium</organization>
165    <address>
166      <postal>
167        <street>W3C / ERCIM</street>
168        <street>2004, rte des Lucioles</street>
169        <city>Sophia-Antipolis</city>
170        <region>AM</region>
171        <code>06902</code>
172        <country>France</country>
173      </postal>
174      <email>ylafon@w3.org</email>
175      <uri>http://www.raubacapeu.net/people/yves/</uri>
176    </address>
177  </author>
178
[95]179  <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
180    <organization abbrev="greenbytes">greenbytes GmbH</organization>
181    <address>
182      <postal>
183        <street>Hafenweg 16</street>
184        <city>Muenster</city><region>NW</region><code>48155</code>
185        <country>Germany</country>
186      </postal>
[609]187      <phone>+49 251 2807760</phone>
188      <facsimile>+49 251 2807761</facsimile>
189      <email>julian.reschke@greenbytes.de</email>
190      <uri>http://greenbytes.de/tech/webdav/</uri>
[95]191    </address>
192  </author>
193
[31]194  <date month="&ID-MONTH;" year="&ID-YEAR;"/>
[440]195  <workgroup>HTTPbis Working Group</workgroup>
[8]196
197<abstract>
198<t>
199   The Hypertext Transfer Protocol (HTTP) is an application-level
[451]200   protocol for distributed, collaborative, hypertext information
[29]201   systems. HTTP has been in use by the World Wide Web global information
[35]202   initiative since 1990. This document is Part 1 of the seven-part specification
[29]203   that defines the protocol referred to as "HTTP/1.1" and, taken together,
[51]204   obsoletes RFC 2616.  Part 1 provides an overview of HTTP and
[29]205   its associated terminology, defines the "http" and "https" Uniform
206   Resource Identifier (URI) schemes, defines the generic message syntax
207   and parsing requirements for HTTP message frames, and describes
208   general security concerns for implementations.
[8]209</t>
210</abstract>
[36]211
212<note title="Editorial Note (To be removed by RFC Editor)">
213  <t>
214    Discussion of this draft should take place on the HTTPBIS working group
215    mailing list (ietf-http-wg@w3.org). The current issues list is
[324]216    at <eref target="http://tools.ietf.org/wg/httpbis/trac/report/11"/>
[36]217    and related documents (including fancy diffs) can be found at
[324]218    <eref target="http://tools.ietf.org/wg/httpbis/"/>.
[36]219  </t>
[153]220  <t>
[604]221    The changes in this draft are summarized in <xref target="changes.since.07"/>.
[153]222  </t>
[36]223</note>
[8]224</front>
225<middle>
226<section title="Introduction" anchor="introduction">
[29]227<t>
[8]228   The Hypertext Transfer Protocol (HTTP) is an application-level
[374]229   request/response protocol that uses extensible semantics and MIME-like
[391]230   message payloads for flexible interaction with network-based hypertext
[374]231   information systems. HTTP relies upon the Uniform Resource Identifier (URI)
[544]232   standard <xref target="RFC3986"/> to indicate request targets and
[391]233   relationships between resources.
[374]234   Messages are passed in a format similar to that used by Internet mail
235   <xref target="RFC5322"/> and the Multipurpose Internet Mail Extensions
236   (MIME) <xref target="RFC2045"/> (see &diff2045entity; for the differences
237   between HTTP and MIME messages).
[8]238</t>
239<t>
[544]240   HTTP is a generic interface protocol for information systems. It is
[391]241   designed to hide the details of how a service is implemented by presenting
242   a uniform interface to clients that is independent of the types of
243   resources provided. Likewise, servers do not need to be aware of each
244   client's purpose: an HTTP request can be considered in isolation rather
245   than being associated with a specific type of client or a predetermined
246   sequence of application steps. The result is a protocol that can be used
247   effectively in many different contexts and for which implementations can
248   evolve independently over time.
249</t>
250<t>
[374]251   HTTP is also designed for use as a generic protocol for translating
[544]252   communication to and from other Internet information systems.
[374]253   HTTP proxies and gateways provide access to alternative information
[451]254   services by translating their diverse protocols into a hypertext
[374]255   format that can be viewed and manipulated by clients in the same way
256   as HTTP services.
[8]257</t>
258<t>
[544]259   One consequence of HTTP flexibility is that the protocol cannot be
260   defined in terms of what occurs behind the interface. Instead, we
261   are limited to defining the syntax of communication, the intent
262   of received communication, and the expected behavior of recipients.
263   If the communication is considered in isolation, then successful
264   actions should be reflected in corresponding changes to the
265   observable interface provided by servers. However, since multiple
266   clients may act in parallel and perhaps at cross-purposes, we
267   cannot require that such changes be observable beyond the scope
268   of a single response.
[391]269</t>
270<t>
[374]271   This document is Part 1 of the seven-part specification of HTTP,
272   defining the protocol referred to as "HTTP/1.1" and obsoleting
273   <xref target="RFC2616"/>.
[544]274   Part 1 describes the architectural elements that are used or
[621]275   referred to in HTTP, defines the "http" and "https" URI schemes,
276   describes overall network operation and connection management,
277   and defines HTTP message framing and forwarding requirements.
[374]278   Our goal is to define all of the mechanisms necessary for HTTP message
279   handling that are independent of message semantics, thereby defining the
[544]280   complete set of requirements for message parsers and
[391]281   message-forwarding intermediaries.
[163]282</t>
283
[8]284<section title="Requirements" anchor="intro.requirements">
285<t>
286   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
287   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
[96]288   document are to be interpreted as described in <xref target="RFC2119"/>.
[8]289</t>
290<t>
291   An implementation is not compliant if it fails to satisfy one or more
292   of the &MUST; or &REQUIRED; level requirements for the protocols it
293   implements. An implementation that satisfies all the &MUST; or &REQUIRED;
294   level and all the &SHOULD; level requirements for its protocols is said
295   to be "unconditionally compliant"; one that satisfies all the &MUST;
296   level requirements but not all the &SHOULD; level requirements for its
297   protocols is said to be "conditionally compliant."
298</t>
299</section>
300
[390]301<section title="Syntax Notation" anchor="notation">
302<iref primary="true" item="Grammar" subitem="ALPHA"/>
303<iref primary="true" item="Grammar" subitem="CR"/>
304<iref primary="true" item="Grammar" subitem="CRLF"/>
305<iref primary="true" item="Grammar" subitem="CTL"/>
306<iref primary="true" item="Grammar" subitem="DIGIT"/>
307<iref primary="true" item="Grammar" subitem="DQUOTE"/>
308<iref primary="true" item="Grammar" subitem="HEXDIG"/>
309<iref primary="true" item="Grammar" subitem="LF"/>
310<iref primary="true" item="Grammar" subitem="OCTET"/>
311<iref primary="true" item="Grammar" subitem="SP"/>
[395]312<iref primary="true" item="Grammar" subitem="VCHAR"/>
[390]313<iref primary="true" item="Grammar" subitem="WSP"/>
[543]314<t>
315   This specification uses the Augmented Backus-Naur Form (ABNF) notation
316   of <xref target="RFC5234"/>.
317</t>
[390]318<t anchor="core.rules">
319  <x:anchor-alias value="ALPHA"/>
320  <x:anchor-alias value="CTL"/>
321  <x:anchor-alias value="CR"/>
322  <x:anchor-alias value="CRLF"/>
323  <x:anchor-alias value="DIGIT"/>
324  <x:anchor-alias value="DQUOTE"/>
325  <x:anchor-alias value="HEXDIG"/>
326  <x:anchor-alias value="LF"/>
327  <x:anchor-alias value="OCTET"/>
328  <x:anchor-alias value="SP"/>
[395]329  <x:anchor-alias value="VCHAR"/>
[390]330  <x:anchor-alias value="WSP"/>
[543]331   The following core rules are included by
[390]332   reference, as defined in <xref target="RFC5234" x:fmt="," x:sec="B.1"/>:
[395]333   ALPHA (letters), CR (carriage return), CRLF (CR LF), CTL (controls),
[390]334   DIGIT (decimal 0-9), DQUOTE (double quote),
[395]335   HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed),
336   OCTET (any 8-bit sequence of data), SP (space),
337   VCHAR (any visible <xref target="USASCII"/> character),
[401]338   and WSP (whitespace).
[390]339</t>
[8]340
[368]341<section title="ABNF Extension: #rule" anchor="notation.abnf">
[335]342  <t>
[368]343    One extension to the ABNF rules of <xref target="RFC5234"/> is used to
344    improve readability.
345  </t>
346  <t>
[335]347    A construct "#" is defined, similar to "*", for defining lists of
348    elements. The full form is "&lt;n&gt;#&lt;m&gt;element" indicating at least
[400]349    &lt;n&gt; and at most &lt;m&gt; elements, each separated by a single comma
350    (",") and optional whitespace (OWS).   
[335]351  </t>
[400]352  <figure><preamble>
353    Thus,
354</preamble><artwork type="example">
355  1#element =&gt; element *( OWS "," OWS element )
356</artwork></figure>
357  <figure><preamble>
358    and:
359</preamble><artwork type="example">
360  #element =&gt; [ 1#element ]
361</artwork></figure>
362  <figure><preamble>
363    and for n &gt;= 1 and m &gt; 1:
364</preamble><artwork type="example">
365  &lt;n&gt;#&lt;m&gt;element =&gt; element &lt;n-1&gt;*&lt;m-1&gt;( OWS "," OWS element )
366</artwork></figure>
[335]367  <t>
[400]368    For compatibility with legacy list rules, recipients &SHOULD; accept empty
369    list elements. In other words, consumers would follow the list productions:
[335]370  </t>
[400]371<figure><artwork type="example">
[458]372  #element =&gt; [ ( "," / element ) *( OWS "," [ OWS element ] ) ]
373 
374  1#element =&gt; *( "," OWS ) element *( OWS "," [ OWS element ] )
[400]375</artwork></figure> 
[421]376<t>
377  <xref target="collected.abnf"/> shows the collected ABNF, with the list rules
378  expanded as explained above.
379</t>
[335]380</section>
381
[8]382<section title="Basic Rules" anchor="basic.rules">
[229]383<t anchor="rule.CRLF">
384  <x:anchor-alias value="CRLF"/>
[8]385   HTTP/1.1 defines the sequence CR LF as the end-of-line marker for all
386   protocol elements except the entity-body (see <xref target="tolerant.applications"/> for
387   tolerant applications). The end-of-line marker within an entity-body
[115]388   is defined by its associated media type, as described in &media-types;.
[8]389</t>
[229]390<t anchor="rule.LWS">
[395]391   This specification uses three rules to denote the use of linear
392   whitespace: OWS (optional whitespace), RWS (required whitespace), and
393   BWS ("bad" whitespace).
[8]394</t>
[368]395<t>
[401]396   The OWS rule is used where zero or more linear whitespace characters may
[395]397   appear. OWS &SHOULD; either not be produced or be produced as a single SP
398   character. Multiple OWS characters that occur within field-content &SHOULD;
399   be replaced with a single SP before interpreting the field value or
400   forwarding the message downstream.
[368]401</t>
402<t>
[401]403   RWS is used when at least one linear whitespace character is required to
[395]404   separate field tokens. RWS &SHOULD; be produced as a single SP character.
405   Multiple RWS characters that occur within field-content &SHOULD; be
406   replaced with a single SP before interpreting the field value or
407   forwarding the message downstream.
[368]408</t>
409<t>
[395]410   BWS is used where the grammar allows optional whitespace for historical
411   reasons but senders &SHOULD-NOT; produce it in messages. HTTP/1.1
412   recipients &MUST; accept such bad optional whitespace and remove it before
413   interpreting the field value or forwarding the message downstream.
[368]414</t>
[351]415<t anchor="rule.whitespace">
416  <x:anchor-alias value="BWS"/>
417  <x:anchor-alias value="OWS"/>
418  <x:anchor-alias value="RWS"/>
419  <x:anchor-alias value="obs-fold"/>
[367]420</t>
[351]421<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="OWS"/><iref primary="true" item="Grammar" subitem="RWS"/><iref primary="true" item="Grammar" subitem="BWS"/>
[367]422  <x:ref>OWS</x:ref>            = *( [ obs-fold ] <x:ref>WSP</x:ref> )
[401]423                 ; "optional" whitespace
[351]424  <x:ref>RWS</x:ref>            = 1*( [ obs-fold ] <x:ref>WSP</x:ref> )
[401]425                 ; "required" whitespace
[351]426  <x:ref>BWS</x:ref>            = <x:ref>OWS</x:ref>
[401]427                 ; "bad" whitespace
[351]428  <x:ref>obs-fold</x:ref>       = <x:ref>CRLF</x:ref>
[647]429                 ; see <xref target="header.fields"/>
[351]430</artwork></figure>
[229]431<t anchor="rule.token.separators">
432  <x:anchor-alias value="tchar"/>
433  <x:anchor-alias value="token"/>
[395]434   Many HTTP/1.1 header field values consist of words separated by whitespace
[8]435   or special characters. These special characters &MUST; be in a quoted
436   string to be used within a parameter value (as defined in
437   <xref target="transfer.codings"/>).
438</t>
[371]439<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="token"/><iref primary="true" item="Grammar" subitem="tchar"/>
[334]440  <x:ref>tchar</x:ref>          = "!" / "#" / "$" / "%" / "&amp;" / "'" / "*"
441                 / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"
442                 / <x:ref>DIGIT</x:ref> / <x:ref>ALPHA</x:ref>
[214]443                 
[229]444  <x:ref>token</x:ref>          = 1*<x:ref>tchar</x:ref>
[8]445</artwork></figure>
[229]446<t anchor="rule.quoted-string">
447  <x:anchor-alias value="quoted-string"/>
448  <x:anchor-alias value="qdtext"/>
[395]449  <x:anchor-alias value="obs-text"/>
[8]450   A string of text is parsed as a single word if it is quoted using
451   double-quote marks.
452</t>
[395]453<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-string"/><iref primary="true" item="Grammar" subitem="qdtext"/><iref primary="true" item="Grammar" subitem="obs-text"/>
[429]454  <x:ref>quoted-string</x:ref>  = <x:ref>DQUOTE</x:ref> *( <x:ref>qdtext</x:ref> / <x:ref>quoted-pair</x:ref> ) <x:ref>DQUOTE</x:ref>
[574]455  <x:ref>qdtext</x:ref>         = <x:ref>OWS</x:ref> / %x21 / %x23-5B / %x5D-7E / <x:ref>obs-text</x:ref>
456                 ; <x:ref>OWS</x:ref> / &lt;<x:ref>VCHAR</x:ref> except <x:ref>DQUOTE</x:ref> and "\"&gt; / <x:ref>obs-text</x:ref> 
[395]457  <x:ref>obs-text</x:ref>       = %x80-FF
[8]458</artwork></figure>
[229]459<t anchor="rule.quoted-pair">
460  <x:anchor-alias value="quoted-pair"/>
[238]461  <x:anchor-alias value="quoted-text"/>
[8]462   The backslash character ("\") &MAY; be used as a single-character
463   quoting mechanism only within quoted-string and comment constructs.
464</t>
[238]465<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="quoted-text"/><iref primary="true" item="Grammar" subitem="quoted-pair"/>
[334]466  <x:ref>quoted-text</x:ref>    = %x01-09 /
467                   %x0B-0C /
[238]468                   %x0E-FF ; Characters excluding NUL, <x:ref>CR</x:ref> and <x:ref>LF</x:ref>
469  <x:ref>quoted-pair</x:ref>    = "\" <x:ref>quoted-text</x:ref>
[8]470</artwork></figure>
471</section>
[207]472
473<section title="ABNF Rules defined in other Parts of the Specification" anchor="abnf.dependencies">
[229]474  <x:anchor-alias value="request-header"/>
475  <x:anchor-alias value="response-header"/>
476  <x:anchor-alias value="entity-body"/>
477  <x:anchor-alias value="entity-header"/>
478  <x:anchor-alias value="Cache-Control"/>
479  <x:anchor-alias value="Pragma"/>
480  <x:anchor-alias value="Warning"/>
[207]481<t>
482  The ABNF rules below are defined in other parts:
483</t>
484<figure><!-- Part2--><artwork type="abnf2616">
[229]485  <x:ref>request-header</x:ref>  = &lt;request-header, defined in &request-header-fields;&gt;
486  <x:ref>response-header</x:ref> = &lt;response-header, defined in &response-header-fields;&gt;
[207]487</artwork></figure>
488<figure><!-- Part3--><artwork type="abnf2616">
[229]489  <x:ref>entity-body</x:ref>     = &lt;entity-body, defined in &entity-body;&gt;
490  <x:ref>entity-header</x:ref>   = &lt;entity-header, defined in &entity-header-fields;&gt;
[207]491</artwork></figure>
492<figure><!-- Part6--><artwork type="abnf2616">
[229]493  <x:ref>Cache-Control</x:ref>   = &lt;Cache-Control, defined in &header-pragma;&gt;
494  <x:ref>Pragma</x:ref>          = &lt;Pragma, defined in &header-pragma;&gt;
495  <x:ref>Warning</x:ref>         = &lt;Warning, defined in &header-warning;&gt;
[207]496</artwork></figure>
[8]497</section>
498
[207]499</section>
[391]500</section>
[207]501
[391]502<section title="HTTP architecture" anchor="architecture">
503<t>
[621]504   HTTP was created for the World Wide Web architecture
[391]505   and has evolved over time to support the scalability needs of a worldwide
506   hypertext system. Much of that architecture is reflected in the terminology
507   and syntax productions used to define HTTP.
508</t>
509
[630]510<section title="Client/Server Operation" anchor="operation">
511<iref item="client"/>
512<iref item="server"/>
513<iref item="connection"/>
[624]514<t>
[630]515   HTTP is a request/response protocol that operates by exchanging messages
516   across a reliable transport or session-layer connection. An HTTP client
517   is a program that establishes a connection to a server for the purpose
518   of sending one or more HTTP requests.  An HTTP server is a program that
519   accepts connections in order to service HTTP requests by sending HTTP
520   responses.
[624]521</t>
[630]522<iref item="user agent"/>
523<iref item="origin server"/>
[624]524<t>
[630]525   Note that the terms "client" and "server" refer only to the roles that
526   these programs perform for a particular connection.  The same program
527   may act as a client on some connections and a server on others.  We use
528   the term "user agent" to refer to the program that initiates a request,
529   such as a WWW browser, editor, or spider (web-traversing robot), and
530   the term "origin server" to refer to the program that can originate
531   authoritative responses to a request.
532</t>
533<t>
534   Most HTTP communication consists of a retrieval request (GET) for
535   a representation of some resource identified by a URI.  In the
[624]536   simplest case, this may be accomplished via a single connection (v)
537   between the user agent (UA) and the origin server (O).
538</t>
539<figure><artwork type="drawing">
540       request chain ------------------------&gt;
541    UA -------------------v------------------- O
542       &lt;----------------------- response chain
543</artwork></figure>
[630]544<iref item="message"/>
545<iref item="request"/>
546<iref item="response"/>
[624]547<t>
[630]548   A client sends an HTTP request to the server in the form of a request
549   message (<xref target="request"/>), beginning with a method, URI, and
550   protocol version, followed by MIME-like header fields containing
551   request modifiers, client information, and payload metadata, an empty
552   line, and finally the payload body (if any).
553   The server response (<xref target="response"/>) begins with a status line,
554   including the protocol version, a success or error code, and textual
555   reason phrase, followed by MIME-like header fields containing server
556   information, resource metadata, payload metadata, an empty line, and
557   finally the payload body (if any).
558</t>
[633]559<t>
[630]560   The following example illustrates a typical message exchange for a
561   GET request on the URI "http://www.example.com/hello.txt":
[633]562</t>
563<figure><preamble>
[630]564client request:
[633]565</preamble><artwork  type="message/http; msgtype=&#34;request&#34;" x:indent-with="  ">
566GET /hello.txt HTTP/1.1
567User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3
568Host: www.example.com
569Accept: */*
[634]570
[633]571</artwork></figure>
572<figure><preamble>
[630]573server response:
[633]574</preamble><artwork type="message/http; msgtype=&#34;response&#34;" x:indent-with="  ">
575HTTP/1.1 200 OK
576Date: Mon, 27 Jul 2009 12:28:53 GMT
577Server: Apache
578Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
579ETag: "34aa387-d-1568eb00"
580Accept-Ranges: bytes
581Content-Length: <x:length-of target="exbody"/>
582Vary: Accept-Encoding
583Content-Type: text/plain
[630]584
[633]585<x:span anchor="exbody">Hello World!
586</x:span></artwork></figure>
[630]587</section>
588
589<section title="Intermediaries" anchor="intermediaries">
590<t>
[624]591   A more complicated situation occurs when one or more intermediaries
592   are present in the request/response chain. There are three common
[630]593   forms of intermediary: proxy, gateway, and tunnel.  In some cases,
594   a single intermediary may act as an origin server, proxy, gateway,
595   or tunnel, switching behavior based on the nature of each request.
[624]596</t>
597<figure><artwork type="drawing">
598       request chain --------------------------------------&gt;
599    UA -----v----- A -----v----- B -----v----- C -----v----- O
600       &lt;------------------------------------- response chain
601</artwork></figure>
602<t>
603   The figure above shows three intermediaries (A, B, and C) between the
604   user agent and origin server. A request or response message that
605   travels the whole chain will pass through four separate connections.
