source: draft-ietf-httpbis/latest/auth48/rfc7230.txt @ 2712

Last change on this file since 2712 was 2712, checked in by julian.reschke@…, 9 years ago

switch diffs to plain text versions of RFCs-to-be (#553)

File size: 201.1 KB
Line 
1
2
3
4
5
6
7Internet Engineering Task Force (IETF)                  R. Fielding, Ed.
8Request for Comments: 7230                                         Adobe
9Obsoletes: 2145, 2616                                    J. Reschke, Ed.
10Updates: 2817, 2818                                           greenbytes
11Category: Standards Track                                      June 2014
12ISSN: 2070-1721
13
14
15   Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing
16
17Abstract
18
19   The Hypertext Transfer Protocol (HTTP) is a stateless application-
20   level protocol for distributed, collaborative, hypertext information
21   systems.  This document provides an overview of HTTP architecture and
22   its associated terminology, defines the "http" and "https" Uniform
23   Resource Identifier (URI) schemes, defines the HTTP/1.1 message
24   syntax and parsing requirements, and describes related security
25   concerns for implementations.
26
27Status of This Memo
28
29   This is an Internet Standards Track document.
30
31   This document is a product of the Internet Engineering Task Force
32   (IETF).  It represents the consensus of the IETF community.  It has
33   received public review and has been approved for publication by the
34   Internet Engineering Steering Group (IESG).  Further information on
35   Internet Standards is available in Section 2 of RFC 5741.
36
37   Information about the current status of this document, any errata,
38   and how to provide feedback on it may be obtained at
39   http://www.rfc-editor.org/info/rfc7230.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58Fielding & Reschke           Standards Track                    [Page 1]
59
60RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
61
62
63Copyright Notice
64
65   Copyright (c) 2014 IETF Trust and the persons identified as the
66   document authors.  All rights reserved.
67
68   This document is subject to BCP 78 and the IETF Trust's Legal
69   Provisions Relating to IETF Documents
70   (http://trustee.ietf.org/license-info) in effect on the date of
71   publication of this document.  Please review these documents
72   carefully, as they describe your rights and restrictions with respect
73   to this document.  Code Components extracted from this document must
74   include Simplified BSD License text as described in Section 4.e of
75   the Trust Legal Provisions and are provided without warranty as
76   described in the Simplified BSD License.
77
78   This document may contain material from IETF Documents or IETF
79   Contributions published or made publicly available before November
80   10, 2008.  The person(s) controlling the copyright in some of this
81   material may not have granted the IETF Trust the right to allow
82   modifications of such material outside the IETF Standards Process.
83   Without obtaining an adequate license from the person(s) controlling
84   the copyright in such materials, this document may not be modified
85   outside the IETF Standards Process, and derivative works of it may
86   not be created outside the IETF Standards Process, except to format
87   it for publication as an RFC or to translate it into languages other
88   than English.