[630]606   Some HTTP communication options
[624]607   may apply only to the connection with the nearest, non-tunnel
608   neighbor, only to the end-points of the chain, or to all connections
609   along the chain. Although the diagram is linear, each participant may
610   be engaged in multiple, simultaneous communications. For example, B
611   may be receiving requests from many clients other than A, and/or
612   forwarding requests to servers other than C, at the same time that it
613   is handling A's request.
614</t>
615<t>
[630]616<iref item="upstream"/><iref item="downstream"/>
617<iref item="inbound"/><iref item="outbound"/>
618   We use the terms "upstream" and "downstream" to describe various
619   requirements in relation to the directional flow of a message:
620   all messages flow from upstream to downstream.
621   Likewise, we use the terms "inbound" and "outbound" to refer to
622   directions in relation to the request path: "inbound" means toward
623   the origin server and "outbound" means toward the user agent.
[624]624</t>
[630]625<t><iref item="proxy"/>
626   A proxy is a message forwarding agent that is selected by the
627   client, usually via local configuration rules, to receive requests
628   for some type(s) of absolute URI and attempt to satisfy those
629   requests via translation through the HTTP interface.  Some translations
630   are minimal, such as for proxy requests for "http" URIs, whereas
631   other requests may require translation to and from entirely different
632   application-layer protocols. Proxies are often used to group an
633   organization's HTTP requests through a common intermediary for the
634   sake of security, annotation services, or shared caching.
635</t>
636<t><iref item="gateway"/><iref item="reverse proxy"/>
637   A gateway (a.k.a., reverse proxy) is a receiving agent that acts
638   as a layer above some other server(s) and translates the received
639   requests to the underlying server's protocol.  Gateways are often
640   used for load balancing or partitioning HTTP services across
641   multiple machines.
642   Unlike a proxy, a gateway receives requests as if it were the
643   origin server for the requested resource; the requesting client
644   will not be aware that it is communicating with a gateway.
645   A gateway communicates with the client as if the gateway is the
646   origin server and thus is subject to all of the requirements on
647   origin servers for that connection.  A gateway communicates
648   with inbound servers using any protocol it desires, including
649   private extensions to HTTP that are outside the scope of this
650   specification.
651</t>
652<t><iref item="tunnel"/>
653   A tunnel acts as a blind relay between two connections
654   without changing the messages. Once active, a tunnel is not
655   considered a party to the HTTP communication, though the tunnel may
656   have been initiated by an HTTP request. A tunnel ceases to exist when
657   both ends of the relayed connection are closed. Tunnels are used to
658   extend a virtual connection through an intermediary, such as when
659   transport-layer security is used to establish private communication
660   through a shared firewall proxy.
661</t>
662</section>
663
664<section title="Caches" anchor="caches">
665<iref item="cache"/>
666<t>
667   Any party to HTTP communication that is not acting as a tunnel may
668   employ an internal cache for handling requests.
669   A cache is a local store of previous response messages and the
670   subsystem that controls its message storage, retrieval, and deletion.
671   A cache stores cacheable responses in order to reduce the response
672   time and network bandwidth consumption on future, equivalent
673   requests. Any client or server may include a cache, though a cache
674   cannot be used by a server while it is acting as a tunnel.
675</t>
676<t>
677   The effect of a cache is that the request/response chain is shortened
678   if one of the participants along the chain has a cached response
679   applicable to that request. The following illustrates the resulting
680   chain if B has a cached copy of an earlier response from O (via C)
681   for a request which has not been cached by UA or A.
682</t>
[624]683<figure><artwork type="drawing">
684          request chain ----------&gt;
685       UA -----v----- A -----v----- B - - - - - - C - - - - - - O
686          &lt;--------- response chain
687</artwork></figure>
[630]688<t><iref item="cacheable"/>
689   A response is cacheable if a cache is allowed to store a copy of
690   the response message for use in answering subsequent requests.
691   Even when a response is cacheable, there may be additional
692   constraints placed by the client or by the origin server on when
693   that cached response can be used for a particular request. HTTP
694   requirements for cache behavior and cacheable responses are
[640]695   defined in &caching-overview;
[624]696</t>
697<t>
[630]698   There are a wide variety of architectures and configurations
699   of caches and proxies deployed across the World Wide Web and
700   inside large organizations. These systems include national hierarchies
[624]701   of proxy caches to save transoceanic bandwidth, systems that
702   broadcast or multicast cache entries, organizations that distribute
[639]703   subsets of cached data via optical media, and so on.
[624]704</t>
[630]705</section>
706
707<section title="Transport Independence" anchor="transport-independence">
[624]708<t>
[630]709  HTTP systems are used in a wide variety of environments, from
710  corporate intranets with high-bandwidth links to long-distance
711  communication over low-power radio links and intermittent connectivity.
712</t>
713<t>
[624]714   HTTP communication usually takes place over TCP/IP connections. The
715   default port is TCP 80 (<eref target="http://www.iana.org/assignments/port-numbers"/>), but other ports can be used. This does
716   not preclude HTTP from being implemented on top of any other protocol
717   on the Internet, or on other networks. HTTP only presumes a reliable
718   transport; any protocol that provides such guarantees can be used;
719   the mapping of the HTTP/1.1 request and response structures onto the
720   transport data units of the protocol in question is outside the scope
721   of this specification.
722</t>
723<t>
724   In HTTP/1.0, most implementations used a new connection for each
725   request/response exchange. In HTTP/1.1, a connection may be used for
726   one or more request/response exchanges, although connections may be
727   closed for a variety of reasons (see <xref target="persistent.connections"/>).
728</t>
729</section>
730
[625]731<section title="HTTP Version" anchor="http.version">
732  <x:anchor-alias value="HTTP-Version"/>
733  <x:anchor-alias value="HTTP-Prot-Name"/>
734<t>
735   HTTP uses a "&lt;major&gt;.&lt;minor&gt;" numbering scheme to indicate versions
736   of the protocol. The protocol versioning policy is intended to allow
737   the sender to indicate the format of a message and its capacity for
738   understanding further HTTP communication, rather than the features
739   obtained via that communication. No change is made to the version
740   number for the addition of message components which do not affect
741   communication behavior or which only add to extensible field values.
742   The &lt;minor&gt; number is incremented when the changes made to the
743   protocol add features which do not change the general message parsing
744   algorithm, but which may add to the message semantics and imply
745   additional capabilities of the sender. The &lt;major&gt; number is
746   incremented when the format of a message within the protocol is
747   changed. See <xref target="RFC2145"/> for a fuller explanation.
748</t>
749<t>
750   The version of an HTTP message is indicated by an HTTP-Version field
751   in the first line of the message. HTTP-Version is case-sensitive.
752</t>
753<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="HTTP-Version"/><iref primary="true" item="Grammar" subitem="HTTP-Prot-Name"/>
754  <x:ref>HTTP-Version</x:ref>   = <x:ref>HTTP-Prot-Name</x:ref> "/" 1*<x:ref>DIGIT</x:ref> "." 1*<x:ref>DIGIT</x:ref>
755  <x:ref>HTTP-Prot-Name</x:ref> = <x:abnf-char-sequence>"HTTP"</x:abnf-char-sequence> ; "HTTP", case-sensitive
756</artwork></figure>
757<t>
758   Note that the major and minor numbers &MUST; be treated as separate
759   integers and that each &MAY; be incremented higher than a single digit.
760   Thus, HTTP/2.4 is a lower version than HTTP/2.13, which in turn is
761   lower than HTTP/12.3. Leading zeros &MUST; be ignored by recipients and
762   &MUST-NOT; be sent.
763</t>
764<t>
765   An application that sends a request or response message that includes
766   HTTP-Version of "HTTP/1.1" &MUST; be at least conditionally compliant
767   with this specification. Applications that are at least conditionally
768   compliant with this specification &SHOULD; use an HTTP-Version of
769   "HTTP/1.1" in their messages, and &MUST; do so for any message that is
770   not compatible with HTTP/1.0. For more details on when to send
771   specific HTTP-Version values, see <xref target="RFC2145"/>.
772</t>
773<t>
774   The HTTP version of an application is the highest HTTP version for
775   which the application is at least conditionally compliant.
776</t>
777<t>
778   Proxy and gateway applications need to be careful when forwarding
779   messages in protocol versions different from that of the application.
780   Since the protocol version indicates the protocol capability of the
781   sender, a proxy/gateway &MUST-NOT; send a message with a version
782   indicator which is greater than its actual version. If a higher
783   version request is received, the proxy/gateway &MUST; either downgrade
784   the request version, or respond with an error, or switch to tunnel
785   behavior.
786</t>
787<t>
788   Due to interoperability problems with HTTP/1.0 proxies discovered
789   since the publication of <xref target="RFC2068"/>, caching proxies &MUST;, gateways
790   &MAY;, and tunnels &MUST-NOT; upgrade the request to the highest version
791   they support. The proxy/gateway's response to that request &MUST; be in
792   the same major version as the request.
793</t>
794<x:note>
795  <t>
796    <x:h>Note:</x:h> Converting between versions of HTTP may involve modification
797    of header fields required or forbidden by the versions involved.
798  </t>
799</x:note>
800</section>
801
[391]802<section title="Uniform Resource Identifiers" anchor="uri">
[621]803<iref primary="true" item="resource"/>
[391]804<t>
805   Uniform Resource Identifiers (URIs) <xref target="RFC3986"/> are used
806   throughout HTTP as the means for identifying resources. URI references
[621]807   are used to target requests, indicate redirects, and define relationships.
[391]808   HTTP does not limit what a resource may be; it merely defines an interface
809   that can be used to interact with a resource via HTTP. More information on
810   the scope of URIs and resources can be found in <xref target="RFC3986"/>.
811</t>
812  <x:anchor-alias value="URI"/>
813  <x:anchor-alias value="URI-reference"/>
814  <x:anchor-alias value="absolute-URI"/>
815  <x:anchor-alias value="relative-part"/>
816  <x:anchor-alias value="authority"/>
817  <x:anchor-alias value="path-abempty"/>
818  <x:anchor-alias value="path-absolute"/>
819  <x:anchor-alias value="port"/>
820  <x:anchor-alias value="query"/>
821  <x:anchor-alias value="uri-host"/>
822  <x:anchor-alias value="partial-URI"/>
823<t>
824   This specification adopts the definitions of "URI-reference",
[649]825   "absolute-URI", "relative-part", "port", "host",
[391]826   "path-abempty", "path-absolute", "query", and "authority" from
827   <xref target="RFC3986"/>. In addition, we define a partial-URI rule for
828   protocol elements that allow a relative URI without a fragment.
829</t>
830<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="URI-reference"/><iref primary="true" item="Grammar" subitem="absolute-URI"/><iref primary="true" item="Grammar" subitem="authority"/><iref primary="true" item="Grammar" subitem="path-absolute"/><iref primary="true" item="Grammar" subitem="port"/><iref primary="true" item="Grammar" subitem="query"/><iref primary="true" item="Grammar" subitem="uri-host"/>
[395]831  <x:ref>URI</x:ref>           = &lt;URI, defined in <xref target="RFC3986" x:fmt="," x:sec="3"/>&gt;
832  <x:ref>URI-reference</x:ref> = &lt;URI-reference, defined in <xref target="RFC3986" x:fmt="," x:sec="4.1"/>&gt;
833  <x:ref>absolute-URI</x:ref>  = &lt;absolute-URI, defined in <xref target="RFC3986" x:fmt="," x:sec="4.3"/>&gt;
834  <x:ref>relative-part</x:ref> = &lt;relative-part, defined in <xref target="RFC3986" x:fmt="," x:sec="4.2"/>&gt;
835  <x:ref>authority</x:ref>     = &lt;authority, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2"/>&gt;
836  <x:ref>path-abempty</x:ref>  = &lt;path-abempty, defined in <xref target="RFC3986" x:fmt="," x:sec="3.3"/>&gt;
837  <x:ref>path-absolute</x:ref> = &lt;path-absolute, defined in <xref target="RFC3986" x:fmt="," x:sec="3.3"/>&gt;
838  <x:ref>port</x:ref>          = &lt;port, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2.3"/>&gt;
839  <x:ref>query</x:ref>         = &lt;query, defined in <xref target="RFC3986" x:fmt="," x:sec="3.4"/>&gt;
840  <x:ref>uri-host</x:ref>      = &lt;host, defined in <xref target="RFC3986" x:fmt="," x:sec="3.2.2"/>&gt;
[391]841 
842  <x:ref>partial-URI</x:ref>   = relative-part [ "?" query ]
843</artwork></figure>
844<t>
845   Each protocol element in HTTP that allows a URI reference will indicate in
846   its ABNF production whether the element allows only a URI in absolute form
847   (absolute-URI), any relative reference (relative-ref), or some other subset
848   of the URI-reference grammar. Unless otherwise indicated, URI references
849   are parsed relative to the request target (the default base URI for both
850   the request and its corresponding response).
851</t>
852
853<section title="http URI scheme" anchor="http.uri">
854  <x:anchor-alias value="http-URI"/>
855  <iref item="http URI scheme" primary="true"/>
856  <iref item="URI scheme" subitem="http" primary="true"/>
857<t>
[621]858   The "http" URI scheme is hereby defined for the purpose of minting
859   identifiers according to their association with the hierarchical
860   namespace governed by a potential HTTP origin server listening for
861   TCP connections on a given port.
862   The HTTP server is identified via the generic syntax's
863   <x:ref>authority</x:ref> component, which includes a host
864   identifier and optional TCP port, and the remainder of the URI is
865   considered to be identifying data corresponding to a resource for
866   which that server might provide an HTTP interface.
[391]867</t>
868<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="http-URI"/>
869  <x:ref>http-URI</x:ref> = "http:" "//" <x:ref>authority</x:ref> <x:ref>path-abempty</x:ref> [ "?" <x:ref>query</x:ref> ]
870</artwork></figure>
871<t>
[621]872   The host identifier within an <x:ref>authority</x:ref> component is
873   defined in <xref target="RFC3986" x:fmt="," x:sec="3.2.2"/>.  If host is
874   provided as an IP literal or IPv4 address, then the HTTP server is any
875   listener on the indicated TCP port at that IP address. If host is a
876   registered name, then that name is considered an indirect identifier
877   and the recipient might use a name resolution service, such as DNS,
878   to find the address of a listener for that host.
879   The host &MUST-NOT; be empty; if an "http" URI is received with an
880   empty host, then it &MUST; be rejected as invalid.
881   If the port subcomponent is empty or not given, then TCP port 80 is
882   assumed (the default reserved port for WWW services).
[391]883</t>
[621]884<t>
885   Regardless of the form of host identifier, access to that host is not
886   implied by the mere presence of its name or address. The host may or may
887   not exist and, even when it does exist, may or may not be running an
888   HTTP server or listening to the indicated port. The "http" URI scheme
889   makes use of the delegated nature of Internet names and addresses to
890   establish a naming authority (whatever entity has the ability to place
891   an HTTP server at that Internet name or address) and allows that
892   authority to determine which names are valid and how they might be used.
893</t>
894<t>
895   When an "http" URI is used within a context that calls for access to the
896   indicated resource, a client &MAY; attempt access by resolving
897   the host to an IP address, establishing a TCP connection to that address
898   on the indicated port, and sending an HTTP request message to the server
899   containing the URI's identifying data as described in <xref target="request"/>.
900   If the server responds to that request with a non-interim HTTP response
901   message, as described in <xref target="response"/>, then that response
902   is considered an authoritative answer to the client's request.
903</t>
904<t>
905   Although HTTP is independent of the transport protocol, the "http"
906   scheme is specific to TCP-based services because the name delegation
907   process depends on TCP for establishing authority.
908   An HTTP service based on some other underlying connection protocol
909   would presumably be identified using a different URI scheme, just as
910   the "https" scheme (below) is used for servers that require an SSL/TLS
911   transport layer on a connection. Other protocols may also be used to
912   provide access to "http" identified resources --- it is only the
913   authoritative interface used for mapping the namespace that is
914   specific to TCP.
915</t>
[452]916</section>
917
918<section title="https URI scheme" anchor="https.uri">
[622]919   <x:anchor-alias value="https-URI"/>
[452]920   <iref item="https URI scheme"/>
921   <iref item="URI scheme" subitem="https"/>
922<t>
[621]923   The "https" URI scheme is hereby defined for the purpose of minting
924   identifiers according to their association with the hierarchical
925   namespace governed by a potential HTTP origin server listening for
926   SSL/TLS-secured connections on a given TCP port.
927   The host and port are determined in the same way
928   as for the "http" scheme, except that a default TCP port of 443
929   is assumed if the port subcomponent is empty or not given.
[452]930</t>
[621]931<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="https-URI"/>
932  <x:ref>https-URI</x:ref> = "https:" "//" <x:ref>authority</x:ref> <x:ref>path-abempty</x:ref> [ "?" <x:ref>query</x:ref> ]
933</artwork></figure>
934<t>
935   The primary difference between the "http" and "https" schemes is
936   that interaction with the latter is required to be secured for
937   privacy through the use of strong encryption. The URI cannot be
938   sent in a request until the connection is secure. Likewise, the
939   default for caching is that each response that would be considered
940   "public" under the "http" scheme is instead treated as "private"
941   and thus not eligible for shared caching.
942</t>
943<t>
944   The process for authoritative access to an "https" identified
945   resource is defined in <xref target="RFC2818"/>.
946</t>
[391]947</section>
948
[621]949<section title="http and https URI Normalization and Comparison" anchor="uri.comparison">
[391]950<t>
[621]951   Since the "http" and "https" schemes conform to the URI generic syntax,
952   such URIs are normalized and compared according to the algorithm defined
953   in <xref target="RFC3986" x:fmt="," x:sec="6"/>, using the defaults
954   described above for each scheme.
[391]955</t>
956<t>
[621]957   If the port is equal to the default port for a scheme, the normal
958   form is to elide the port subcomponent. Likewise, an empty path
959   component is equivalent to an absolute path of "/", so the normal
960   form is to provide a path of "/" instead. The scheme and host
961   are case-insensitive and normally provided in lowercase; all
962   other components are compared in a case-sensitive manner.
963   Characters other than those in the "reserved" set are equivalent
964   to their percent-encoded octets (see <xref target="RFC3986"
965   x:fmt="," x:sec="2.1"/>): the normal form is to not encode them.
966</t>
967<t>
[391]968   For example, the following three URIs are equivalent:
969</t>
970<figure><artwork type="example">
971   http://example.com:80/~smith/home.html
972   http://EXAMPLE.com/%7Esmith/home.html
973   http://EXAMPLE.com:/%7esmith/home.html
974</artwork></figure>
[621]975<t>
976   <cref>[[This paragraph does not belong here. --Roy]]</cref>
977   If path-abempty is the empty string (i.e., there is no slash "/"
978   path separator following the authority), then the "http" URI
979   &MUST; be given as "/" when
980   used as a request-target (<xref target="request-target"/>). If a proxy
981   receives a host name which is not a fully qualified domain name, it
982   &MAY; add its domain to the host name it received. If a proxy receives
983   a fully qualified domain name, the proxy &MUST-NOT; change the host
984   name.
985</t>
[391]986</section>
987</section>
988
[8]989<section title="HTTP Message" anchor="http.message">
[647]990<x:anchor-alias value="generic-message"/>
991<x:anchor-alias value="message.types"/>
992<x:anchor-alias value="HTTP-message"/>
993<x:anchor-alias value="start-line"/>
994<iref item="header section"/>
995<iref item="headers"/>
996<iref item="header field"/>
[8]997<t>
[647]998   All HTTP/1.1 messages consist of a start-line followed by a sequence of
999   characters in a format similar to the Internet Message Format
1000   <xref target="RFC5322"/>: zero or more header fields (collectively
1001   referred to as the "headers" or the "header section"), an empty line
1002   indicating the end of the header section, and an optional message-body.
[8]1003</t>
1004<t>
[647]1005   An HTTP message can either be a request from client to server or a
1006   response from server to client.  Syntactically, the two types of message
1007   differ only in the start-line, which is either a Request-Line (for requests)
1008   or a Status-Line (for responses), and in the algorithm for determining
1009   the length of the message-body (<xref target="message.length"/>).
1010   In theory, a client could receive requests and a server could receive
1011   responses, distinguishing them by their different start-line formats,
1012   but in practice servers are implemented to only expect a request
1013   (a response is interpreted as an unknown or invalid request method)
1014   and clients are implemented to only expect a response.
[8]1015</t>
[647]1016<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="HTTP-message"/>
1017  <x:ref>HTTP-message</x:ref>    = <x:ref>start-line</x:ref>
1018                    *( <x:ref>header-field</x:ref> <x:ref>CRLF</x:ref> )
[229]1019                    <x:ref>CRLF</x:ref>
1020                    [ <x:ref>message-body</x:ref> ]
[334]1021  <x:ref>start-line</x:ref>      = <x:ref>Request-Line</x:ref> / <x:ref>Status-Line</x:ref>
[8]1022</artwork></figure>
1023<t>
[395]1024   Whitespace (WSP) &MUST-NOT; be sent between the start-line and the first
1025   header field. The presence of whitespace might be an attempt to trick a
1026   noncompliant implementation of HTTP into ignoring that field or processing
1027   the next line as a new request, either of which may result in security
1028   issues when implementations within the request chain interpret the
1029   same message differently. HTTP/1.1 servers &MUST; reject such a message
1030   with a 400 (Bad Request) response.
1031</t>
[647]1032
1033<section title="Message Parsing Robustness" anchor="message.robustness">
1034<t>
1035   In the interest of robustness, servers &SHOULD; ignore at least one
1036   empty line received where a Request-Line is expected. In other words, if
1037   the server is reading the protocol stream at the beginning of a
1038   message and receives a CRLF first, it should ignore the CRLF.