89
90Table of Contents
91
92   1. Introduction ....................................................5
93      1.1. Requirements Notation ......................................6
94      1.2. Syntax Notation ............................................6
95   2. Architecture ....................................................6
96      2.1. Client/Server Messaging ....................................7
97      2.2. Implementation Diversity ...................................8
98      2.3. Intermediaries .............................................9
99      2.4. Caches ....................................................11
100      2.5. Conformance and Error Handling ............................12
101      2.6. Protocol Versioning .......................................13
102      2.7. Uniform Resource Identifiers ..............................16
103           2.7.1. http URI Scheme ....................................17
104           2.7.2. https URI Scheme ...................................18
105           2.7.3. http and https URI Normalization and Comparison ....19
106   3. Message Format .................................................19
107      3.1. Start Line ................................................20
108           3.1.1. Request Line .......................................21
109           3.1.2. Status Line ........................................22
110      3.2. Header Fields .............................................22
111
112
113
114Fielding & Reschke           Standards Track                    [Page 2]
115
116RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
117
118
119           3.2.1. Field Extensibility ................................23
120           3.2.2. Field Order ........................................23
121           3.2.3. Whitespace .........................................24
122           3.2.4. Field Parsing ......................................25
123           3.2.5. Field Limits .......................................26
124           3.2.6. Field Value Components .............................27
125      3.3. Message Body ..............................................28
126           3.3.1. Transfer-Encoding ..................................28
127           3.3.2. Content-Length .....................................30
128           3.3.3. Message Body Length ................................32
129      3.4. Handling Incomplete Messages ..............................34
130      3.5. Message Parsing Robustness ................................34
131   4. Transfer Codings ...............................................35
132      4.1. Chunked Transfer Coding ...................................36
133           4.1.1. Chunk Extensions ...................................36
134           4.1.2. Chunked Trailer Part ...............................37
135           4.1.3. Decoding Chunked ...................................38
136      4.2. Compression Codings .......................................38
137           4.2.1. Compress Coding ....................................38
138           4.2.2. Deflate Coding .....................................38
139           4.2.3. Gzip Coding ........................................39
140      4.3. TE ........................................................39
141      4.4. Trailer ...................................................40
142   5. Message Routing ................................................40
143      5.1. Identifying a Target Resource .............................40
144      5.2. Connecting Inbound ........................................41
145      5.3. Request Target ............................................41
146           5.3.1. origin-form ........................................42
147           5.3.2. absolute-form ......................................42
148           5.3.3. authority-form .....................................43
149           5.3.4. asterisk-form ......................................43
150      5.4. Host ......................................................44
151      5.5. Effective Request URI .....................................45
152      5.6. Associating a Response to a Request .......................46
153      5.7. Message Forwarding ........................................47
154           5.7.1. Via ................................................47
155           5.7.2. Transformations ....................................49
156   6. Connection Management ..........................................50
157      6.1. Connection ................................................51
158      6.2. Establishment .............................................52
159      6.3. Persistence ...............................................52
160           6.3.1. Retrying Requests ..................................53
161           6.3.2. Pipelining .........................................54
162      6.4. Concurrency ...............................................55
163      6.5. Failures and Timeouts .....................................55
164      6.6. Tear-down .................................................56
165      6.7. Upgrade ...................................................57
166   7. ABNF List Extension: #rule .....................................59
167
168
169
170Fielding & Reschke           Standards Track                    [Page 3]
171
172RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
173
174
175   8. IANA Considerations ............................................61
176      8.1. Header Field Registration .................................61
177      8.2. URI Scheme Registration ...................................62
178      8.3. Internet Media Type Registration ..........................62
179           8.3.1. Internet Media Type message/http ...................62
180           8.3.2. Internet Media Type application/http ...............63
181      8.4. Transfer Coding Registry ..................................64
182           8.4.1. Procedure ..........................................65
183           8.4.2. Registration .......................................65
184      8.5. Content Coding Registration ...............................66
185      8.6. Upgrade Token Registry ....................................66
186           8.6.1. Procedure ..........................................66
187           8.6.2. Upgrade Token Registration .........................67
188   9. Security Considerations ........................................67
189      9.1. Establishing Authority ....................................67
190      9.2. Risks of Intermediaries ...................................68
191      9.3. Attacks via Protocol Element Length .......................69
192      9.4. Response Splitting ........................................69
193      9.5. Request Smuggling .........................................70
194      9.6. Message Integrity .........................................70
195      9.7. Message Confidentiality ...................................71
196      9.8. Privacy of Server Log Information .........................71
197   10. Acknowledgments ...............................................72
198   11. References ....................................................74
199      11.1. Normative References .....................................74
200      11.2. Informative References ...................................75
201   Appendix A. HTTP Version History ..................................78
202      A.1. Changes from HTTP/1.0  ....................................78
203           A.1.1.  Multihomed Web Servers ............................78
204           A.1.2.  Keep-Alive Connections ............................79
205           A.1.3.  Introduction of Transfer-Encoding .................79
206      A.2.  Changes from RFC 2616 ....................................80
207   Appendix B. Collected ABNF ........................................82
208   Index .............................................................85
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226Fielding & Reschke           Standards Track                    [Page 4]
227
228RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
229
230
2311.  Introduction
232
233   The Hypertext Transfer Protocol (HTTP) is a stateless application-
234   level request/response protocol that uses extensible semantics and
235   self-descriptive message payloads for flexible interaction with
236   network-based hypertext information systems.  This document is the
237   first in a series of documents that collectively form the HTTP/1.1
238   specification:
239
240   1.  "Message Syntax and Routing" (this document)
241
242   2.  "Semantics and Content" [RFC7231]
243
244   3.  "Conditional Requests" [RFC7232]
245
246   4.  "Range Requests" [RFC7233]
247
248   5.  "Caching" [RFC7234]
249
250   6.  "Authentication" [RFC7235]
251
252   This HTTP/1.1 specification obsoletes RFC 2616 and RFC 2145 (on HTTP
253   versioning).  This specification also updates the use of CONNECT to
254   establish a tunnel, previously defined in RFC 2817, and defines the
255   "https" URI scheme that was described informally in RFC 2818.