1039</t>
1040<t>
1041   Some old HTTP/1.0 client implementations generate an extra CRLF
1042   after a POST request as a lame workaround for some early server
1043   applications that failed to read message-body content that was
1044   not terminated by a line-ending. An HTTP/1.1 client &MUST-NOT;
1045   preface or follow a request with an extra CRLF.  If terminating
1046   the request message-body with a line-ending is desired, then the
1047   client &MUST; include the terminating CRLF octets as part of the
1048   message-body length.
1049</t>
1050<t>
1051   The normal procedure for parsing an HTTP message is to read the
1052   start-line into a structure, read each header field into a hash
1053   table by field name until the empty line, and then use the parsed
1054   data to determine if a message-body is expected.  If a message-body
1055   has been indicated, then it is read as a stream until an amount
1056   of OCTETs equal to the message-length is read or the connection
1057   is closed.  Care must be taken to parse an HTTP message as a sequence
1058   of OCTETs in an encoding that is a superset of US-ASCII.  Attempting
1059   to parse HTTP as a stream of Unicode characters in a character encoding
1060   like UTF-16 may introduce security flaws due to the differing ways
1061   that such parsers interpret invalid characters.
1062</t>
[8]1063</section>
1064
[647]1065<section title="Header Fields" anchor="header.fields">
1066  <x:anchor-alias value="header-field"/>
[229]1067  <x:anchor-alias value="field-content"/>
1068  <x:anchor-alias value="field-name"/>
1069  <x:anchor-alias value="field-value"/>
[647]1070  <x:anchor-alias value="OWS"/>
[8]1071<t>
[647]1072   Each HTTP header field consists of a case-insensitive field name
1073   followed by a colon (":"), optional whitespace, and the field value.
[8]1074</t>
[647]1075<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="header-field"/><iref primary="true" item="Grammar" subitem="field-name"/><iref primary="true" item="Grammar" subitem="field-value"/><iref primary="true" item="Grammar" subitem="field-content"/>
1076  <x:ref>header-field</x:ref>   = <x:ref>field-name</x:ref> ":" OWS [ <x:ref>field-value</x:ref> ] OWS
[229]1077  <x:ref>field-name</x:ref>     = <x:ref>token</x:ref>
[369]1078  <x:ref>field-value</x:ref>    = *( <x:ref>field-content</x:ref> / <x:ref>OWS</x:ref> )
[395]1079  <x:ref>field-content</x:ref>  = *( <x:ref>WSP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
[8]1080</artwork></figure>
1081<t>
[647]1082   No whitespace is allowed between the header field name and colon. For
[395]1083   security reasons, any request message received containing such whitespace
[647]1084   &MUST; be rejected with a response code of 400 (Bad Request). A proxy
1085   &MUST; remove any such whitespace from a response message before
1086   forwarding the message downstream.
[8]1087</t>
1088<t>
[647]1089   A field value &MAY; be preceded by optional whitespace (OWS); a single SP is
1090   preferred. The field value does not include any leading or trailing white
[395]1091   space: OWS occurring before the first non-whitespace character of the
[647]1092   field value or after the last non-whitespace character of the field value
1093   is ignored and &SHOULD; be removed without changing the meaning of the header
[395]1094   field.
1095</t>
1096<t>
[647]1097   The order in which header fields with differing field names are
1098   received is not significant. However, it is "good practice" to send
1099   header fields that contain control data first, such as Host on
1100   requests and Date on responses, so that implementations can decide
1101   when not to handle a message as early as possible.  A server &MUST;
1102   wait until the entire header section is received before interpreting
1103   a request message, since later header fields might include conditionals,
1104   authentication credentials, or deliberately misleading duplicate
1105   header fields that would impact request processing.
1106</t>
1107<t>
[651]1108   Multiple header fields with the same field name &MUST-NOT; be
1109   sent in a message unless the entire field value for that
[647]1110   header field is defined as a comma-separated list [i.e., #(values)].
1111   Multiple header fields with the same field name can be combined into
1112   one "field-name: field-value" pair, without changing the semantics of the
1113   message, by appending each subsequent field value to the combined
1114   field value in order, separated by a comma. The order in which
1115   header fields with the same field name are received is therefore
1116   significant to the interpretation of the combined field value;
1117   a proxy &MUST-NOT; change the order of these field values when
1118   forwarding a message.
1119</t>
1120<x:note>
1121  <t>
1122   <x:h>Note:</x:h> the "Set-Cookie" header as implemented in
1123   practice (as opposed to how it is specified in <xref target="RFC2109"/>)
1124   can occur multiple times, but does not use the list syntax, and thus cannot
1125   be combined into a single line. (See Appendix A.2.3 of <xref target="Kri2001"/>
1126   for details.) Also note that the Set-Cookie2 header specified in
1127   <xref target="RFC2965"/> does not share this problem.
1128  </t>
1129</x:note>
1130<t>
[395]1131   Historically, HTTP header field values could be extended over multiple
1132   lines by preceding each extra line with at least one space or horizontal
1133   tab character (line folding). This specification deprecates such line
1134   folding except within the message/http media type
1135   (<xref target="internet.media.type.message.http"/>).
1136   HTTP/1.1 senders &MUST-NOT; produce messages that include line folding
1137   (i.e., that contain any field-content that matches the obs-fold rule) unless
1138   the message is intended for packaging within the message/http media type.
1139   HTTP/1.1 recipients &SHOULD; accept line folding and replace any embedded
1140   obs-fold whitespace with a single SP prior to interpreting the field value
1141   or forwarding the message downstream.
1142</t>
[647]1143<t>
1144   Historically, HTTP has allowed field content with text in the ISO-8859-1
1145   <xref target="ISO-8859-1"/> character encoding and supported other
1146   character sets only through use of <xref target="RFC2047"/> encoding.
1147   In practice, most HTTP header field values use only a subset of the
1148   US-ASCII character encoding <xref target="USASCII"/>. Newly defined
1149   header fields &SHOULD; limit their field values to US-ASCII characters.
1150   Recipients &SHOULD; treat other (obs-text) octets in field content as
1151   opaque data.
1152</t>
[395]1153<t anchor="rule.comment">
1154  <x:anchor-alias value="comment"/>
1155  <x:anchor-alias value="ctext"/>
1156   Comments can be included in some HTTP header fields by surrounding
1157   the comment text with parentheses. Comments are only allowed in
1158   fields containing "comment" as part of their field value definition.
1159</t>
1160<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="comment"/><iref primary="true" item="Grammar" subitem="ctext"/>
1161  <x:ref>comment</x:ref>        = "(" *( <x:ref>ctext</x:ref> / <x:ref>quoted-pair</x:ref> / <x:ref>comment</x:ref> ) ")"
[574]1162  <x:ref>ctext</x:ref>          = <x:ref>OWS</x:ref> / %x21-27 / %x2A-5B / %x5D-7E / <x:ref>obs-text</x:ref>
1163                 ; <x:ref>OWS</x:ref> / &lt;<x:ref>VCHAR</x:ref> except "(", ")", and "\"&gt; / <x:ref>obs-text</x:ref>
[395]1164</artwork></figure>
[310]1165 
[8]1166</section>
1167
1168<section title="Message Body" anchor="message.body">
[229]1169  <x:anchor-alias value="message-body"/>
[8]1170<t>
1171   The message-body (if any) of an HTTP message is used to carry the
1172   entity-body associated with the request or response. The message-body
1173   differs from the entity-body only when a transfer-coding has been
1174   applied, as indicated by the Transfer-Encoding header field (<xref target="header.transfer-encoding"/>).
1175</t>
1176<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="message-body"/>
[229]1177  <x:ref>message-body</x:ref> = <x:ref>entity-body</x:ref>
[334]1178               / &lt;entity-body encoded as per <x:ref>Transfer-Encoding</x:ref>&gt;
[8]1179</artwork></figure>
1180<t>
1181   Transfer-Encoding &MUST; be used to indicate any transfer-codings
1182   applied by an application to ensure safe and proper transfer of the
1183   message. Transfer-Encoding is a property of the message, not of the
1184   entity, and thus &MAY; be added or removed by any application along the
1185   request/response chain. (However, <xref target="transfer.codings"/> places restrictions on
1186   when certain transfer-codings may be used.)
1187</t>
1188<t>
1189   The rules for when a message-body is allowed in a message differ for
1190   requests and responses.
1191</t>
1192<t>
1193   The presence of a message-body in a request is signaled by the
1194   inclusion of a Content-Length or Transfer-Encoding header field in
[647]1195   the request's header fields.
[171]1196   When a request message contains both a message-body of non-zero
1197   length and a method that does not define any semantics for that
1198   request message-body, then an origin server &SHOULD; either ignore
1199   the message-body or respond with an appropriate error message
1200   (e.g., 413).  A proxy or gateway, when presented the same request,
1201   &SHOULD; either forward the request inbound with the message-body or
1202   ignore the message-body when determining a response.
[8]1203</t>
1204<t>
1205   For response messages, whether or not a message-body is included with
1206   a message is dependent on both the request method and the response
1207   status code (<xref target="status.code.and.reason.phrase"/>). All responses to the HEAD request method
1208   &MUST-NOT; include a message-body, even though the presence of entity-header
1209   fields might lead one to believe they do. All 1xx
[137]1210   (informational), 204 (No Content), and 304 (Not Modified) responses
[8]1211   &MUST-NOT; include a message-body. All other responses do include a
1212   message-body, although it &MAY; be of zero length.
1213</t>
1214</section>
1215
1216<section title="Message Length" anchor="message.length">
1217<t>
1218   The transfer-length of a message is the length of the message-body as
1219   it appears in the message; that is, after any transfer-codings have
1220   been applied. When a message-body is included with a message, the
1221   transfer-length of that body is determined by one of the following
1222   (in order of precedence):
1223</t>
1224<t>
1225  <list style="numbers">
1226    <x:lt><t>
1227     Any response message which "&MUST-NOT;" include a message-body (such
1228     as the 1xx, 204, and 304 responses and any response to a HEAD
1229     request) is always terminated by the first empty line after the
1230     header fields, regardless of the entity-header fields present in
1231     the message.
1232    </t></x:lt>
1233    <x:lt><t>
[85]1234     If a Transfer-Encoding header field (<xref target="header.transfer-encoding"/>)
[276]1235     is present and the "chunked" transfer-coding (<xref target="transfer.codings"/>)
1236     is used, the transfer-length is defined by the use of this transfer-coding.
1237     If a Transfer-Encoding header field is present and the "chunked" transfer-coding
1238     is not present, the transfer-length is defined by the sender closing the connection.
[8]1239    </t></x:lt>
1240    <x:lt><t>
1241     If a Content-Length header field (<xref target="header.content-length"/>) is present, its
[576]1242     value in OCTETs represents both the entity-length and the
[8]1243     transfer-length. The Content-Length header field &MUST-NOT; be sent
1244     if these two lengths are different (i.e., if a Transfer-Encoding
1245     header field is present). If a message is received with both a
1246     Transfer-Encoding header field and a Content-Length header field,
1247     the latter &MUST; be ignored.
1248    </t></x:lt>
1249    <x:lt><t>
1250     If the message uses the media type "multipart/byteranges", and the
[71]1251     transfer-length is not otherwise specified, then this self-delimiting
[8]1252     media type defines the transfer-length. This media type
[71]1253     &MUST-NOT; be used unless the sender knows that the recipient can parse
1254     it; the presence in a request of a Range header with multiple byte-range
1255     specifiers from a 1.1 client implies that the client can parse
[8]1256     multipart/byteranges responses.
1257    <list style="empty"><t>
1258       A range header might be forwarded by a 1.0 proxy that does not
1259       understand multipart/byteranges; in this case the server &MUST;
1260       delimit the message using methods defined in items 1, 3 or 5 of
1261       this section.
1262    </t></list>
1263    </t></x:lt>
1264    <x:lt><t>
1265     By the server closing the connection. (Closing the connection
1266     cannot be used to indicate the end of a request body, since that
1267     would leave no possibility for the server to send back a response.)
1268    </t></x:lt>
1269  </list>
1270</t>
1271<t>
1272   For compatibility with HTTP/1.0 applications, HTTP/1.1 requests
1273   containing a message-body &MUST; include a valid Content-Length header
1274   field unless the server is known to be HTTP/1.1 compliant. If a
1275   request contains a message-body and a Content-Length is not given,
[137]1276   the server &SHOULD; respond with 400 (Bad Request) if it cannot
1277   determine the length of the message, or with 411 (Length Required) if
[8]1278   it wishes to insist on receiving a valid Content-Length.
1279</t>
1280<t>
1281   All HTTP/1.1 applications that receive entities &MUST; accept the
1282   "chunked" transfer-coding (<xref target="transfer.codings"/>), thus allowing this mechanism
1283   to be used for messages when the message length cannot be determined
1284   in advance.
1285</t>
1286<t>
1287   Messages &MUST-NOT; include both a Content-Length header field and a
[85]1288   transfer-coding. If the message does include a
[8]1289   transfer-coding, the Content-Length &MUST; be ignored.
1290</t>
1291<t>
1292   When a Content-Length is given in a message where a message-body is
1293   allowed, its field value &MUST; exactly match the number of OCTETs in
1294   the message-body. HTTP/1.1 user agents &MUST; notify the user when an
1295   invalid length is received and detected.
1296</t>
1297</section>
1298
1299<section title="General Header Fields" anchor="general.header.fields">
[229]1300  <x:anchor-alias value="general-header"/>
[8]1301<t>
1302   There are a few header fields which have general applicability for
1303   both request and response messages, but which do not apply to the
1304   entity being transferred. These header fields apply only to the
1305   message being transmitted.
1306</t>
1307<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="general-header"/>
[229]1308  <x:ref>general-header</x:ref> = <x:ref>Cache-Control</x:ref>            ; &header-cache-control;
[334]1309                 / <x:ref>Connection</x:ref>               ; <xref target="header.connection"/>
1310                 / <x:ref>Date</x:ref>                     ; <xref target="header.date"/>
1311                 / <x:ref>Pragma</x:ref>                   ; &header-pragma;
1312                 / <x:ref>Trailer</x:ref>                  ; <xref target="header.trailer"/>
1313                 / <x:ref>Transfer-Encoding</x:ref>        ; <xref target="header.transfer-encoding"/>
1314                 / <x:ref>Upgrade</x:ref>                  ; <xref target="header.upgrade"/>
1315                 / <x:ref>Via</x:ref>                      ; <xref target="header.via"/>
1316                 / <x:ref>Warning</x:ref>                  ; &header-warning;
[8]1317</artwork></figure>
1318<t>
1319   General-header field names can be extended reliably only in
1320   combination with a change in the protocol version. However, new or
1321   experimental header fields may be given the semantics of general
1322   header fields if all parties in the communication recognize them to
1323   be general-header fields. Unrecognized header fields are treated as
1324   entity-header fields.
1325</t>
1326</section>
1327</section>
1328
1329<section title="Request" anchor="request">
[229]1330  <x:anchor-alias value="Request"/>
[8]1331<t>
1332   A request message from a client to a server includes, within the
1333   first line of that message, the method to be applied to the resource,
1334   the identifier of the resource, and the protocol version in use.
1335</t>
[29]1336<!--                 Host                      ; should be moved here eventually -->
[8]1337<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Request"/>
[229]1338  <x:ref>Request</x:ref>       = <x:ref>Request-Line</x:ref>              ; <xref target="request-line"/>
1339                  *(( <x:ref>general-header</x:ref>        ; <xref target="general.header.fields"/>
[334]1340                   / <x:ref>request-header</x:ref>         ; &request-header-fields;
[636]1341                   / <x:ref>entity-header</x:ref> ) <x:ref>CRLF</x:ref> ) ; &entity-header-fields;
[229]1342                  <x:ref>CRLF</x:ref>
1343                  [ <x:ref>message-body</x:ref> ]          ; <xref target="message.body"/>
[8]1344</artwork></figure>
1345
1346<section title="Request-Line" anchor="request-line">
[229]1347  <x:anchor-alias value="Request-Line"/>
[8]1348<t>
1349   The Request-Line begins with a method token, followed by the
[391]1350   request-target and the protocol version, and ending with CRLF. The
[8]1351   elements are separated by SP characters. No CR or LF is allowed
1352   except in the final CRLF sequence.
1353</t>
1354<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Request-Line"/>
[391]1355  <x:ref>Request-Line</x:ref>   = <x:ref>Method</x:ref> <x:ref>SP</x:ref> <x:ref>request-target</x:ref> <x:ref>SP</x:ref> <x:ref>HTTP-Version</x:ref> <x:ref>CRLF</x:ref>
[8]1356</artwork></figure>
1357
1358<section title="Method" anchor="method">
[229]1359  <x:anchor-alias value="Method"/>
[8]1360<t>
1361   The Method  token indicates the method to be performed on the
[391]1362   resource identified by the request-target. The method is case-sensitive.
[8]1363</t>
1364<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Method"/><iref primary="true" item="Grammar" subitem="extension-method"/>
[229]1365  <x:ref>Method</x:ref>         = <x:ref>token</x:ref>
[8]1366</artwork></figure>
1367</section>
1368
[391]1369<section title="request-target" anchor="request-target">
1370  <x:anchor-alias value="request-target"/>
[8]1371<t>
[452]1372   The request-target
[8]1373   identifies the resource upon which to apply the request.
1374</t>
[391]1375<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="request-target"/>
[404]1376  <x:ref>request-target</x:ref> = "*"
[374]1377                 / <x:ref>absolute-URI</x:ref>
[334]1378                 / ( <x:ref>path-absolute</x:ref> [ "?" <x:ref>query</x:ref> ] )
1379                 / <x:ref>authority</x:ref>
[8]1380</artwork></figure>
1381<t>
[391]1382   The four options for request-target are dependent on the nature of the
[8]1383   request. The asterisk "*" means that the request does not apply to a
1384   particular resource, but to the server itself, and is only allowed
1385   when the method used does not necessarily apply to a resource. One
1386   example would be
1387</t>
1388<figure><artwork type="example">
[402]1389  OPTIONS * HTTP/1.1
[8]1390</artwork></figure>
1391<t>
[374]1392   The absolute-URI form is &REQUIRED; when the request is being made to a
[8]1393   proxy. The proxy is requested to forward the request or service it
1394   from a valid cache, and return the response. Note that the proxy &MAY;
1395   forward the request on to another proxy or directly to the server
[374]1396   specified by the absolute-URI. In order to avoid request loops, a
[8]1397   proxy &MUST; be able to recognize all of its server names, including
1398   any aliases, local variations, and the numeric IP address. An example
1399   Request-Line would be:
1400</t>
1401<figure><artwork type="example">
[402]1402  GET http://www.example.org/pub/WWW/TheProject.html HTTP/1.1
[8]1403</artwork></figure>
1404<t>
[374]1405   To allow for transition to absolute-URIs in all requests in future
1406   versions of HTTP, all HTTP/1.1 servers &MUST; accept the absolute-URI
[8]1407   form in requests, even though HTTP/1.1 clients will only generate
1408   them in requests to proxies.
1409</t>
1410<t>
[29]1411   The authority form is only used by the CONNECT method (&CONNECT;).
[8]1412</t>
1413<t>
[391]1414   The most common form of request-target is that used to identify a
[8]1415   resource on an origin server or gateway. In this case the absolute
[374]1416   path of the URI &MUST; be transmitted (see <xref target="http.uri"/>, path-absolute) as
[391]1417   the request-target, and the network location of the URI (authority) &MUST;
[8]1418   be transmitted in a Host header field. For example, a client wishing
1419   to retrieve the resource above directly from the origin server would
[90]1420   create a TCP connection to port 80 of the host "www.example.org" and send
[8]1421   the lines:
1422</t>
1423<figure><artwork type="example">
[402]1424  GET /pub/WWW/TheProject.html HTTP/1.1
1425  Host: www.example.org
[8]1426</artwork></figure>
1427<t>
1428   followed by the remainder of the Request. Note that the absolute path
1429   cannot be empty; if none is present in the original URI, it &MUST; be
1430   given as "/" (the server root).
1431</t>
1432<t>
[403]1433   If a proxy receives a request without any path in the request-target and
1434   the method specified is capable of supporting the asterisk form of
1435   request-target, then the last proxy on the request chain &MUST; forward the
1436   request with "*" as the final request-target.
1437</t>
1438<figure><preamble>   
1439   For example, the request
1440</preamble><artwork type="example">
1441  OPTIONS http://www.example.org:8001 HTTP/1.1
1442</artwork></figure>
1443<figure><preamble>   
1444  would be forwarded by the proxy as
1445</preamble><artwork type="example">
1446  OPTIONS * HTTP/1.1
1447  Host: www.example.org:8001
1448</artwork>
1449<postamble>
1450   after connecting to port 8001 of host "www.example.org".
1451</postamble>
1452</figure>
1453<t>
[391]1454   The request-target is transmitted in the format specified in
[452]1455   <xref target="http.uri"/>. If the request-target is percent-encoded
1456   (<xref target="RFC3986" x:fmt="," x:sec="2.1"/>), the origin server
[391]1457   &MUST; decode the request-target in order to
[8]1458   properly interpret the request. Servers &SHOULD; respond to invalid
[391]1459   request-targets with an appropriate status code.
[8]1460</t>
1461<t>
[185]1462   A transparent proxy &MUST-NOT; rewrite the "path-absolute" part of the
[391]1463   received request-target when forwarding it to the next inbound server,
[185]1464   except as noted above to replace a null path-absolute with "/".
[8]1465</t>
[563]1466<x:note>
1467  <t>
1468    <x:h>Note:</x:h> The "no rewrite" rule prevents the proxy from changing the
1469    meaning of the request when the origin server is improperly using
1470    a non-reserved URI character for a reserved purpose.  Implementors
1471    should be aware that some pre-HTTP/1.1 proxies have been known to
1472    rewrite the request-target.
1473  </t>
1474</x:note>
[8]1475<t>
[391]1476   HTTP does not place a pre-defined limit on the length of a request-target.
1477   A server &MUST; be prepared to receive URIs of unbounded length and
[452]1478   respond with the 414 (URI Too Long) status if the received
[391]1479   request-target would be longer than the server wishes to handle
1480   (see &status-414;).
1481</t>
1482<t>
1483   Various ad-hoc limitations on request-target length are found in practice.
1484   It is &RECOMMENDED; that all HTTP senders and recipients support
1485   request-target lengths of 8000 or more OCTETs.
1486</t>
[8]1487</section>
1488</section>
1489
1490<section title="The Resource Identified by a Request" anchor="the.resource.identified.by.a.request">
1491<t>
1492   The exact resource identified by an Internet request is determined by
[391]1493   examining both the request-target and the Host header field.
[8]1494</t>
1495<t>
1496   An origin server that does not allow resources to differ by the
1497   requested host &MAY; ignore the Host header field value when
1498   determining the resource identified by an HTTP/1.1 request. (But see
1499   <xref target="changes.to.simplify.multi-homed.web.servers.and.conserve.ip.addresses"/>
1500   for other requirements on Host support in HTTP/1.1.)
1501</t>
1502<t>
1503   An origin server that does differentiate resources based on the host
1504   requested (sometimes referred to as virtual hosts or vanity host
1505   names) &MUST; use the following rules for determining the requested
1506   resource on an HTTP/1.1 request:
1507  <list style="numbers">
[391]1508    <t>If request-target is an absolute-URI, the host is part of the
1509     request-target. Any Host header field value in the request &MUST; be
[8]1510     ignored.</t>
[391]1511    <t>If the request-target is not an absolute-URI, and the request includes
[8]1512     a Host header field, the host is determined by the Host header
1513     field value.</t>
1514    <t>If the host as determined by rule 1 or 2 is not a valid host on
1515     the server, the response &MUST; be a 400 (Bad Request) error message.</t>
1516  </list>
1517</t>
1518<t>
1519   Recipients of an HTTP/1.0 request that lacks a Host header field &MAY;
1520   attempt to use heuristics (e.g., examination of the URI path for
1521   something unique to a particular host) in order to determine what
1522   exact resource is being requested.
1523</t>
1524</section>
1525
1526</section>
1527
1528
1529<section title="Response" anchor="response">
[229]1530  <x:anchor-alias value="Response"/>
[8]1531<t>
1532   After receiving and interpreting a request message, a server responds
1533   with an HTTP response message.
1534</t>
1535<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Response"/>
[229]1536  <x:ref>Response</x:ref>      = <x:ref>Status-Line</x:ref>               ; <xref target="status-line"/>
1537                  *(( <x:ref>general-header</x:ref>        ; <xref target="general.header.fields"/>
[334]1538                   / <x:ref>response-header</x:ref>        ; &response-header-fields;
[429]1539                   / <x:ref>entity-header</x:ref> ) <x:ref>CRLF</x:ref> )  ; &entity-header-fields;
[229]1540                  <x:ref>CRLF</x:ref>
1541                  [ <x:ref>message-body</x:ref> ]          ; <xref target="message.body"/>
[8]1542</artwork></figure>
1543
1544<section title="Status-Line" anchor="status-line">
[229]1545  <x:anchor-alias value="Status-Line"/>
[8]1546<t>
1547   The first line of a Response message is the Status-Line, consisting
1548   of the protocol version followed by a numeric status code and its
1549   associated textual phrase, with each element separated by SP
1550   characters. No CR or LF is allowed except in the final CRLF sequence.
1551</t>
1552<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Status-Line"/>
[229]1553  <x:ref>Status-Line</x:ref> = <x:ref>HTTP-Version</x:ref> <x:ref>SP</x:ref> <x:ref>Status-Code</x:ref> <x:ref>SP</x:ref> <x:ref>Reason-Phrase</x:ref> <x:ref>CRLF</x:ref>
[8]1554</artwork></figure>
1555
1556<section title="Status Code and Reason Phrase" anchor="status.code.and.reason.phrase">
[229]1557  <x:anchor-alias value="Reason-Phrase"/>
1558  <x:anchor-alias value="Status-Code"/>
[8]1559<t>
1560   The Status-Code element is a 3-digit integer result code of the
1561   attempt to understand and satisfy the request. These codes are fully
[198]1562   defined in &status-codes;.  The Reason Phrase exists for the sole
1563   purpose of providing a textual description associated with the numeric
1564   status code, out of deference to earlier Internet application protocols
1565   that were more frequently used with interactive text clients.
1566   A client &SHOULD; ignore the content of the Reason Phrase.
[8]1567</t>
1568<t>
1569   The first digit of the Status-Code defines the class of response. The
1570   last two digits do not have any categorization role. There are 5
1571   values for the first digit:
1572  <list style="symbols">
1573    <t>
1574      1xx: Informational - Request received, continuing process
1575    </t>
1576    <t>
1577      2xx: Success - The action was successfully received,
1578        understood, and accepted
1579    </t>
1580    <t>
1581      3xx: Redirection - Further action must be taken in order to
1582        complete the request
1583    </t>
1584    <t>
1585      4xx: Client Error - The request contains bad syntax or cannot
1586        be fulfilled
1587    </t>
1588    <t>
1589      5xx: Server Error - The server failed to fulfill an apparently
1590        valid request
1591    </t>
1592  </list>
1593</t>
1594<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Status-Code"/><iref primary="true" item="Grammar" subitem="extension-code"/><iref primary="true" item="Grammar" subitem="Reason-Phrase"/>
[229]1595  <x:ref>Status-Code</x:ref>    = 3<x:ref>DIGIT</x:ref>
[395]1596  <x:ref>Reason-Phrase</x:ref>  = *( <x:ref>WSP</x:ref> / <x:ref>VCHAR</x:ref> / <x:ref>obs-text</x:ref> )
[8]1597</artwork></figure>
1598</section>
1599</section>
1600
1601</section>
1602
1603
[623]1604<section title="Protocol Parameters" anchor="protocol.parameters">
1605
1606<section title="Date/Time Formats: Full Date" anchor="date.time.formats.full.date">
1607  <x:anchor-alias value="HTTP-date"/>
1608<t>
1609   HTTP applications have historically allowed three different formats
1610   for the representation of date/time stamps:
1611</t>
1612<figure><artwork type="example">
1613  Sun, 06 Nov 1994 08:49:37 GMT  ; RFC 1123
1614  Sunday, 06-Nov-94 08:49:37 GMT ; obsolete RFC 850 format
1615  Sun Nov  6 08:49:37 1994       ; ANSI C's asctime() format
1616</artwork></figure>
1617<t>
1618   The first format is preferred as an Internet standard and represents
1619   a fixed-length subset of that defined by <xref target="RFC1123"/>. The
1620   other formats are described here only for
1621   compatibility with obsolete implementations.
1622   HTTP/1.1 clients and servers that parse the date value &MUST; accept
1623   all three formats (for compatibility with HTTP/1.0), though they &MUST;
1624   only generate the RFC 1123 format for representing HTTP-date values
1625   in header fields. See <xref target="tolerant.applications"/> for further information.
1626</t>
1627<t>
1628   All HTTP date/time stamps &MUST; be represented in Greenwich Mean Time
1629   (GMT), without exception. For the purposes of HTTP, GMT is exactly
1630   equal to UTC (Coordinated Universal Time). This is indicated in the
1631   first two formats by the inclusion of "GMT" as the three-letter
1632   abbreviation for time zone, and &MUST; be assumed when reading the
1633   asctime format. HTTP-date is case sensitive and &MUST-NOT; include
1634   additional whitespace beyond that specifically included as SP in the
1635   grammar.
1636</t>
1637<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="HTTP-date"/>
1638  <x:ref>HTTP-date</x:ref>    = <x:ref>rfc1123-date</x:ref> / <x:ref>obs-date</x:ref>
1639</artwork></figure>
1640<t anchor="preferred.date.format">
1641  <x:anchor-alias value="rfc1123-date"/>
1642  <x:anchor-alias value="time-of-day"/>
1643  <x:anchor-alias value="hour"/>
1644  <x:anchor-alias value="minute"/>
1645  <x:anchor-alias value="second"/>
1646  <x:anchor-alias value="day-name"/>
1647  <x:anchor-alias value="day"/>
1648  <x:anchor-alias value="month"/>
1649  <x:anchor-alias value="year"/>
1650  <x:anchor-alias value="GMT"/>
1651  Preferred format:
1652</t>
1653<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="rfc1123-date"/><iref primary="true" item="Grammar" subitem="date1"/><iref primary="true" item="Grammar" subitem="time-of-day"/><iref primary="true" item="Grammar" subitem="hour"/><iref primary="true" item="Grammar" subitem="minute"/><iref primary="true" item="Grammar" subitem="second"/><iref primary="true" item="Grammar" subitem="day-name"/><iref primary="true" item="Grammar" subitem="day-name-l"/><iref primary="true" item="Grammar" subitem="day"/><iref primary="true" item="Grammar" subitem="month"/><iref primary="true" item="Grammar" subitem="year"/><iref primary="true" item="Grammar" subitem="GMT"/>
1654  <x:ref>rfc1123-date</x:ref> = <x:ref>day-name</x:ref> "," <x:ref>SP</x:ref> date1 <x:ref>SP</x:ref> <x:ref>time-of-day</x:ref> <x:ref>SP</x:ref> <x:ref>GMT</x:ref>
1655
1656  <x:ref>day-name</x:ref>     = <x:abnf-char-sequence>"Mon"</x:abnf-char-sequence> ; "Mon", case-sensitive
1657               / <x:abnf-char-sequence>"Tue"</x:abnf-char-sequence> ; "Tue", case-sensitive
1658               / <x:abnf-char-sequence>"Wed"</x:abnf-char-sequence> ; "Wed", case-sensitive
1659               / <x:abnf-char-sequence>"Thu"</x:abnf-char-sequence> ; "Thu", case-sensitive
1660               / <x:abnf-char-sequence>"Fri"</x:abnf-char-sequence> ; "Fri", case-sensitive
1661               / <x:abnf-char-sequence>"Sat"</x:abnf-char-sequence> ; "Sat", case-sensitive
1662               / <x:abnf-char-sequence>"Sun"</x:abnf-char-sequence> ; "Sun", case-sensitive
1663               
1664  <x:ref>date1</x:ref>        = <x:ref>day</x:ref> <x:ref>SP</x:ref> <x:ref>month</x:ref> <x:ref>SP</x:ref> <x:ref>year</x:ref>
1665               ; e.g., 02 Jun 1982
1666
1667  <x:ref>day</x:ref>          = 2<x:ref>DIGIT</x:ref>
1668  <x:ref>month</x:ref>        = <x:abnf-char-sequence>"Jan"</x:abnf-char-sequence> ; "Jan", case-sensitive
1669               / <x:abnf-char-sequence>"Feb"</x:abnf-char-sequence> ; "Feb", case-sensitive
1670               / <x:abnf-char-sequence>"Mar"</x:abnf-char-sequence> ; "Mar", case-sensitive
1671               / <x:abnf-char-sequence>"Apr"</x:abnf-char-sequence> ; "Apr", case-sensitive
1672               / <x:abnf-char-sequence>"May"</x:abnf-char-sequence> ; "May", case-sensitive
1673               / <x:abnf-char-sequence>"Jun"</x:abnf-char-sequence> ; "Jun", case-sensitive
1674               / <x:abnf-char-sequence>"Jul"</x:abnf-char-sequence> ; "Jul", case-sensitive
1675               / <x:abnf-char-sequence>"Aug"</x:abnf-char-sequence> ; "Aug", case-sensitive
1676               / <x:abnf-char-sequence>"Sep"</x:abnf-char-sequence> ; "Sep", case-sensitive
1677               / <x:abnf-char-sequence>"Oct"</x:abnf-char-sequence> ; "Oct", case-sensitive
1678               / <x:abnf-char-sequence>"Nov"</x:abnf-char-sequence> ; "Nov", case-sensitive
1679               / <x:abnf-char-sequence>"Dec"</x:abnf-char-sequence> ; "Dec", case-sensitive
1680  <x:ref>year</x:ref>         = 4<x:ref>DIGIT</x:ref>
1681
1682  <x:ref>GMT</x:ref>   = <x:abnf-char-sequence>"GMT"</x:abnf-char-sequence> ; "GMT", case-sensitive
1683
1684  <x:ref>time-of-day</x:ref>  = <x:ref>hour</x:ref> ":" <x:ref>minute</x:ref> ":" <x:ref>second</x:ref>
1685                 ; 00:00:00 - 23:59:59
1686                 
1687  <x:ref>hour</x:ref>         = 2<x:ref>DIGIT</x:ref>               
1688  <x:ref>minute</x:ref>       = 2<x:ref>DIGIT</x:ref>               
1689  <x:ref>second</x:ref>       = 2<x:ref>DIGIT</x:ref>               
1690</artwork></figure>
1691<t>
1692  The semantics of <x:ref>day-name</x:ref>, <x:ref>day</x:ref>,
1693  <x:ref>month</x:ref>, <x:ref>year</x:ref>, and <x:ref>time-of-day</x:ref> are the
1694  same as those defined for the RFC 5322 constructs
1695  with the corresponding name (<xref target="RFC5322" x:fmt="," x:sec="3.3"/>).
1696</t>
1697<t anchor="obsolete.date.formats">
1698  <x:anchor-alias value="obs-date"/>
1699  <x:anchor-alias value="rfc850-date"/>
1700  <x:anchor-alias value="asctime-date"/>
1701  <x:anchor-alias value="date1"/>
1702  <x:anchor-alias value="date2"/>
1703  <x:anchor-alias value="date3"/>
1704  <x:anchor-alias value="rfc1123-date"/>
1705  <x:anchor-alias value="day-name-l"/>
1706  Obsolete formats:
1707</t>
1708<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="obs-date"/>
1709  <x:ref>obs-date</x:ref>     = <x:ref>rfc850-date</x:ref> / <x:ref>asctime-date</x:ref> 
1710</artwork></figure>
1711<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="rfc850-date"/>
1712  <x:ref>rfc850-date</x:ref>  = <x:ref>day-name-l</x:ref> "," <x:ref>SP</x:ref> <x:ref>date2</x:ref> <x:ref>SP</x:ref> <x:ref>time-of-day</x:ref> <x:ref>SP</x:ref> <x:ref>GMT</x:ref>
1713  <x:ref>date2</x:ref>        = <x:ref>day</x:ref> "-" <x:ref>month</x:ref> "-" 2<x:ref>DIGIT</x:ref>
1714                 ; day-month-year (e.g., 02-Jun-82)
1715
1716  <x:ref>day-name-l</x:ref>   = <x:abnf-char-sequence>"Monday"</x:abnf-char-sequence> ; "Monday", case-sensitive
1717         / <x:abnf-char-sequence>"Tuesday"</x:abnf-char-sequence> ; "Tuesday", case-sensitive
1718         / <x:abnf-char-sequence>"Wednesday"</x:abnf-char-sequence> ; "Wednesday", case-sensitive
1719         / <x:abnf-char-sequence>"Thursday"</x:abnf-char-sequence> ; "Thursday", case-sensitive
1720         / <x:abnf-char-sequence>"Friday"</x:abnf-char-sequence> ; "Friday", case-sensitive
1721         / <x:abnf-char-sequence>"Saturday"</x:abnf-char-sequence> ; "Saturday", case-sensitive
1722         / <x:abnf-char-sequence>"Sunday"</x:abnf-char-sequence> ; "Sunday", case-sensitive
1723</artwork></figure>
1724<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="asctime-date"/>
1725  <x:ref>asctime-date</x:ref> = <x:ref>day-name</x:ref> <x:ref>SP</x:ref> <x:ref>date3</x:ref> <x:ref>SP</x:ref> <x:ref>time-of-day</x:ref> <x:ref>SP</x:ref> <x:ref>year</x:ref>
1726  <x:ref>date3</x:ref>        = <x:ref>month</x:ref> <x:ref>SP</x:ref> ( 2<x:ref>DIGIT</x:ref> / ( <x:ref>SP</x:ref> 1<x:ref>DIGIT</x:ref> ))
1727                 ; month day (e.g., Jun  2)
1728</artwork></figure>
1729<x:note>
1730  <t>
1731    <x:h>Note:</x:h> Recipients of date values are encouraged to be robust in
1732    accepting date values that may have been sent by non-HTTP
1733    applications, as is sometimes the case when retrieving or posting
1734    messages via proxies/gateways to SMTP or NNTP.
1735  </t>
1736</x:note>
1737<x:note>
1738  <t>
1739    <x:h>Note:</x:h> HTTP requirements for the date/time stamp format apply only
1740    to their usage within the protocol stream. Clients and servers are
1741    not required to use these formats for user presentation, request
1742    logging, etc.
1743  </t>
1744</x:note>
1745</section>
1746
1747<section title="Transfer Codings" anchor="transfer.codings">
1748  <x:anchor-alias value="transfer-coding"/>
1749  <x:anchor-alias value="transfer-extension"/>
1750<t>
1751   Transfer-coding values are used to indicate an encoding
1752   transformation that has been, can be, or may need to be applied to an
1753   entity-body in order to ensure "safe transport" through the network.
1754   This differs from a content coding in that the transfer-coding is a
1755   property of the message, not of the original entity.
1756</t>
1757<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="transfer-coding"/><iref primary="true" item="Grammar" subitem="transfer-extension"/>
1758  <x:ref>transfer-coding</x:ref>         = "chunked" / <x:ref>transfer-extension</x:ref>
1759  <x:ref>transfer-extension</x:ref>      = <x:ref>token</x:ref> *( <x:ref>OWS</x:ref> ";" <x:ref>OWS</x:ref> <x:ref>transfer-parameter</x:ref> )
1760</artwork></figure>
1761<t anchor="rule.parameter">
1762  <x:anchor-alias value="attribute"/>
1763  <x:anchor-alias value="transfer-parameter"/>
1764  <x:anchor-alias value="value"/>
1765   Parameters are in  the form of attribute/value pairs.
1766</t>
1767<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="transfer-parameter"/><iref primary="true" item="Grammar" subitem="attribute"/><iref primary="true" item="Grammar" subitem="value"/><iref primary="true" item="Grammar" subitem="date2"/><iref primary="true" item="Grammar" subitem="date3"/>
1768  <x:ref>transfer-parameter</x:ref>      = <x:ref>attribute</x:ref> <x:ref>BWS</x:ref> "=" <x:ref>BWS</x:ref> <x:ref>value</x:ref>
1769  <x:ref>attribute</x:ref>               = <x:ref>token</x:ref>
1770  <x:ref>value</x:ref>                   = <x:ref>token</x:ref> / <x:ref>quoted-string</x:ref>
1771</artwork></figure>
1772<t>
1773   All transfer-coding values are case-insensitive. HTTP/1.1 uses
1774   transfer-coding values in the TE header field (<xref target="header.te"/>) and in
1775   the Transfer-Encoding header field (<xref target="header.transfer-encoding"/>).
1776</t>
1777<t>
1778   Whenever a transfer-coding is applied to a message-body, the set of
1779   transfer-codings &MUST; include "chunked", unless the message indicates it
1780   is terminated by closing the connection. When the "chunked" transfer-coding
1781   is used, it &MUST; be the last transfer-coding applied to the
1782   message-body. The "chunked" transfer-coding &MUST-NOT; be applied more
1783   than once to a message-body. These rules allow the recipient to
1784   determine the transfer-length of the message (<xref target="message.length"/>).
1785</t>
1786<t>
[641]1787   Transfer-codings are analogous to the Content-Transfer-Encoding values of
1788   MIME, which were designed to enable safe transport of binary data over a
1789   7-bit transport service (<xref target="RFC2045" x:fmt="," x:sec="6"/>).
1790   However, safe transport
[623]1791   has a different focus for an 8bit-clean transfer protocol. In HTTP,
1792   the only unsafe characteristic of message-bodies is the difficulty in
1793   determining the exact body length (<xref target="message.length"/>), or the desire to
1794   encrypt data over a shared transport.
1795</t>
1796<t>
1797   The Internet Assigned Numbers Authority (IANA) acts as a registry for
1798   transfer-coding value tokens. Initially, the registry contains the
1799   following tokens: "chunked" (<xref target="chunked.transfer.encoding"/>),
1800   "gzip", "compress", and "deflate" (&content-codings;).
1801</t>
1802<t>
1803   New transfer-coding value tokens &SHOULD; be registered in the same way
1804   as new content-coding value tokens (&content-codings;).
1805</t>
1806<t>
1807   A server which receives an entity-body with a transfer-coding it does
1808   not understand &SHOULD; return 501 (Not Implemented), and close the
1809   connection. A server &MUST-NOT; send transfer-codings to an HTTP/1.0
1810   client.