256
257   HTTP is a generic interface protocol for information systems.  It is
258   designed to hide the details of how a service is implemented by
259   presenting a uniform interface to clients that is independent of the
260   types of resources provided.  Likewise, servers do not need to be
261   aware of each client's purpose: an HTTP request can be considered in
262   isolation rather than being associated with a specific type of client
263   or a predetermined sequence of application steps.  The result is a
264   protocol that can be used effectively in many different contexts and
265   for which implementations can evolve independently over time.
266
267   HTTP is also designed for use as an intermediation protocol for
268   translating communication to and from non-HTTP information systems.
269   HTTP proxies and gateways can provide access to alternative
270   information services by translating their diverse protocols into a
271   hypertext format that can be viewed and manipulated by clients in the
272   same way as HTTP services.
273
274   One consequence of this flexibility is that the protocol cannot be
275   defined in terms of what occurs behind the interface.  Instead, we
276   are limited to defining the syntax of communication, the intent of
277   received communication, and the expected behavior of recipients.  If
278   the communication is considered in isolation, then successful actions
279
280
281
282Fielding & Reschke           Standards Track                    [Page 5]
283
284RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
285
286
287   ought to be reflected in corresponding changes to the observable
288   interface provided by servers.  However, since multiple clients might
289   act in parallel and perhaps at cross-purposes, we cannot require that
290   such changes be observable beyond the scope of a single response.
291
292   This document describes the architectural elements that are used or
293   referred to in HTTP, defines the "http" and "https" URI schemes,
294   describes overall network operation and connection management, and
295   defines HTTP message framing and forwarding requirements.  Our goal
296   is to define all of the mechanisms necessary for HTTP message
297   handling that are independent of message semantics, thereby defining
298   the complete set of requirements for message parsers and message-
299   forwarding intermediaries.
300
3011.1.  Requirements Notation
302
303   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
304   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
305   document are to be interpreted as described in [RFC2119].
306
307   Conformance criteria and considerations regarding error handling are
308   defined in Section 2.5.
309
3101.2.  Syntax Notation
311
312   This specification uses the Augmented Backus-Naur Form (ABNF)
313   notation of [RFC5234] with a list extension, defined in Section 7,
314   that allows for compact definition of comma-separated lists using a
315   '#' operator (similar to how the '*' operator indicates repetition).
316   Appendix B shows the collected grammar with all list operators
317   expanded to standard ABNF notation.
318
319   The following core rules are included by reference, as defined in
320   [RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF
321   (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),
322   HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF (line
323   feed), OCTET (any 8-bit sequence of data), SP (space), and VCHAR (any
324   visible [USASCII] character).
325
326   As a convention, ABNF rule names prefixed with "obs-" denote
327   "obsolete" grammar rules that appear for historical reasons.
328
3292.  Architecture
330
331   HTTP was created for the World Wide Web (WWW) architecture and has
332   evolved over time to support the scalability needs of a worldwide
333   hypertext system.  Much of that architecture is reflected in the
334   terminology and syntax productions used to define HTTP.