1811</t>
1812
1813<section title="Chunked Transfer Coding" anchor="chunked.transfer.encoding">
1814  <x:anchor-alias value="chunk"/>
1815  <x:anchor-alias value="Chunked-Body"/>
1816  <x:anchor-alias value="chunk-data"/>
1817  <x:anchor-alias value="chunk-ext"/>
1818  <x:anchor-alias value="chunk-ext-name"/>
1819  <x:anchor-alias value="chunk-ext-val"/>
1820  <x:anchor-alias value="chunk-size"/>
1821  <x:anchor-alias value="last-chunk"/>
1822  <x:anchor-alias value="trailer-part"/>
1823<t>
1824   The chunked encoding modifies the body of a message in order to
1825   transfer it as a series of chunks, each with its own size indicator,
1826   followed by an &OPTIONAL; trailer containing entity-header fields. This
1827   allows dynamically produced content to be transferred along with the
1828   information necessary for the recipient to verify that it has
1829   received the full message.
1830</t>
1831<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Chunked-Body"/><iref primary="true" item="Grammar" subitem="chunk"/><iref primary="true" item="Grammar" subitem="chunk-size"/><iref primary="true" item="Grammar" subitem="last-chunk"/><iref primary="true" item="Grammar" subitem="chunk-ext"/><iref primary="true" item="Grammar" subitem="chunk-ext-name"/><iref primary="true" item="Grammar" subitem="chunk-ext-val"/><iref primary="true" item="Grammar" subitem="chunk-data"/><iref primary="true" item="Grammar" subitem="trailer-part"/>
1832  <x:ref>Chunked-Body</x:ref>   = *<x:ref>chunk</x:ref>
1833                   <x:ref>last-chunk</x:ref>
1834                   <x:ref>trailer-part</x:ref>
1835                   <x:ref>CRLF</x:ref>
1836 
1837  <x:ref>chunk</x:ref>          = <x:ref>chunk-size</x:ref> *WSP [ <x:ref>chunk-ext</x:ref> ] <x:ref>CRLF</x:ref>
1838                   <x:ref>chunk-data</x:ref> <x:ref>CRLF</x:ref>
1839  <x:ref>chunk-size</x:ref>     = 1*<x:ref>HEXDIG</x:ref>
1840  <x:ref>last-chunk</x:ref>     = 1*("0") *WSP [ <x:ref>chunk-ext</x:ref> ] <x:ref>CRLF</x:ref>
1841 
1842  <x:ref>chunk-ext</x:ref>      = *( ";" *WSP <x:ref>chunk-ext-name</x:ref>
1843                      [ "=" <x:ref>chunk-ext-val</x:ref> ] *WSP )
1844  <x:ref>chunk-ext-name</x:ref> = <x:ref>token</x:ref>
1845  <x:ref>chunk-ext-val</x:ref>  = <x:ref>token</x:ref> / <x:ref>quoted-string</x:ref>
1846  <x:ref>chunk-data</x:ref>     = 1*<x:ref>OCTET</x:ref> ; a sequence of chunk-size octets
1847  <x:ref>trailer-part</x:ref>   = *( <x:ref>entity-header</x:ref> <x:ref>CRLF</x:ref> )
1848</artwork></figure>
1849<t>
1850   The chunk-size field is a string of hex digits indicating the size of
1851   the chunk-data in octets. The chunked encoding is ended by any chunk whose size is
1852   zero, followed by the trailer, which is terminated by an empty line.
1853</t>
1854<t>
1855   The trailer allows the sender to include additional HTTP header
1856   fields at the end of the message. The Trailer header field can be
1857   used to indicate which header fields are included in a trailer (see
1858   <xref target="header.trailer"/>).
1859</t>
1860<t>
1861   A server using chunked transfer-coding in a response &MUST-NOT; use the
1862   trailer for any header fields unless at least one of the following is
1863   true:
1864  <list style="numbers">
1865    <t>the request included a TE header field that indicates "trailers" is
1866     acceptable in the transfer-coding of the  response, as described in
1867     <xref target="header.te"/>; or,</t>
1868
1869    <t>the server is the origin server for the response, the trailer
1870     fields consist entirely of optional metadata, and the recipient
1871     could use the message (in a manner acceptable to the origin server)
1872     without receiving this metadata.  In other words, the origin server
1873     is willing to accept the possibility that the trailer fields might
1874     be silently discarded along the path to the client.</t>
1875  </list>
1876</t>
1877<t>
1878   This requirement prevents an interoperability failure when the
1879   message is being received by an HTTP/1.1 (or later) proxy and
1880   forwarded to an HTTP/1.0 recipient. It avoids a situation where
1881   compliance with the protocol would have necessitated a possibly
1882   infinite buffer on the proxy.
1883</t>
1884<t>
1885   A process for decoding the "chunked" transfer-coding
1886   can be represented in pseudo-code as:
1887</t>
1888<figure><artwork type="code">
1889  length := 0
1890  read chunk-size, chunk-ext (if any) and CRLF
1891  while (chunk-size &gt; 0) {
1892     read chunk-data and CRLF
1893     append chunk-data to entity-body
1894     length := length + chunk-size
1895     read chunk-size and CRLF
1896  }
1897  read entity-header
1898  while (entity-header not empty) {
1899     append entity-header to existing header fields
1900     read entity-header
1901  }
1902  Content-Length := length
1903  Remove "chunked" from Transfer-Encoding
1904</artwork></figure>
1905<t>
1906   All HTTP/1.1 applications &MUST; be able to receive and decode the
1907   "chunked" transfer-coding, and &MUST; ignore chunk-ext extensions
1908   they do not understand.
1909</t>
1910</section>
1911</section>
1912
1913<section title="Product Tokens" anchor="product.tokens">
1914  <x:anchor-alias value="product"/>
1915  <x:anchor-alias value="product-version"/>
1916<t>
1917   Product tokens are used to allow communicating applications to
1918   identify themselves by software name and version. Most fields using
1919   product tokens also allow sub-products which form a significant part
1920   of the application to be listed, separated by whitespace. By
1921   convention, the products are listed in order of their significance
1922   for identifying the application.
1923</t>
1924<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="product"/><iref primary="true" item="Grammar" subitem="product-version"/>
1925  <x:ref>product</x:ref>         = <x:ref>token</x:ref> ["/" <x:ref>product-version</x:ref>]
1926  <x:ref>product-version</x:ref> = <x:ref>token</x:ref>
1927</artwork></figure>
1928<t>
1929   Examples:
1930</t>
1931<figure><artwork type="example">
1932  User-Agent: CERN-LineMode/2.15 libwww/2.17b3
1933  Server: Apache/0.8.4
1934</artwork></figure>
1935<t>
1936   Product tokens &SHOULD; be short and to the point. They &MUST-NOT; be
1937   used for advertising or other non-essential information. Although any
1938   token character &MAY; appear in a product-version, this token &SHOULD;
1939   only be used for a version identifier (i.e., successive versions of
1940   the same product &SHOULD; only differ in the product-version portion of
1941   the product value).
1942</t>
1943</section>
1944
1945<section title="Quality Values" anchor="quality.values">
1946  <x:anchor-alias value="qvalue"/>
1947<t>
1948   Both transfer codings (TE request header, <xref target="header.te"/>)
1949   and content negotiation (&content.negotiation;) use short "floating point"
1950   numbers to indicate the relative importance ("weight") of various
1951   negotiable parameters.  A weight is normalized to a real number in
1952   the range 0 through 1, where 0 is the minimum and 1 the maximum
1953   value. If a parameter has a quality value of 0, then content with
1954   this parameter is `not acceptable' for the client. HTTP/1.1
1955   applications &MUST-NOT; generate more than three digits after the
1956   decimal point. User configuration of these values &SHOULD; also be
1957   limited in this fashion.
1958</t>
1959<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="qvalue"/>
1960  <x:ref>qvalue</x:ref>         = ( "0" [ "." 0*3<x:ref>DIGIT</x:ref> ] )
1961                 / ( "1" [ "." 0*3("0") ] )
1962</artwork></figure>
1963<x:note>
1964  <t>
1965     <x:h>Note:</x:h> "Quality values" is a misnomer, since these values merely represent
1966     relative degradation in desired quality.
1967  </t>
1968</x:note>
1969</section>
1970
1971</section>
1972
[8]1973<section title="Connections" anchor="connections">
1974
1975<section title="Persistent Connections" anchor="persistent.connections">
1976
1977<section title="Purpose" anchor="persistent.purpose">
1978<t>
1979   Prior to persistent connections, a separate TCP connection was
1980   established to fetch each URL, increasing the load on HTTP servers
1981   and causing congestion on the Internet. The use of inline images and
1982   other associated data often require a client to make multiple
1983   requests of the same server in a short amount of time. Analysis of
1984   these performance problems and results from a prototype
1985   implementation are available <xref target="Pad1995"/> <xref target="Spe"/>. Implementation experience and
[578]1986   measurements of actual HTTP/1.1 implementations show good
[8]1987   results <xref target="Nie1997"/>. Alternatives have also been explored, for example,
1988   T/TCP <xref target="Tou1998"/>.
1989</t>
1990<t>
1991   Persistent HTTP connections have a number of advantages:
1992  <list style="symbols">
1993      <t>
1994        By opening and closing fewer TCP connections, CPU time is saved
1995        in routers and hosts (clients, servers, proxies, gateways,
1996        tunnels, or caches), and memory used for TCP protocol control
1997        blocks can be saved in hosts.
1998      </t>
1999      <t>
2000        HTTP requests and responses can be pipelined on a connection.
2001        Pipelining allows a client to make multiple requests without
2002        waiting for each response, allowing a single TCP connection to
2003        be used much more efficiently, with much lower elapsed time.
2004      </t>
2005      <t>
2006        Network congestion is reduced by reducing the number of packets
2007        caused by TCP opens, and by allowing TCP sufficient time to
2008        determine the congestion state of the network.
2009      </t>
2010      <t>
2011        Latency on subsequent requests is reduced since there is no time
2012        spent in TCP's connection opening handshake.
2013      </t>
2014      <t>
2015        HTTP can evolve more gracefully, since errors can be reported
2016        without the penalty of closing the TCP connection. Clients using
2017        future versions of HTTP might optimistically try a new feature,
2018        but if communicating with an older server, retry with old
2019        semantics after an error is reported.
2020      </t>
2021    </list>
2022</t>
2023<t>
2024   HTTP implementations &SHOULD; implement persistent connections.
2025</t>
2026</section>
2027
2028<section title="Overall Operation" anchor="persistent.overall">
2029<t>
2030   A significant difference between HTTP/1.1 and earlier versions of
2031   HTTP is that persistent connections are the default behavior of any
2032   HTTP connection. That is, unless otherwise indicated, the client
2033   &SHOULD; assume that the server will maintain a persistent connection,
2034   even after error responses from the server.
2035</t>
2036<t>
2037   Persistent connections provide a mechanism by which a client and a
2038   server can signal the close of a TCP connection. This signaling takes
2039   place using the Connection header field (<xref target="header.connection"/>). Once a close
2040   has been signaled, the client &MUST-NOT; send any more requests on that
2041   connection.
2042</t>
2043
2044<section title="Negotiation" anchor="persistent.negotiation">
2045<t>
2046   An HTTP/1.1 server &MAY; assume that a HTTP/1.1 client intends to
2047   maintain a persistent connection unless a Connection header including
2048   the connection-token "close" was sent in the request. If the server
2049   chooses to close the connection immediately after sending the
2050   response, it &SHOULD; send a Connection header including the
2051   connection-token close.
2052</t>
2053<t>
2054   An HTTP/1.1 client &MAY; expect a connection to remain open, but would
2055   decide to keep it open based on whether the response from a server
2056   contains a Connection header with the connection-token close. In case
2057   the client does not want to maintain a connection for more than that
2058   request, it &SHOULD; send a Connection header including the
2059   connection-token close.
2060</t>
2061<t>
2062   If either the client or the server sends the close token in the
2063   Connection header, that request becomes the last one for the
2064   connection.
2065</t>
2066<t>
2067   Clients and servers &SHOULD-NOT;  assume that a persistent connection is
2068   maintained for HTTP versions less than 1.1 unless it is explicitly
2069   signaled. See <xref target="compatibility.with.http.1.0.persistent.connections"/> for more information on backward
2070   compatibility with HTTP/1.0 clients.
2071</t>
2072<t>
2073   In order to remain persistent, all messages on the connection &MUST;
2074   have a self-defined message length (i.e., one not defined by closure
2075   of the connection), as described in <xref target="message.length"/>.
2076</t>
2077</section>
2078
2079<section title="Pipelining" anchor="pipelining">
2080<t>
2081   A client that supports persistent connections &MAY; "pipeline" its
2082   requests (i.e., send multiple requests without waiting for each
2083   response). A server &MUST; send its responses to those requests in the
2084   same order that the requests were received.
2085</t>
2086<t>
2087   Clients which assume persistent connections and pipeline immediately
2088   after connection establishment &SHOULD; be prepared to retry their
2089   connection if the first pipelined attempt fails. If a client does
2090   such a retry, it &MUST-NOT; pipeline before it knows the connection is
2091   persistent. Clients &MUST; also be prepared to resend their requests if
2092   the server closes the connection before sending all of the
2093   corresponding responses.
2094</t>
2095<t>
2096   Clients &SHOULD-NOT;  pipeline requests using non-idempotent methods or
[29]2097   non-idempotent sequences of methods (see &idempotent-methods;). Otherwise, a
[8]2098   premature termination of the transport connection could lead to
2099   indeterminate results. A client wishing to send a non-idempotent
2100   request &SHOULD; wait to send that request until it has received the
2101   response status for the previous request.
2102</t>
2103</section>
2104</section>
2105
2106<section title="Proxy Servers" anchor="persistent.proxy">
2107<t>
2108   It is especially important that proxies correctly implement the
2109   properties of the Connection header field as specified in <xref target="header.connection"/>.
2110</t>
2111<t>
2112   The proxy server &MUST; signal persistent connections separately with
2113   its clients and the origin servers (or other proxy servers) that it
2114   connects to. Each persistent connection applies to only one transport
2115   link.
2116</t>
2117<t>
2118   A proxy server &MUST-NOT; establish a HTTP/1.1 persistent connection
[578]2119   with an HTTP/1.0 client (but see <xref x:sec="19.7.1" x:fmt="of" target="RFC2068"/>
2120   for information and discussion of the problems with the Keep-Alive header
2121   implemented by many HTTP/1.0 clients).
[8]2122</t>
2123</section>
2124
2125<section title="Practical Considerations" anchor="persistent.practical">
2126<t>
2127   Servers will usually have some time-out value beyond which they will
2128   no longer maintain an inactive connection. Proxy servers might make
2129   this a higher value since it is likely that the client will be making
2130   more connections through the same server. The use of persistent
2131   connections places no requirements on the length (or existence) of
2132   this time-out for either the client or the server.
2133</t>
2134<t>
2135   When a client or server wishes to time-out it &SHOULD; issue a graceful
2136   close on the transport connection. Clients and servers &SHOULD; both
2137   constantly watch for the other side of the transport close, and
2138   respond to it as appropriate. If a client or server does not detect
2139   the other side's close promptly it could cause unnecessary resource
2140   drain on the network.
2141</t>
2142<t>
2143   A client, server, or proxy &MAY; close the transport connection at any
2144   time. For example, a client might have started to send a new request
2145   at the same time that the server has decided to close the "idle"
2146   connection. From the server's point of view, the connection is being
2147   closed while it was idle, but from the client's point of view, a
2148   request is in progress.
2149</t>
2150<t>
2151   This means that clients, servers, and proxies &MUST; be able to recover
2152   from asynchronous close events. Client software &SHOULD; reopen the
2153   transport connection and retransmit the aborted sequence of requests
2154   without user interaction so long as the request sequence is
[29]2155   idempotent (see &idempotent-methods;). Non-idempotent methods or sequences
[8]2156   &MUST-NOT; be automatically retried, although user agents &MAY; offer a
2157   human operator the choice of retrying the request(s). Confirmation by
2158   user-agent software with semantic understanding of the application
2159   &MAY; substitute for user confirmation. The automatic retry &SHOULD-NOT; 
2160   be repeated if the second sequence of requests fails.
2161</t>
2162<t>
2163   Servers &SHOULD; always respond to at least one request per connection,
2164   if at all possible. Servers &SHOULD-NOT;  close a connection in the
2165   middle of transmitting a response, unless a network or client failure
2166   is suspected.
2167</t>
2168<t>
2169   Clients that use persistent connections &SHOULD; limit the number of
2170   simultaneous connections that they maintain to a given server. A
2171   single-user client &SHOULD-NOT; maintain more than 2 connections with
2172   any server or proxy. A proxy &SHOULD; use up to 2*N connections to
2173   another server or proxy, where N is the number of simultaneously
2174   active users. These guidelines are intended to improve HTTP response
2175   times and avoid congestion.
2176</t>
2177</section>
2178</section>
2179
2180<section title="Message Transmission Requirements" anchor="message.transmission.requirements">
2181
2182<section title="Persistent Connections and Flow Control" anchor="persistent.flow">
2183<t>
2184   HTTP/1.1 servers &SHOULD; maintain persistent connections and use TCP's
2185   flow control mechanisms to resolve temporary overloads, rather than
2186   terminating connections with the expectation that clients will retry.
2187   The latter technique can exacerbate network congestion.
2188</t>
2189</section>
2190
2191<section title="Monitoring Connections for Error Status Messages" anchor="persistent.monitor">
2192<t>
2193   An HTTP/1.1 (or later) client sending a message-body &SHOULD; monitor
2194   the network connection for an error status while it is transmitting
2195   the request. If the client sees an error status, it &SHOULD;
2196   immediately cease transmitting the body. If the body is being sent
2197   using a "chunked" encoding (<xref target="transfer.codings"/>), a zero length chunk and
2198   empty trailer &MAY; be used to prematurely mark the end of the message.
2199   If the body was preceded by a Content-Length header, the client &MUST;
2200   close the connection.
2201</t>
2202</section>
2203
2204<section title="Use of the 100 (Continue) Status" anchor="use.of.the.100.status">
2205<t>
[29]2206   The purpose of the 100 (Continue) status (see &status-100;) is to
[8]2207   allow a client that is sending a request message with a request body
2208   to determine if the origin server is willing to accept the request
2209   (based on the request headers) before the client sends the request
2210   body. In some cases, it might either be inappropriate or highly
2211   inefficient for the client to send the body if the server will reject
2212   the message without looking at the body.
2213</t>
2214<t>
2215   Requirements for HTTP/1.1 clients:
2216  <list style="symbols">
2217    <t>
2218        If a client will wait for a 100 (Continue) response before
2219        sending the request body, it &MUST; send an Expect request-header
[29]2220        field (&header-expect;) with the "100-continue" expectation.
[8]2221    </t>
2222    <t>
[29]2223        A client &MUST-NOT; send an Expect request-header field (&header-expect;)
[8]2224        with the "100-continue" expectation if it does not intend
2225        to send a request body.
2226    </t>
2227  </list>
2228</t>
2229<t>
2230   Because of the presence of older implementations, the protocol allows
2231   ambiguous situations in which a client may send "Expect: 100-continue"
2232   without receiving either a 417 (Expectation Failed) status
2233   or a 100 (Continue) status. Therefore, when a client sends this
2234   header field to an origin server (possibly via a proxy) from which it
2235   has never seen a 100 (Continue) status, the client &SHOULD-NOT;  wait
2236   for an indefinite period before sending the request body.
2237</t>
2238<t>
2239   Requirements for HTTP/1.1 origin servers:
2240  <list style="symbols">
2241    <t> Upon receiving a request which includes an Expect request-header
2242        field with the "100-continue" expectation, an origin server &MUST;
2243        either respond with 100 (Continue) status and continue to read
2244        from the input stream, or respond with a final status code. The
2245        origin server &MUST-NOT; wait for the request body before sending
2246        the 100 (Continue) response. If it responds with a final status
2247        code, it &MAY; close the transport connection or it &MAY; continue
2248        to read and discard the rest of the request.  It &MUST-NOT;
2249        perform the requested method if it returns a final status code.
2250    </t>
2251    <t> An origin server &SHOULD-NOT;  send a 100 (Continue) response if
2252        the request message does not include an Expect request-header
2253        field with the "100-continue" expectation, and &MUST-NOT; send a
2254        100 (Continue) response if such a request comes from an HTTP/1.0
2255        (or earlier) client. There is an exception to this rule: for
[97]2256        compatibility with <xref target="RFC2068"/>, a server &MAY; send a 100 (Continue)
[8]2257        status in response to an HTTP/1.1 PUT or POST request that does
2258        not include an Expect request-header field with the "100-continue"
2259        expectation. This exception, the purpose of which is
2260        to minimize any client processing delays associated with an
2261        undeclared wait for 100 (Continue) status, applies only to
2262        HTTP/1.1 requests, and not to requests with any other HTTP-version
2263        value.
2264    </t>
2265    <t> An origin server &MAY; omit a 100 (Continue) response if it has
2266        already received some or all of the request body for the
2267        corresponding request.
2268    </t>
2269    <t> An origin server that sends a 100 (Continue) response &MUST;
2270    ultimately send a final status code, once the request body is
2271        received and processed, unless it terminates the transport
2272        connection prematurely.
2273    </t>
2274    <t> If an origin server receives a request that does not include an
2275        Expect request-header field with the "100-continue" expectation,
2276        the request includes a request body, and the server responds
2277        with a final status code before reading the entire request body
2278        from the transport connection, then the server &SHOULD-NOT;  close
2279        the transport connection until it has read the entire request,
2280        or until the client closes the connection. Otherwise, the client
2281        might not reliably receive the response message. However, this
2282        requirement is not be construed as preventing a server from
2283        defending itself against denial-of-service attacks, or from
2284        badly broken client implementations.
2285      </t>
2286    </list>
2287</t>
2288<t>
2289   Requirements for HTTP/1.1 proxies:
2290  <list style="symbols">
2291    <t> If a proxy receives a request that includes an Expect request-header
2292        field with the "100-continue" expectation, and the proxy
2293        either knows that the next-hop server complies with HTTP/1.1 or
2294        higher, or does not know the HTTP version of the next-hop
2295        server, it &MUST; forward the request, including the Expect header
2296        field.
2297    </t>
2298    <t> If the proxy knows that the version of the next-hop server is
2299        HTTP/1.0 or lower, it &MUST-NOT; forward the request, and it &MUST;
2300        respond with a 417 (Expectation Failed) status.
2301    </t>
2302    <t> Proxies &SHOULD; maintain a cache recording the HTTP version
2303        numbers received from recently-referenced next-hop servers.
2304    </t>
2305    <t> A proxy &MUST-NOT; forward a 100 (Continue) response if the
2306        request message was received from an HTTP/1.0 (or earlier)
2307        client and did not include an Expect request-header field with
2308        the "100-continue" expectation. This requirement overrides the
[29]2309        general rule for forwarding of 1xx responses (see &status-1xx;).
[8]2310    </t>
2311  </list>
2312</t>
2313</section>
2314
2315<section title="Client Behavior if Server Prematurely Closes Connection" anchor="connection.premature">
2316<t>
2317   If an HTTP/1.1 client sends a request which includes a request body,
2318   but which does not include an Expect request-header field with the
2319   "100-continue" expectation, and if the client is not directly
2320   connected to an HTTP/1.1 origin server, and if the client sees the
2321   connection close before receiving any status from the server, the
2322   client &SHOULD; retry the request.  If the client does retry this
2323   request, it &MAY; use the following "binary exponential backoff"
2324   algorithm to be assured of obtaining a reliable response:
2325  <list style="numbers">
2326    <t>
2327      Initiate a new connection to the server
2328    </t>
2329    <t>
2330      Transmit the request-headers
2331    </t>
2332    <t>
2333      Initialize a variable R to the estimated round-trip time to the
2334         server (e.g., based on the time it took to establish the
2335         connection), or to a constant value of 5 seconds if the round-trip
2336         time is not available.
2337    </t>
2338    <t>
2339       Compute T = R * (2**N), where N is the number of previous
2340         retries of this request.
2341    </t>
2342    <t>
2343       Wait either for an error response from the server, or for T
2344         seconds (whichever comes first)
2345    </t>
2346    <t>
2347       If no error response is received, after T seconds transmit the
2348         body of the request.
2349    </t>
2350    <t>
2351       If client sees that the connection is closed prematurely,
2352         repeat from step 1 until the request is accepted, an error
2353         response is received, or the user becomes impatient and
2354         terminates the retry process.
2355    </t>
2356  </list>
2357</t>
2358<t>
2359   If at any point an error status is received, the client
2360  <list style="symbols">
2361      <t>&SHOULD-NOT;  continue and</t>
2362
2363      <t>&SHOULD; close the connection if it has not completed sending the
2364        request message.</t>
2365    </list>
2366</t>
2367</section>
2368</section>
2369</section>
2370
2371
[651]2372<section title="Miscellaneous notes that may disappear" anchor="misc">
2373<section title="Scheme aliases considered harmful" anchor="scheme.aliases">
2374<t>
2375   <cref>TBS: describe why aliases like webcal are harmful.</cref>
2376</t>
2377</section>
2378</section>
2379
2380<section title="Use of HTTP for proxy communication" anchor="http.proxy">
2381<t>
2382   <cref>TBD: Configured to use HTTP to proxy HTTP or other protocols.</cref>
2383</t>
2384</section>
2385<section title="Interception of HTTP for access control" anchor="http.intercept">
2386<t>
2387   <cref>TBD: Interception of HTTP traffic for initiating access control.</cref>
2388</t>
2389</section>
2390<section title="Use of HTTP by other protocols" anchor="http.others">
2391<t>
2392   <cref>TBD: Profiles of HTTP defined by other protocol.
2393   Extensions of HTTP like WebDAV.</cref>
2394</t>
2395</section>
2396<section title="Use of HTTP by media type specification" anchor="http.media">
2397<t>
2398   <cref>TBD: Instructions on composing HTTP requests via hypertext formats.</cref>
2399</t>
2400</section>
2401</section>
2402
[647]2403<section title="Header Field Definitions" anchor="header.field.definitions">
[8]2404<t>
[117]2405   This section defines the syntax and semantics of HTTP/1.1 header fields
2406   related to message framing and transport protocols.
[8]2407</t>
[117]2408<t>
2409   For entity-header fields, both sender and recipient refer to either the
2410   client or the server, depending on who sends and who receives the entity.
2411</t>
[8]2412
2413<section title="Connection" anchor="header.connection">
2414  <iref primary="true" item="Connection header" x:for-anchor=""/>
2415  <iref primary="true" item="Headers" subitem="Connection" x:for-anchor=""/>
[229]2416  <x:anchor-alias value="Connection"/>
2417  <x:anchor-alias value="connection-token"/>
[354]2418  <x:anchor-alias value="Connection-v"/>
[8]2419<t>
[354]2420   The general-header field "Connection" allows the sender to specify
[8]2421   options that are desired for that particular connection and &MUST-NOT;
2422   be communicated by proxies over further connections.
2423</t>
2424<t>
[354]2425   The Connection header's value has the following grammar:
[8]2426</t>
[354]2427<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Connection"/><iref primary="true" item="Grammar" subitem="Connection-v"/><iref primary="true" item="Grammar" subitem="connection-token"/>
[366]2428  <x:ref>Connection</x:ref>       = "Connection" ":" <x:ref>OWS</x:ref> <x:ref>Connection-v</x:ref>
[354]2429  <x:ref>Connection-v</x:ref>     = 1#<x:ref>connection-token</x:ref>
2430  <x:ref>connection-token</x:ref> = <x:ref>token</x:ref>
[8]2431</artwork></figure>
2432<t>
2433   HTTP/1.1 proxies &MUST; parse the Connection header field before a
2434   message is forwarded and, for each connection-token in this field,
2435   remove any header field(s) from the message with the same name as the
2436   connection-token. Connection options are signaled by the presence of
2437   a connection-token in the Connection header field, not by any
2438   corresponding additional header field(s), since the additional header
2439   field may not be sent if there are no parameters associated with that
2440   connection option.
2441</t>
2442<t>
2443   Message headers listed in the Connection header &MUST-NOT; include
2444   end-to-end headers, such as Cache-Control.
2445</t>
2446<t>
2447   HTTP/1.1 defines the "close" connection option for the sender to
2448   signal that the connection will be closed after completion of the
2449   response. For example,
2450</t>
2451<figure><artwork type="example">
[354]2452  Connection: close
[8]2453</artwork></figure>
2454<t>
2455   in either the request or the response header fields indicates that
2456   the connection &SHOULD-NOT;  be considered `persistent' (<xref target="persistent.connections"/>)
2457   after the current request/response is complete.
2458</t>
2459<t>
[86]2460   An HTTP/1.1 client that does not support persistent connections &MUST;
2461   include the "close" connection option in every request message.
[8]2462</t>
2463<t>
[86]2464   An HTTP/1.1 server that does not support persistent connections &MUST;
2465   include the "close" connection option in every response message that
2466   does not have a 1xx (informational) status code.
2467</t>
2468<t>
[8]2469   A system receiving an HTTP/1.0 (or lower-version) message that
[96]2470   includes a Connection header &MUST;, for each connection-token in this
[8]2471   field, remove and ignore any header field(s) from the message with
2472   the same name as the connection-token. This protects against mistaken
2473   forwarding of such header fields by pre-HTTP/1.1 proxies. See <xref target="compatibility.with.http.1.0.persistent.connections"/>.
2474</t>
2475</section>
2476
2477<section title="Content-Length" anchor="header.content-length">
2478  <iref primary="true" item="Content-Length header" x:for-anchor=""/>
2479  <iref primary="true" item="Headers" subitem="Content-Length" x:for-anchor=""/>
[229]2480  <x:anchor-alias value="Content-Length"/>
[354]2481  <x:anchor-alias value="Content-Length-v"/>
[8]2482<t>
[354]2483   The entity-header field "Content-Length" indicates the size of the
[576]2484   entity-body, in number of OCTETs, sent to the recipient or,
[8]2485   in the case of the HEAD method, the size of the entity-body that
2486   would have been sent had the request been a GET.
2487</t>
[354]2488<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Content-Length"/><iref primary="true" item="Grammar" subitem="Content-Length-v"/>
[366]2489  <x:ref>Content-Length</x:ref>   = "Content-Length" ":" <x:ref>OWS</x:ref> 1*<x:ref>Content-Length-v</x:ref>
[354]2490  <x:ref>Content-Length-v</x:ref> = 1*<x:ref>DIGIT</x:ref>
[8]2491</artwork></figure>
2492<t>
2493   An example is
2494</t>
2495<figure><artwork type="example">
[354]2496  Content-Length: 3495
[8]2497</artwork></figure>
2498<t>
2499   Applications &SHOULD; use this field to indicate the transfer-length of
2500   the message-body, unless this is prohibited by the rules in <xref target="message.length"/>.
2501</t>
2502<t>
2503   Any Content-Length greater than or equal to zero is a valid value.
2504   <xref target="message.length"/> describes how to determine the length of a message-body
2505   if a Content-Length is not given.
2506</t>
2507<t>
2508   Note that the meaning of this field is significantly different from
2509   the corresponding definition in MIME, where it is an optional field
2510   used within the "message/external-body" content-type. In HTTP, it
2511   &SHOULD; be sent whenever the message's length can be determined prior
2512   to being transferred, unless this is prohibited by the rules in
2513   <xref target="message.length"/>.
2514</t>
2515</section>
2516
2517<section title="Date" anchor="header.date">
2518  <iref primary="true" item="Date header" x:for-anchor=""/>
2519  <iref primary="true" item="Headers" subitem="Date" x:for-anchor=""/>
[229]2520  <x:anchor-alias value="Date"/>
[354]2521  <x:anchor-alias value="Date-v"/>
[8]2522<t>
[354]2523   The general-header field "Date" represents the date and time at which
[8]2524   the message was originated, having the same semantics as orig-date in
[327]2525   <xref target="RFC5322" x:fmt="of" x:sec="3.6.1"/>. The field value is an
[580]2526   HTTP-date, as described in <xref target="date.time.formats.full.date"/>;
[84]2527   it &MUST; be sent in rfc1123-date format.
[8]2528</t>
[354]2529<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Date"/><iref primary="true" item="Grammar" subitem="Date-v"/>
[366]2530  <x:ref>Date</x:ref>   = "Date" ":" <x:ref>OWS</x:ref> <x:ref>Date-v</x:ref>
[354]2531  <x:ref>Date-v</x:ref> = <x:ref>HTTP-date</x:ref>
[8]2532</artwork></figure>
2533<t>
2534   An example is
2535</t>
2536<figure><artwork type="example">
[354]2537  Date: Tue, 15 Nov 1994 08:12:31 GMT
[8]2538</artwork></figure>
2539<t>
2540   Origin servers &MUST; include a Date header field in all responses,
2541   except in these cases:
2542  <list style="numbers">
2543      <t>If the response status code is 100 (Continue) or 101 (Switching
2544         Protocols), the response &MAY; include a Date header field, at
2545         the server's option.</t>
2546
2547      <t>If the response status code conveys a server error, e.g. 500
2548         (Internal Server Error) or 503 (Service Unavailable), and it is
2549         inconvenient or impossible to generate a valid Date.</t>
2550
2551      <t>If the server does not have a clock that can provide a
2552         reasonable approximation of the current time, its responses
2553         &MUST-NOT; include a Date header field. In this case, the rules
2554         in <xref target="clockless.origin.server.operation"/> &MUST; be followed.</t>
2555  </list>
2556</t>
2557<t>
2558   A received message that does not have a Date header field &MUST; be
2559   assigned one by the recipient if the message will be cached by that
2560   recipient or gatewayed via a protocol which requires a Date. An HTTP
2561   implementation without a clock &MUST-NOT; cache responses without
2562   revalidating them on every use. An HTTP cache, especially a shared
2563   cache, &SHOULD; use a mechanism, such as NTP <xref target="RFC1305"/>, to synchronize its
2564   clock with a reliable external standard.
2565</t>
2566<t>
2567   Clients &SHOULD; only send a Date header field in messages that include
2568   an entity-body, as in the case of the PUT and POST requests, and even
2569   then it is optional. A client without a clock &MUST-NOT; send a Date
2570   header field in a request.
2571</t>
2572<t>
2573   The HTTP-date sent in a Date header &SHOULD-NOT;  represent a date and
2574   time subsequent to the generation of the message. It &SHOULD; represent
2575   the best available approximation of the date and time of message
2576   generation, unless the implementation has no means of generating a
2577   reasonably accurate date and time. In theory, the date ought to
2578   represent the moment just before the entity is generated. In
2579   practice, the date can be generated at any time during the message
2580   origination without affecting its semantic value.
2581</t>
2582
2583<section title="Clockless Origin Server Operation" anchor="clockless.origin.server.operation">
2584<t>
2585   Some origin server implementations might not have a clock available.
2586   An origin server without a clock &MUST-NOT; assign Expires or Last-Modified
2587   values to a response, unless these values were associated
2588   with the resource by a system or user with a reliable clock. It &MAY;
2589   assign an Expires value that is known, at or before server
2590   configuration time, to be in the past (this allows "pre-expiration"
2591   of responses without storing separate Expires values for each
2592   resource).
2593</t>
2594</section>
2595</section>
2596
2597<section title="Host" anchor="header.host">
2598  <iref primary="true" item="Host header" x:for-anchor=""/>
2599  <iref primary="true" item="Headers" subitem="Host" x:for-anchor=""/>
[229]2600  <x:anchor-alias value="Host"/>
[354]2601  <x:anchor-alias value="Host-v"/>
[8]2602<t>
[354]2603   The request-header field "Host" specifies the Internet host and port
[8]2604   number of the resource being requested, as obtained from the original
[391]2605   URI given by the user or referring resource (generally an http URI,
[374]2606   as described in <xref target="http.uri"/>). The Host field value &MUST; represent
[8]2607   the naming authority of the origin server or gateway given by the
2608   original URL. This allows the origin server or gateway to
2609   differentiate between internally-ambiguous URLs, such as the root "/"
2610   URL of a server for multiple host names on a single IP address.
2611</t>
[354]2612<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Host"/><iref primary="true" item="Grammar" subitem="Host-v"/>
[366]2613  <x:ref>Host</x:ref>   = "Host" ":" <x:ref>OWS</x:ref> <x:ref>Host-v</x:ref>
[374]2614  <x:ref>Host-v</x:ref> = <x:ref>uri-host</x:ref> [ ":" <x:ref>port</x:ref> ] ; <xref target="http.uri"/>
[8]2615</artwork></figure>
2616<t>
2617   A "host" without any trailing port information implies the default
2618   port for the service requested (e.g., "80" for an HTTP URL). For
2619   example, a request on the origin server for
[90]2620   &lt;http://www.example.org/pub/WWW/&gt; would properly include:
[8]2621</t>
2622<figure><artwork type="example">
[354]2623  GET /pub/WWW/ HTTP/1.1
2624  Host: www.example.org
[8]2625</artwork></figure>
2626<t>
2627   A client &MUST; include a Host header field in all HTTP/1.1 request
[148]2628   messages. If the requested URI does not include an Internet host
[8]2629   name for the service being requested, then the Host header field &MUST;
2630   be given with an empty value. An HTTP/1.1 proxy &MUST; ensure that any
2631   request message it forwards does contain an appropriate Host header
2632   field that identifies the service being requested by the proxy. All
2633   Internet-based HTTP/1.1 servers &MUST; respond with a 400 (Bad Request)
2634   status code to any HTTP/1.1 request message which lacks a Host header
2635   field.
2636</t>
2637<t>
[97]2638   See Sections <xref target="the.resource.identified.by.a.request" format="counter"/>
[8]2639   and <xref target="changes.to.simplify.multi-homed.web.servers.and.conserve.ip.addresses" format="counter"/>
2640   for other requirements relating to Host.
2641</t>
2642</section>
2643
2644<section title="TE" anchor="header.te">
2645  <iref primary="true" item="TE header" x:for-anchor=""/>
2646  <iref primary="true" item="Headers" subitem="TE" x:for-anchor=""/>
[229]2647  <x:anchor-alias value="TE"/>
[354]2648  <x:anchor-alias value="TE-v"/>
[229]2649  <x:anchor-alias value="t-codings"/>
[457]2650  <x:anchor-alias value="te-params"/>
2651  <x:anchor-alias value="te-ext"/>
[8]2652<t>
[354]2653   The request-header field "TE" indicates what extension transfer-codings
[8]2654   it is willing to accept in the response and whether or not it is
2655   willing to accept trailer fields in a chunked transfer-coding. Its
2656   value may consist of the keyword "trailers" and/or a comma-separated
2657   list of extension transfer-coding names with optional accept
2658   parameters (as described in <xref target="transfer.codings"/>).
2659</t>
[457]2660<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="TE"/><iref primary="true" item="Grammar" subitem="TE-v"/><iref primary="true" item="Grammar" subitem="t-codings"/><iref primary="true" item="Grammar" subitem="te-params"/><iref primary="true" item="Grammar" subitem="te-ext"/>
[366]2661  <x:ref>TE</x:ref>        = "TE" ":" <x:ref>OWS</x:ref> <x:ref>TE-v</x:ref>
[354]2662  <x:ref>TE-v</x:ref>      = #<x:ref>t-codings</x:ref>
[457]2663  <x:ref>t-codings</x:ref> = "trailers" / ( <x:ref>transfer-extension</x:ref> [ <x:ref>te-params</x:ref> ] )
2664  <x:ref>te-params</x:ref> = <x:ref>OWS</x:ref> ";" <x:ref>OWS</x:ref> "q=" <x:ref>qvalue</x:ref> *( <x:ref>te-ext</x:ref> )
2665  <x:ref>te-ext</x:ref>    = <x:ref>OWS</x:ref> ";" <x:ref>OWS</x:ref> <x:ref>token</x:ref> [ "=" ( <x:ref>token</x:ref> / <x:ref>quoted-string</x:ref> ) ]
[8]2666</artwork></figure>
2667<t>
2668   The presence of the keyword "trailers" indicates that the client is
2669   willing to accept trailer fields in a chunked transfer-coding, as
2670   defined in <xref target="chunked.transfer.encoding"/>. This keyword is reserved for use with
2671   transfer-coding values even though it does not itself represent a
2672   transfer-coding.
2673</t>
2674<t>
2675   Examples of its use are:
2676</t>
2677<figure><artwork type="example">
[354]2678  TE: deflate
2679  TE:
2680  TE: trailers, deflate;q=0.5
[8]2681</artwork></figure>
2682<t>
2683   The TE header field only applies to the immediate connection.
2684   Therefore, the keyword &MUST; be supplied within a Connection header
2685   field (<xref target="header.connection"/>) whenever TE is present in an HTTP/1.1 message.
2686</t>
2687<t>
2688   A server tests whether a transfer-coding is acceptable, according to
2689   a TE field, using these rules:
2690  <list style="numbers">
2691    <x:lt>
2692      <t>The "chunked" transfer-coding is always acceptable. If the
2693         keyword "trailers" is listed, the client indicates that it is
2694         willing to accept trailer fields in the chunked response on
2695         behalf of itself and any downstream clients. The implication is
2696         that, if given, the client is stating that either all
2697         downstream clients are willing to accept trailer fields in the
2698         forwarded response, or that it will attempt to buffer the
2699         response on behalf of downstream recipients.
2700      </t><t>
2701         <x:h>Note:</x:h> HTTP/1.1 does not define any means to limit the size of a
2702         chunked response such that a client can be assured of buffering
2703         the entire response.</t>
2704    </x:lt>
2705    <x:lt>
2706      <t>If the transfer-coding being tested is one of the transfer-codings
2707         listed in the TE field, then it is acceptable unless it
[457]2708         is accompanied by a qvalue of 0. (As defined in <xref target="quality.values"/>, a
[8]2709         qvalue of 0 means "not acceptable.")</t>
2710    </x:lt>
2711    <x:lt>
2712      <t>If multiple transfer-codings are acceptable, then the
2713         acceptable transfer-coding with the highest non-zero qvalue is
2714         preferred.  The "chunked" transfer-coding always has a qvalue
2715         of 1.</t>
2716    </x:lt>
2717  </list>
2718</t>
2719<t>
2720   If the TE field-value is empty or if no TE field is present, the only
[457]2721   transfer-coding is "chunked". A message with no transfer-coding is
[8]2722   always acceptable.
2723</t>
2724</section>
2725
2726<section title="Trailer" anchor="header.trailer">
2727  <iref primary="true" item="Trailer header" x:for-anchor=""/>
2728  <iref primary="true" item="Headers" subitem="Trailer" x:for-anchor=""/>
[229]2729  <x:anchor-alias value="Trailer"/>
[354]2730  <x:anchor-alias value="Trailer-v"/>
[8]2731<t>
[354]2732   The general field "Trailer" indicates that the given set of
[8]2733   header fields is present in the trailer of a message encoded with
2734   chunked transfer-coding.
2735</t>
[354]2736<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Trailer"/><iref primary="true" item="Grammar" subitem="Trailer-v"/>
[366]2737  <x:ref>Trailer</x:ref>   = "Trailer" ":" <x:ref>OWS</x:ref> <x:ref>Trailer-v</x:ref>
[354]2738  <x:ref>Trailer-v</x:ref> = 1#<x:ref>field-name</x:ref>
[8]2739</artwork></figure>
2740<t>
2741   An HTTP/1.1 message &SHOULD; include a Trailer header field in a
2742   message using chunked transfer-coding with a non-empty trailer. Doing
2743   so allows the recipient to know which header fields to expect in the
2744   trailer.
2745</t>
2746<t>
2747   If no Trailer header field is present, the trailer &SHOULD-NOT;  include
2748   any header fields. See <xref target="chunked.transfer.encoding"/> for restrictions on the use of
2749   trailer fields in a "chunked" transfer-coding.
2750</t>
2751<t>
2752   Message header fields listed in the Trailer header field &MUST-NOT;
2753   include the following header fields:
2754  <list style="symbols">
2755    <t>Transfer-Encoding</t>
2756    <t>Content-Length</t>
2757    <t>Trailer</t>
2758  </list>
2759</t>
2760</section>
2761
2762<section title="Transfer-Encoding" anchor="header.transfer-encoding">
2763  <iref primary="true" item="Transfer-Encoding header" x:for-anchor=""/>
2764  <iref primary="true" item="Headers" subitem="Transfer-Encoding" x:for-anchor=""/>
[229]2765  <x:anchor-alias value="Transfer-Encoding"/>
[354]2766  <x:anchor-alias value="Transfer-Encoding-v"/>
[8]2767<t>
[354]2768   The general-header "Transfer-Encoding" field indicates what (if any)
[8]2769   type of transformation has been applied to the message body in order
2770   to safely transfer it between the sender and the recipient. This
2771   differs from the content-coding in that the transfer-coding is a
2772   property of the message, not of the entity.
2773</t>
[354]2774<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Transfer-Encoding"/><iref primary="true" item="Grammar" subitem="Transfer-Encoding-v"/>
[376]2775  <x:ref>Transfer-Encoding</x:ref>   = "Transfer-Encoding" ":" <x:ref>OWS</x:ref>
2776                        <x:ref>Transfer-Encoding-v</x:ref>
[354]2777  <x:ref>Transfer-Encoding-v</x:ref> = 1#<x:ref>transfer-coding</x:ref>
[8]2778</artwork></figure>
2779<t>
2780   Transfer-codings are defined in <xref target="transfer.codings"/>. An example is:
2781</t>
2782<figure><artwork type="example">
2783  Transfer-Encoding: chunked
2784</artwork></figure>
2785<t>
2786   If multiple encodings have been applied to an entity, the transfer-codings
2787   &MUST; be listed in the order in which they were applied.
2788   Additional information about the encoding parameters &MAY; be provided
2789   by other entity-header fields not defined by this specification.
2790</t>
2791<t>
2792   Many older HTTP/1.0 applications do not understand the Transfer-Encoding
2793   header.
2794</t>
2795</section>
2796
2797<section title="Upgrade" anchor="header.upgrade">
2798  <iref primary="true" item="Upgrade header" x:for-anchor=""/>
2799  <iref primary="true" item="Headers" subitem="Upgrade" x:for-anchor=""/>
[229]2800  <x:anchor-alias value="Upgrade"/>
[354]2801  <x:anchor-alias value="Upgrade-v"/>
[8]2802<t>
[354]2803   The general-header "Upgrade" allows the client to specify what
[8]2804   additional communication protocols it supports and would like to use
2805   if the server finds it appropriate to switch protocols. The server
2806   &MUST; use the Upgrade header field within a 101 (Switching Protocols)
2807   response to indicate which protocol(s) are being switched.
2808</t>
[354]2809<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Upgrade"/><iref primary="true" item="Grammar" subitem="Upgrade-v"/>
[366]2810  <x:ref>Upgrade</x:ref>   = "Upgrade" ":" <x:ref>OWS</x:ref> <x:ref>Upgrade-v</x:ref>
[354]2811  <x:ref>Upgrade-v</x:ref> = 1#<x:ref>product</x:ref>
[8]2812</artwork></figure>
2813<t>
2814   For example,
2815</t>
2816<figure><artwork type="example">
[354]2817  Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11
[8]2818</artwork></figure>
2819<t>
2820   The Upgrade header field is intended to provide a simple mechanism
2821   for transition from HTTP/1.1 to some other, incompatible protocol. It
2822   does so by allowing the client to advertise its desire to use another
2823   protocol, such as a later version of HTTP with a higher major version
2824   number, even though the current request has been made using HTTP/1.1.
2825   This eases the difficult transition between incompatible protocols by
2826   allowing the client to initiate a request in the more commonly
2827   supported protocol while indicating to the server that it would like
2828   to use a "better" protocol if available (where "better" is determined
2829   by the server, possibly according to the nature of the method and/or
2830   resource being requested).
2831</t>
2832<t>
2833   The Upgrade header field only applies to switching application-layer
2834   protocols upon the existing transport-layer connection. Upgrade
2835   cannot be used to insist on a protocol change; its acceptance and use
2836   by the server is optional. The capabilities and nature of the
2837   application-layer communication after the protocol change is entirely
2838   dependent upon the new protocol chosen, although the first action
2839   after changing the protocol &MUST; be a response to the initial HTTP
2840   request containing the Upgrade header field.
2841</t>
2842<t>
2843   The Upgrade header field only applies to the immediate connection.
2844   Therefore, the upgrade keyword &MUST; be supplied within a Connection
2845   header field (<xref target="header.connection"/>) whenever Upgrade is present in an
2846   HTTP/1.1 message.
2847</t>
2848<t>
2849   The Upgrade header field cannot be used to indicate a switch to a
2850   protocol on a different connection. For that purpose, it is more
2851   appropriate to use a 301, 302, 303, or 305 redirection response.
2852</t>
2853<t>
2854   This specification only defines the protocol name "HTTP" for use by
2855   the family of Hypertext Transfer Protocols, as defined by the HTTP
2856   version rules of <xref target="http.version"/> and future updates to this
2857   specification. Any token can be used as a protocol name; however, it
2858   will only be useful if both the client and server associate the name
2859   with the same protocol.
2860</t>
2861</section>
2862
2863<section title="Via" anchor="header.via">
2864  <iref primary="true" item="Via header" x:for-anchor=""/>
2865  <iref primary="true" item="Headers" subitem="Via" x:for-anchor=""/>
[229]2866  <x:anchor-alias value="protocol-name"/>
2867  <x:anchor-alias value="protocol-version"/>
2868  <x:anchor-alias value="pseudonym"/>
2869  <x:anchor-alias value="received-by"/>
2870  <x:anchor-alias value="received-protocol"/>
2871  <x:anchor-alias value="Via"/>
[354]2872  <x:anchor-alias value="Via-v"/>
[8]2873<t>
[354]2874   The general-header field "Via" &MUST; be used by gateways and proxies to
[8]2875   indicate the intermediate protocols and recipients between the user
2876   agent and the server on requests, and between the origin server and
[257]2877   the client on responses. It is analogous to the "Received" field defined in
[327]2878   <xref target="RFC5322" x:fmt="of" x:sec="3.6.7"/> and is intended to be used for tracking message forwards,
[8]2879   avoiding request loops, and identifying the protocol capabilities of
2880   all senders along the request/response chain.
2881</t>
[354]2882<figure><artwork type="abnf2616"><iref primary="true" item="Grammar" subitem="Via"/><iref primary="true" item="Grammar" subitem="Via-v"/><iref primary="true" item="Grammar" subitem="received-protocol"/><iref primary="true" item="Grammar" subitem="protocol-name"/><iref primary="true" item="Grammar" subitem="protocol-version"/><iref primary="true" item="Grammar" subitem="received-by"/><iref primary="true" item="Grammar" subitem="pseudonym"/>
[366]2883  <x:ref>Via</x:ref>               = "Via" ":" <x:ref>OWS</x:ref> <x:ref>Via-v</x:ref>
[376]2884  <x:ref>Via-v</x:ref>             = 1#( <x:ref>received-protocol</x:ref> <x:ref>RWS</x:ref> <x:ref>received-by</x:ref>
2885                          [ <x:ref>RWS</x:ref> <x:ref>comment</x:ref> ] )
[229]2886  <x:ref>received-protocol</x:ref> = [ <x:ref>protocol-name</x:ref> "/" ] <x:ref>protocol-version</x:ref>
2887  <x:ref>protocol-name</x:ref>     = <x:ref>token</x:ref>
2888  <x:ref>protocol-version</x:ref>  = <x:ref>token</x:ref>
[334]2889  <x:ref>received-by</x:ref>       = ( <x:ref>uri-host</x:ref> [ ":" <x:ref>port</x:ref> ] ) / <x:ref>pseudonym</x:ref>
[229]2890  <x:ref>pseudonym</x:ref>         = <x:ref>token</x:ref>
[8]2891</artwork></figure>
2892<t>
2893   The received-protocol indicates the protocol version of the message
2894   received by the server or client along each segment of the
2895   request/response chain. The received-protocol version is appended to
2896   the Via field value when the message is forwarded so that information
2897   about the protocol capabilities of upstream applications remains
2898   visible to all recipients.
2899</t>
2900<t>
2901   The protocol-name is optional if and only if it would be "HTTP". The
2902   received-by field is normally the host and optional port number of a
2903   recipient server or client that subsequently forwarded the message.
2904   However, if the real host is considered to be sensitive information,
2905   it &MAY; be replaced by a pseudonym. If the port is not given, it &MAY;
2906   be assumed to be the default port of the received-protocol.
2907</t>
2908<t>
2909   Multiple Via field values represents each proxy or gateway that has
2910   forwarded the message. Each recipient &MUST; append its information
2911   such that the end result is ordered according to the sequence of
2912   forwarding applications.
2913</t>
2914<t>
2915   Comments &MAY; be used in the Via header field to identify the software
2916   of the recipient proxy or gateway, analogous to the User-Agent and
2917   Server header fields. However, all comments in the Via field are
2918   optional and &MAY; be removed by any recipient prior to forwarding the
2919   message.
2920</t>
2921<t>
2922   For example, a request message could be sent from an HTTP/1.0 user
2923   agent to an internal proxy code-named "fred", which uses HTTP/1.1 to
[90]2924   forward the request to a public proxy at p.example.net, which completes
2925   the request by forwarding it to the origin server at www.example.com.
2926   The request received by www.example.com would then have the following
[8]2927   Via header field:
2928</t>
2929<figure><artwork type="example">
[354]2930  Via: 1.0 fred, 1.1 p.example.net (Apache/1.1)
[8]2931</artwork></figure>
2932<t>
2933   Proxies and gateways used as a portal through a network firewall
2934   &SHOULD-NOT;, by default, forward the names and ports of hosts within
2935   the firewall region. This information &SHOULD; only be propagated if
2936   explicitly enabled. If not enabled, the received-by host of any host
2937   behind the firewall &SHOULD; be replaced by an appropriate pseudonym
2938   for that host.
2939</t>
2940<t>
2941   For organizations that have strong privacy requirements for hiding
2942   internal structures, a proxy &MAY; combine an ordered subsequence of
2943   Via header field entries with identical received-protocol values into
2944   a single such entry. For example,
2945</t>
2946<figure><artwork type="example">
[354]2947  Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy
[8]2948</artwork></figure>
2949<t>
2950        could be collapsed to
2951</t>
2952<figure><artwork type="example">
[354]2953  Via: 1.0 ricky, 1.1 mertz, 1.0 lucy
[8]2954</artwork></figure>
2955<t>
2956   Applications &SHOULD-NOT;  combine multiple entries unless they are all
2957   under the same organizational control and the hosts have already been
2958   replaced by pseudonyms. Applications &MUST-NOT; combine entries which
2959   have different received-protocol values.
2960</t>
2961</section>
2962
2963</section>
2964
[29]2965<section title="IANA Considerations" anchor="IANA.considerations">
[253]2966<section title="Message Header Registration" anchor="message.header.registration">
[8]2967<t>
[290]2968   The Message Header Registry located at <eref target="http://www.iana.org/assignments/message-headers/message-header-index.html"/> should be updated
2969   with the permanent registrations below (see <xref target="RFC3864"/>):
[8]2970</t>
[290]2971<!--AUTOGENERATED FROM extract-header-defs.xslt, do not edit manually-->
2972<texttable align="left" suppress-title="true" anchor="iana.header.registration.table">
[253]2973   <ttcol>Header Field Name</ttcol>
2974   <ttcol>Protocol</ttcol>
2975   <ttcol>Status</ttcol>
2976   <ttcol>Reference</ttcol>
2977
2978   <c>Connection</c>
2979   <c>http</c>
2980   <c>standard</c>
2981   <c>
2982      <xref target="header.connection"/>
2983   </c>
2984   <c>Content-Length</c>
2985   <c>http</c>
2986   <c>standard</c>
2987   <c>
2988      <xref target="header.content-length"/>
2989   </c>
2990   <c>Date</c>
2991   <c>http</c>
2992   <c>standard</c>
2993   <c>
2994      <xref target="header.date"/>
2995   </c>
2996   <c>Host</c>
2997   <c>http</c>
2998   <c>standard</c>
2999   <c>
3000      <xref target="header.host"/>
3001   </c>
3002   <c>TE</c>
3003   <c>http</c>
3004   <c>standard</c>
3005   <c>
3006      <xref target="header.te"/>
3007   </c>
3008   <c>Trailer</c>
3009   <c>http</c>
3010   <c>standard</c>
3011   <c>
3012      <xref target="header.trailer"/>
3013   </c>
3014   <c>Transfer-Encoding</c>
3015   <c>http</c>
3016   <c>standard</c>
3017   <c>
3018      <xref target="header.transfer-encoding"/>
3019   </c>
3020   <c>Upgrade</c>
3021   <c>http</c>
3022   <c>standard</c>
3023   <c>
3024      <xref target="header.upgrade"/>
3025   </c>
3026   <c>Via</c>
3027   <c>http</c>
3028   <c>standard</c>
3029   <c>
3030      <xref target="header.via"/>
3031   </c>
3032</texttable>
[290]3033<!--(END)-->
[253]3034<t>
[290]3035   The change controller is: "IETF (iesg@ietf.org) - Internet Engineering Task Force".
[253]3036</t>
[8]3037</section>
[307]3038
3039<section title="URI Scheme Registration" anchor="uri.scheme.registration">
3040<t>
[646]3041   The entries for the "http" and "https" URI Schemes in the registry located at
[307]3042   <eref target="http://www.iana.org/assignments/uri-schemes.html"/>
[646]3043   should be updated to point to Sections <xref target="http.uri" format="counter"/>
3044   and <xref target="https.uri" format="counter"/> of this document
[307]3045   (see <xref target="RFC4395"/>).
3046</t>
3047</section>
3048
[296]3049<section title="Internet Media Type Registrations" anchor="internet.media.type.http">
3050<t>
3051   This document serves as the specification for the Internet media types
3052   "message/http" and "application/http". The following is to be registered with
3053   IANA (see <xref target="RFC4288"/>).
3054</t>
3055<section title="Internet Media Type message/http" anchor="internet.media.type.message.http">
3056<iref item="Media Type" subitem="message/http" primary="true"/>
3057<iref item="message/http Media Type" primary="true"/>
3058<t>
3059   The message/http type can be used to enclose a single HTTP request or
3060   response message, provided that it obeys the MIME restrictions for all
3061   "message" types regarding line length and encodings.
3062</t>
3063<t>
3064  <list style="hanging" x:indent="12em">
3065    <t hangText="Type name:">
3066      message
3067    </t>
3068    <t hangText="Subtype name:">
3069      http
3070    </t>
3071    <t hangText="Required parameters:">
3072      none
3073    </t>
3074    <t hangText="Optional parameters:">
3075      version, msgtype
3076      <list style="hanging">
3077        <t hangText="version:">
3078          The HTTP-Version number of the enclosed message
3079          (e.g., "1.1"). If not present, the version can be
3080          determined from the first line of the body.
3081        </t>
3082        <t hangText="msgtype:">
3083          The message type -- "request" or "response". If not
3084          present, the type can be determined from the first
3085          line of the body.
3086        </t>
3087      </list>
3088    </t>
3089    <t hangText="Encoding considerations:">
3090      only "7bit", "8bit", or "binary" are permitted
3091    </t>
3092    <t hangText="Security considerations:">
3093      none
3094    </t>
3095    <t hangText="Interoperability considerations:">
3096      none
3097    </t>
3098    <t hangText="Published specification:">
3099      This specification (see <xref target="internet.media.type.message.http"/>).
3100    </t>
3101    <t hangText="Applications that use this media type:">
3102    </t>
3103    <t hangText="Additional information:">
3104      <list style="hanging">
3105        <t hangText="Magic number(s):">none</t>
3106        <t hangText="File extension(s):">none</t>
3107        <t hangText="Macintosh file type code(s):">none</t>
3108      </list>
3109    </t>
3110    <t hangText="Person and email address to contact for further information:">
3111      See Authors Section.
3112    </t>
[609]3113    <t hangText="Intended usage:">
3114      COMMON
[296]3115    </t>
[609]3116    <t hangText="Restrictions on usage:">
3117      none
[296]3118    </t>
3119    <t hangText="Author/Change controller:">
3120      IESG
3121    </t>
3122  </list>
3123</t>
[253]3124</section>
[296]3125<section title="Internet Media Type application/http" anchor="internet.media.type.application.http">
3126<iref item="Media Type" subitem="application/http" primary="true"/>
3127<iref item="application/http Media Type" primary="true"/>
3128<t>
3129   The application/http type can be used to enclose a pipeline of one or more
3130   HTTP request or response messages (not intermixed).
3131</t>
3132<t>
3133  <list style="hanging" x:indent="12em">
3134    <t hangText="Type name:">
3135      application
3136    </t>
3137    <t hangText="Subtype name:">
3138      http
3139    </t>
3140    <t hangText="Required parameters:">
3141      none
3142    </t>
3143    <t hangText="Optional parameters:">
3144      version, msgtype
3145      <list style="hanging">
3146        <t hangText="version:">
3147          The HTTP-Version number of the enclosed messages
3148          (e.g., "1.1"). If not present, the version can be
3149          determined from the first line of the body.
3150        </t>
3151        <t hangText="msgtype:">
3152          The message type -- "request" or "response". If not
3153          present, the type can be determined from the first
3154          line of the body.
3155        </t>
3156      </list>
3157    </t>
3158    <t hangText="Encoding considerations:">
3159      HTTP messages enclosed by this type
3160      are in "binary" format; use of an appropriate
3161      Content-Transfer-Encoding is required when
3162      transmitted via E-mail.
3163    </t>
3164    <t hangText="Security considerations:">
3165      none
3166    </t>
3167    <t hangText="Interoperability considerations:">
3168      none
3169    </t>
3170    <t hangText="Published specification:">
3171      This specification (see <xref target="internet.media.type.application.http"/>).
3172    </t>
3173    <t hangText="Applications that use this media type:">
3174    </t>
3175    <t hangText="Additional information:">
3176      <list style="hanging">
3177        <t hangText="Magic number(s):">none</t>
3178        <t hangText="File extension(s):">none</t>
3179        <t hangText="Macintosh file type code(s):">none</t>
3180      </list>
3181    </t>
3182    <t hangText="Person and email address to contact for further information:">
3183      See Authors Section.
3184    </t>
[609]3185    <t hangText="Intended usage:">
3186      COMMON
[296]3187    </t>
[609]3188    <t hangText="Restrictions on usage:">
3189      none
[296]3190    </t>
3191    <t hangText="Author/Change controller:">
3192      IESG
3193    </t>
3194  </list>
3195</t>
3196</section>
3197</section>
[307]3198
[650]3199<section title="Transfer Coding Registry" anchor="transfer.coding.registration">
3200<t>
3201   The registration procedure for HTTP Transfer Codings is now defined
3202   by <xref target="transfer.codings"/> of this document.
3203</t>
3204<t>
3205   The HTTP Transfer Codings Registry located at <eref target="http://www.iana.org/assignments/http-parameters"/>
3206   should be updated with the registration below:
3207</t>
3208<texttable align="left" suppress-title="true" anchor="iana.transfer.coding.registration.table">
3209   <ttcol>Registry Name</ttcol>
3210   <ttcol>Description</ttcol>
3211   <ttcol>Reference</ttcol>
3212   <c>Chunked</c>
3213   <c>Transfer in a series of chunks</c>
3214   <c>
3215      <xref target="chunked.transfer.encoding"/>
3216   </c>
3217</texttable>
[296]3218</section>
[8]3219
[650]3220</section>
3221
[8]3222<section title="Security Considerations" anchor="security.considerations">
3223<t>
3224   This section is meant to inform application developers, information
3225   providers, and users of the security limitations in HTTP/1.1 as
3226   described by this document. The discussion does not include
3227   definitive solutions to the problems revealed, though it does make
3228   some suggestions for reducing security risks.
3229</t>
3230
3231<section title="Personal Information" anchor="personal.information">
3232<t>
3233   HTTP clients are often privy to large amounts of personal information
3234   (e.g. the user's name, location, mail address, passwords, encryption
3235   keys, etc.), and &SHOULD; be very careful to prevent unintentional
[172]3236   leakage of this information.
[8]3237   We very strongly recommend that a convenient interface be provided
3238   for the user to control dissemination of such information, and that
3239   designers and implementors be particularly careful in this area.
3240   History shows that errors in this area often create serious security
3241   and/or privacy problems and generate highly adverse publicity for the
3242   implementor's company.
3243</t>
[29]3244</section>
[8]3245
3246<section title="Abuse of Server Log Information" anchor="abuse.of.server.log.information">
3247<t>
3248   A server is in the position to save personal data about a user's
3249   requests which might identify their reading patterns or subjects of
3250   interest. This information is clearly confidential in nature and its
3251   handling can be constrained by law in certain countries. People using
[172]3252   HTTP to provide data are responsible for ensuring that
[8]3253   such material is not distributed without the permission of any
3254   individuals that are identifiable by the published results.
3255</t>
3256</section>
3257
3258<section title="Attacks Based On File and Path Names" anchor="attack.pathname">
3259<t>
3260   Implementations of HTTP origin servers &SHOULD; be careful to restrict
3261   the documents returned by HTTP requests to be only those that were
3262   intended by the server administrators. If an HTTP server translates
3263   HTTP URIs directly into file system calls, the server &MUST; take
3264   special care not to serve files that were not intended to be
3265   delivered to HTTP clients. For example, UNIX, Microsoft Windows, and
3266   other operating systems use ".." as a path component to indicate a
3267   directory level above the current one. On such a system, an HTTP
[391]3268   server &MUST; disallow any such construct in the request-target if it
[8]3269   would otherwise allow access to a resource outside those intended to
3270   be accessible via the HTTP server. Similarly, files intended for
3271   reference only internally to the server (such as access control
3272   files, configuration files, and script code) &MUST; be protected from
3273   inappropriate retrieval, since they might contain sensitive
3274   information. Experience has shown that minor bugs in such HTTP server
3275   implementations have turned into security risks.
3276</t>
3277</section>
3278
3279<section title="DNS Spoofing" anchor="dns.spoofing">
3280<t>
3281   Clients using HTTP rely heavily on the Domain Name Service, and are
3282   thus generally prone to security attacks based on the deliberate
3283   mis-association of IP addresses and DNS names. Clients need to be
3284   cautious in assuming the continuing validity of an IP number/DNS name
3285   association.
3286</t>
3287<t>
3288   In particular, HTTP clients &SHOULD; rely on their name resolver for
3289   confirmation of an IP number/DNS name association, rather than
3290   caching the result of previous host name lookups. Many platforms
3291   already can cache host name lookups locally when appropriate, and
3292   they &SHOULD; be configured to do so. It is proper for these lookups to
3293   be cached, however, only when the TTL (Time To Live) information
3294   reported by the name server makes it likely that the cached
3295   information will remain useful.
3296</t>
3297<t>
3298   If HTTP clients cache the results of host name lookups in order to
3299   achieve a performance improvement, they &MUST; observe the TTL
3300   information reported by DNS.
3301</t>
3302<t>
3303   If HTTP clients do not observe this rule, they could be spoofed when
3304   a previously-accessed server's IP address changes. As network
3305   renumbering is expected to become increasingly common <xref target="RFC1900"/>, the
3306   possibility of this form of attack will grow. Observing this
3307   requirement thus reduces this potential security vulnerability.
3308</t>
3309<t>
3310   This requirement also improves the load-balancing behavior of clients
3311   for replicated servers using the same DNS name and reduces the
3312   likelihood of a user's experiencing failure in accessing sites which
3313   use that strategy.
3314</t>
3315</section>
3316
3317<section title="Proxies and Caching" anchor="attack.proxies">
3318<t>
3319   By their very nature, HTTP proxies are men-in-the-middle, and
3320   represent an opportunity for man-in-the-middle attacks. Compromise of
3321   the systems on which the proxies run can result in serious security
3322   and privacy problems. Proxies have access to security-related
3323   information, personal information about individual users and
3324   organizations, and proprietary information belonging to users and
3325   content providers. A compromised proxy, or a proxy implemented or
3326   configured without regard to security and privacy considerations,
3327   might be used in the commission of a wide range of potential attacks.
3328</t>
3329<t>
3330   Proxy operators should protect the systems on which proxies run as
3331   they would protect any system that contains or transports sensitive
3332   information. In particular, log information gathered at proxies often
3333   contains highly sensitive personal information, and/or information
3334   about organizations. Log information should be carefully guarded, and
3335   appropriate guidelines for use developed and followed. (<xref target="abuse.of.server.log.information"/>).
3336</t>
3337<t>
3338   Proxy implementors should consider the privacy and security
3339   implications of their design and coding decisions, and of the
3340   configuration options they provide to proxy operators (especially the
3341   default configuration).
3342</t>
3343<t>
3344   Users of a proxy need to be aware that they are no trustworthier than
3345   the people who run the proxy; HTTP itself cannot solve this problem.
3346</t>
3347<t>
3348   The judicious use of cryptography, when appropriate, may suffice to
3349   protect against a broad range of security and privacy attacks. Such
3350   cryptography is beyond the scope of the HTTP/1.1 specification.
3351</t>
[29]3352</section>
[8]3353
3354<section title="Denial of Service Attacks on Proxies" anchor="attack.DoS">
3355<t>
3356   They exist. They are hard to defend against. Research continues.
3357   Beware.
3358</t>
3359</section>
3360</section>
3361
3362<section title="Acknowledgments" anchor="ack">
3363<t>
[172]3364   HTTP has evolved considerably over the years. It has
[8]3365   benefited from a large and active developer community--the many
3366   people who have participated on the www-talk mailing list--and it is
3367   that community which has been most responsible for the success of
3368   HTTP and of the World-Wide Web in general. Marc Andreessen, Robert
3369   Cailliau, Daniel W. Connolly, Bob Denny, John Franks, Jean-Francois
3370   Groff, Phillip M. Hallam-Baker, Hakon W. Lie, Ari Luotonen, Rob
3371   McCool, Lou Montulli, Dave Raggett, Tony Sanders, and Marc
3372   VanHeyningen deserve special recognition for their efforts in
3373   defining early aspects of the protocol.
3374</t>
3375<t>
3376   This document has benefited greatly from the comments of all those
3377   participating in the HTTP-WG. In addition to those already mentioned,
3378   the following individuals have contributed to this specification:
3379</t>
3380<t>
[98]3381   Gary Adams, Harald Tveit Alvestrand, Keith Ball, Brian Behlendorf,
3382   Paul Burchard, Maurizio Codogno, Mike Cowlishaw, Roman Czyborra,
3383   Michael A. Dolan, Daniel DuBois, David J. Fiander, Alan Freier, Marc Hedlund, Greg Herlihy,
3384   Koen Holtman, Alex Hopmann, Bob Jernigan, Shel Kaphan, Rohit Khare,
3385   John Klensin, Martijn Koster, Alexei Kosut, David M. Kristol,
3386   Daniel LaLiberte, Ben Laurie, Paul J. Leach, Albert Lunde,
3387   John C. Mallery, Jean-Philippe Martin-Flatin, Mitra, David Morris,
3388   Gavin Nicol, Ross Patterson, Bill Perry, Jeffrey Perry, Scott Powers, Owen Rees,
3389   Luigi Rizzo, David Robinson, Marc Salomon, Rich Salz,
3390   Allan M. Schiffman, Jim Seidman, Chuck Shotton, Eric W. Sink,
3391   Simon E. Spero, Richard N. Taylor, Robert S. Thau,
3392   Bill (BearHeart) Weinman, Francois Yergeau, Mary Ellen Zurko,
3393   Josh Cohen.
3394</t>
3395<t>
[33]3396   Thanks to the "cave men" of Palo Alto. You know who you are.
3397</t>
3398<t>
[115]3399   Jim Gettys (the editor of <xref target="RFC2616"/>) wishes particularly
3400   to thank Roy Fielding, the editor of <xref target="RFC2068"/>, along
[33]3401   with John Klensin, Jeff Mogul, Paul Leach, Dave Kristol, Koen
3402   Holtman, John Franks, Josh Cohen, Alex Hopmann, Scott Lawrence, and
3403   Larry Masinter for their help. And thanks go particularly to Jeff
3404   Mogul and Scott Lawrence for performing the "MUST/MAY/SHOULD" audit.
3405</t>
3406<t>
3407   The Apache Group, Anselm Baird-Smith, author of Jigsaw, and Henrik
3408   Frystyk implemented RFC 2068 early, and we wish to thank them for the
3409   discovery of many of the problems that this document attempts to
3410   rectify.
3411</t>
[374]3412<t>
3413   This specification makes heavy use of the augmented BNF and generic
3414   constructs defined by David H. Crocker for <xref target="RFC5234"/>. Similarly, it
3415   reuses many of the definitions provided by Nathaniel Borenstein and
3416   Ned Freed for MIME <xref target="RFC2045"/>. We hope that their inclusion in this
3417   specification will help reduce past confusion over the relationship
3418   between HTTP and Internet mail message formats.
3419</t>
[8]3420</section>
3421
3422</middle>
3423<back>
3424
[119]3425<references title="Normative References">
3426
[121]3427<reference anchor="ISO-8859-1">
3428  <front>
3429    <title>
3430     Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin alphabet No. 1
3431    </title>
3432    <author>
3433      <organization>International Organization for Standardization</organization>
3434    </author>
3435    <date year="1998"/>
3436  </front>
3437  <seriesInfo name="ISO/IEC" value="8859-1:1998"/>
3438</reference>
3439
[31]3440<reference anchor="Part2">
[119]3441  <front>
3442    <title abbrev="HTTP/1.1">HTTP/1.1, part 2: Message Semantics</title>
3443    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
3444      <organization abbrev="Day Software">Day Software</organization>
3445      <address><email>fielding@gbiv.com</email></address>
3446    </author>
3447    <author initials="J." surname="Gettys" fullname="Jim Gettys">
3448      <organization>One Laptop per Child</organization>
3449      <address><email>jg@laptop.org</email></address>
3450    </author>
3451    <author initials="J." surname="Mogul" fullname="Jeffrey C. Mogul">
3452      <organization abbrev="HP">Hewlett-Packard Company</organization>
3453      <address><email>JeffMogul@acm.org</email></address>
3454    </author>
3455    <author initials="H." surname="Frystyk" fullname="Henrik Frystyk Nielsen">
3456      <organization abbrev="Microsoft">Microsoft Corporation</organization>
3457      <address><email>henrikn@microsoft.com</email></address>
3458    </author>
3459    <author initials="L." surname="Masinter" fullname="Larry Masinter">
3460      <organization abbrev="Adobe Systems">Adobe Systems, Incorporated</organization>
3461      <address><email>LMM@acm.org</email></address>
3462    </author>
3463    <author initials="P." surname="Leach" fullname="Paul J. Leach">
3464      <organization abbrev="Microsoft">Microsoft Corporation</organization>
3465      <address><email>paulle@microsoft.com</email></address>
3466    </author>
3467    <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
3468      <organization abbrev="W3C/MIT">World Wide Web Consortium</organization>
3469      <address><email>timbl@w3.org</email></address>
3470    </author>
3471    <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
3472      <organization abbrev="W3C">World Wide Web Consortium</organization>
3473      <address><email>ylafon@w3.org</email></address>
3474    </author>
3475    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
3476      <organization abbrev="greenbytes">greenbytes GmbH</organization>
3477      <address><email>julian.reschke@greenbytes.de</email></address>
3478    </author>
3479    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
3480  </front>
3481  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p2-semantics-&ID-VERSION;"/>
3482  <x:source href="p2-semantics.xml" basename="p2-semantics"/>
[31]3483</reference>
3484
3485<reference anchor="Part3">
[119]3486  <front>
3487    <title abbrev="HTTP/1.1">HTTP/1.1, part 3: Message Payload and Content Negotiation</title>
3488    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
3489      <organization abbrev="Day Software">Day Software</organization>
3490      <address><email>fielding@gbiv.com</email></address>
3491    </author>
3492    <author initials="J." surname="Gettys" fullname="Jim Gettys">
3493      <organization>One Laptop per Child</organization>
3494      <address><email>jg@laptop.org</email></address>
3495    </author>
3496    <author initials="J." surname="Mogul" fullname="Jeffrey C. Mogul">
3497      <organization abbrev="HP">Hewlett-Packard Company</organization>
3498      <address><email>JeffMogul@acm.org</email></address>
3499    </author>
3500    <author initials="H." surname="Frystyk" fullname="Henrik Frystyk Nielsen">
3501      <organization abbrev="Microsoft">Microsoft Corporation</organization>
3502      <address><email>henrikn@microsoft.com</email></address>
3503    </author>
3504    <author initials="L." surname="Masinter" fullname="Larry Masinter">
3505      <organization abbrev="Adobe Systems">Adobe Systems, Incorporated</organization>
3506      <address><email>LMM@acm.org</email></address>
3507    </author>
3508    <author initials="P." surname="Leach" fullname="Paul J. Leach">
3509      <organization abbrev="Microsoft">Microsoft Corporation</organization>
3510      <address><email>paulle@microsoft.com</email></address>
3511    </author>
3512    <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
3513      <organization abbrev="W3C/MIT">World Wide Web Consortium</organization>
3514      <address><email>timbl@w3.org</email></address>
3515    </author>
3516    <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
3517      <organization abbrev="W3C">World Wide Web Consortium</organization>
3518      <address><email>ylafon@w3.org</email></address>
3519    </author>
3520    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
3521      <organization abbrev="greenbytes">greenbytes GmbH</organization>
3522      <address><email>julian.reschke@greenbytes.de</email></address>
3523    </author>
3524    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
3525  </front>
3526  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p3-payload-&ID-VERSION;"/>
3527  <x:source href="p3-payload.xml" basename="p3-payload"/>
[31]3528</reference>
3529
[138]3530<reference anchor="Part5">
3531  <front>
3532    <title abbrev="HTTP/1.1">HTTP/1.1, part 5: Range Requests and Partial Responses</title>
3533    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
3534      <organization abbrev="Day Software">Day Software</organization>
3535      <address><email>fielding@gbiv.com</email></address>
3536    </author>
3537    <author initials="J." surname="Gettys" fullname="Jim Gettys">
3538      <organization>One Laptop per Child</organization>
3539      <address><email>jg@laptop.org</email></address>
3540    </author>
3541    <author initials="J." surname="Mogul" fullname="Jeffrey C. Mogul">
3542      <organization abbrev="HP">Hewlett-Packard Company</organization>
3543      <address><email>JeffMogul@acm.org</email></address>
3544    </author>
3545    <author initials="H." surname="Frystyk" fullname="Henrik Frystyk Nielsen">
3546      <organization abbrev="Microsoft">Microsoft Corporation</organization>
3547      <address><email>henrikn@microsoft.com</email></address>
3548    </author>
3549    <author initials="L." surname="Masinter" fullname="Larry Masinter">
3550      <organization abbrev="Adobe Systems">Adobe Systems, Incorporated</organization>
3551      <address><email>LMM@acm.org</email></address>
3552    </author>
3553    <author initials="P." surname="Leach" fullname="Paul J. Leach">
3554      <organization abbrev="Microsoft">Microsoft Corporation</organization>
3555      <address><email>paulle@microsoft.com</email></address>
3556    </author>
3557    <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
3558      <organization abbrev="W3C/MIT">World Wide Web Consortium</organization>
3559      <address><email>timbl@w3.org</email></address>
3560    </author>
3561    <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
3562      <organization abbrev="W3C">World Wide Web Consortium</organization>
3563      <address><email>ylafon@w3.org</email></address>
3564    </author>
3565    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
3566      <organization abbrev="greenbytes">greenbytes GmbH</organization>
3567      <address><email>julian.reschke@greenbytes.de</email></address>
3568    </author>
3569    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
3570  </front>
3571  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p5-range-&ID-VERSION;"/>
3572  <x:source href="p5-range.xml" basename="p5-range"/>
3573</reference>
3574
[31]3575<reference anchor="Part6">
[119]3576  <front>
3577    <title abbrev="HTTP/1.1">HTTP/1.1, part 6: Caching</title>
3578    <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor">
3579      <organization abbrev="Day Software">Day Software</organization>
3580      <address><email>fielding@gbiv.com</email></address>
3581    </author>
3582    <author initials="J." surname="Gettys" fullname="Jim Gettys">
3583      <organization>One Laptop per Child</organization>
3584      <address><email>jg@laptop.org</email></address>
3585    </author>
3586    <author initials="J." surname="Mogul" fullname="Jeffrey C. Mogul">
3587      <organization abbrev="HP">Hewlett-Packard Company</organization>
3588      <address><email>JeffMogul@acm.org</email></address>
3589    </author>
3590    <author initials="H." surname="Frystyk" fullname="Henrik Frystyk Nielsen">
3591      <organization abbrev="Microsoft">Microsoft Corporation</organization>
3592      <address><email>henrikn@microsoft.com</email></address>
3593    </author>
3594    <author initials="L." surname="Masinter" fullname="Larry Masinter">
3595      <organization abbrev="Adobe Systems">Adobe Systems, Incorporated</organization>
3596      <address><email>LMM@acm.org</email></address>
3597    </author>
3598    <author initials="P." surname="Leach" fullname="Paul J. Leach">
3599      <organization abbrev="Microsoft">Microsoft Corporation</organization>
3600      <address><email>paulle@microsoft.com</email></address>
3601    </author>
3602    <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee">
3603      <organization abbrev="W3C/MIT">World Wide Web Consortium</organization>
3604      <address><email>timbl@w3.org</email></address>
3605    </author>
3606    <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor">
3607      <organization abbrev="W3C">World Wide Web Consortium</organization>
3608      <address><email>ylafon@w3.org</email></address>
3609    </author>
[601]3610    <author initials="M." surname="Nottingham" fullname="Mark Nottingham" role="editor">
3611      <organization />
3612      <address><email>mnot@mnot.net</email></address>
3613    </author>
[119]3614    <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor">
3615      <organization abbrev="greenbytes">greenbytes GmbH</organization>
3616      <address><email>julian.reschke@greenbytes.de</email></address>
3617    </author>
3618    <date month="&ID-MONTH;" year="&ID-YEAR;"/>
3619  </front>
3620  <seriesInfo name="Internet-Draft" value="draft-ietf-httpbis-p6-cache-&ID-VERSION;"/>
3621  <x:source href="p6-cache.xml" basename="p6-cache"/>
[31]3622</reference>
3623
[335]3624<reference anchor="RFC5234">
[129]3625  <front>
[335]3626    <title abbrev="ABNF for Syntax Specifications">Augmented BNF for Syntax Specifications: ABNF</title>
3627    <author initials="D." surname="Crocker" fullname="Dave Crocker" role="editor">
3628      <organization>Brandenburg InternetWorking</organization>
3629      <address>
3630      <postal>
3631      <street>675 Spruce Dr.</street>
3632      <city>Sunnyvale</city>
3633      <region>CA</region>
3634      <code>94086</code>
3635      <country>US</country></postal>
3636      <phone>+1.408.246.8253</phone>
3637      <email>dcrocker@bbiw.net</email></address> 
[129]3638    </author>
[335]3639    <author initials="P." surname="Overell" fullname="Paul Overell">
3640      <organization>THUS plc.</organization>
3641      <address>
3642      <postal>
3643      <street>1/2 Berkeley Square</street>
3644      <street>99 Berkely Street</street>
3645      <city>Glasgow</city>
3646      <code>G3 7HR</code>
3647      <country>UK</country></postal>
3648      <email>paul.overell@thus.net</email></address>
3649    </author>
3650    <date month="January" year="2008"/>
[129]3651  </front>
[335]3652  <seriesInfo name="STD" value="68"/>
3653  <seriesInfo name="RFC" value="5234"/>
[129]3654</reference>
3655
[119]3656<reference anchor="RFC2119">
3657  <front>
3658    <title>Key words for use in RFCs to Indicate Requirement Levels</title>
3659    <author initials="S." surname="Bradner" fullname="Scott Bradner">
3660      <organization>Harvard University</organization>
3661      <address><email>sob@harvard.edu</email></address>
3662    </author>
3663    <date month="March" year="1997"/>
3664  </front>
3665  <seriesInfo name="BCP" value="14"/>
3666  <seriesInfo name="RFC" value="2119"/>
3667</reference>
3668
[374]3669<reference anchor="RFC3986">
3670 <front>
3671  <title abbrev='URI Generic Syntax'>Uniform Resource Identifier (URI): Generic Syntax</title>
3672  <author initials='T.' surname='Berners-Lee' fullname='Tim Berners-Lee'>
3673    <organization abbrev="W3C/MIT">World Wide Web Consortium</organization>
3674    <address>
3675       <email>timbl@w3.org</email>
3676       <uri>http://www.w3.org/People/Berners-Lee/</uri>
3677    </address>
3678  </author>
3679  <author initials='R.' surname='Fielding' fullname='Roy T. Fielding'>
3680    <organization abbrev="Day Software">Day Software</organization>
3681    <address>
3682      <email>fielding@gbiv.com</email>
3683      <uri>http://roy.gbiv.com/</uri>
3684    </address>
3685  </author>
3686  <author initials='L.' surname='Masinter' fullname='Larry Masinter'>
3687    <organization abbrev="Adobe Systems">Adobe Systems Incorporated</organization>
3688    <address>
3689      <email>LMM@acm.org</email>
3690      <uri>http://larry.masinter.net/</uri>
3691    </address>
3692  </author>
3693  <date month='January' year=<