335
336
337
338Fielding & Reschke           Standards Track                    [Page 6]
339
340RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
341
342
3432.1.  Client/Server Messaging
344
345   HTTP is a stateless request/response protocol that operates by
346   exchanging messages (Section 3) across a reliable transport- or
347   session-layer "connection" (Section 6).  An HTTP "client" is a
348   program that establishes a connection to a server for the purpose of
349   sending one or more HTTP requests.  An HTTP "server" is a program
350   that accepts connections in order to service HTTP requests by sending
351   HTTP responses.
352
353   The terms "client" and "server" refer only to the roles that these
354   programs perform for a particular connection.  The same program might
355   act as a client on some connections and a server on others.  The term
356   "user agent" refers to any of the various client programs that
357   initiate a request, including (but not limited to) browsers, spiders
358   (web-based robots), command-line tools, custom applications, and
359   mobile apps.  The term "origin server" refers to the program that can
360   originate authoritative responses for a given target resource.  The
361   terms "sender" and "recipient" refer to any implementation that sends
362   or receives a given message, respectively.
363
364   HTTP relies upon the Uniform Resource Identifier (URI) standard
365   [RFC3986] to indicate the target resource (Section 5.1) and
366   relationships between resources.  Messages are passed in a format
367   similar to that used by Internet mail [RFC5322] and the Multipurpose
368   Internet Mail Extensions (MIME) [RFC2045] (see Appendix A of
369   [RFC7231] for the differences between HTTP and MIME messages).
370
371   Most HTTP communication consists of a retrieval request (GET) for a
372   representation of some resource identified by a URI.  In the simplest
373   case, this might be accomplished via a single bidirectional
374   connection (===) between the user agent (UA) and the origin
375   server (O).
376
377            request   >
378       UA ======================================= O
379                                   <   response
380
381   A client sends an HTTP request to a server in the form of a request
382   message, beginning with a request-line that includes a method, URI,
383   and protocol version (Section 3.1.1), followed by header fields
384   containing request modifiers, client information, and representation
385   metadata (Section 3.2), an empty line to indicate the end of the
386   header section, and finally a message body containing the payload
387   body (if any, Section 3.3).
388
389
390
391
392
393
394Fielding & Reschke           Standards Track                    [Page 7]
395
396RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
397
398
399   A server responds to a client's request by sending one or more HTTP
400   response messages, each beginning with a status line that includes
401   the protocol version, a success or error code, and textual reason
402   phrase (Section 3.1.2), possibly followed by header fields containing
403   server information, resource metadata, and representation metadata
404   (Section 3.2), an empty line to indicate the end of the header
405   section, and finally a message body containing the payload body (if
406   any, Section 3.3).
407
408   A connection might be used for multiple request/response exchanges,
409   as defined in Section 6.3.
410
411   The following example illustrates a typical message exchange for a
412   GET request (Section 4.3.1 of [RFC7231]) on the URI
413   "http://www.example.com/hello.txt":
414
415   Client request:
416
417     GET /hello.txt HTTP/1.1
418     User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3
419     Host: www.example.com
420     Accept-Language: en, mi
421
422
423   Server response:
424
425     HTTP/1.1 200 OK
426     Date: Mon, 27 Jul 2009 12:28:53 GMT
427     Server: Apache
428     Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
429     ETag: "34aa387-d-1568eb00"
430     Accept-Ranges: bytes
431     Content-Length: 51
432     Vary: Accept-Encoding
433     Content-Type: text/plain
434
435     Hello World! My payload includes a trailing CRLF.
436
4372.2.  Implementation Diversity
438
439   When considering the design of HTTP, it is easy to fall into a trap
440   of thinking that all user agents are general-purpose browsers and all
441   origin servers are large public websites.  That is not the case in
442   practice.  Common HTTP user agents include household appliances,
443   stereos, scales, firmware update scripts, command-line programs,
444   mobile apps, and communication devices in a multitude of shapes and
445   sizes.  Likewise, common HTTP origin servers include home automation
446
447
448
449
450Fielding & Reschke           Standards Track                    [Page 8]
451
452RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
453
454
455   units, configurable networking components, office machines,
456   autonomous robots, news feeds, traffic cameras, ad selectors, and
457   video-delivery platforms.
458
459   The term "user agent" does not imply that there is a human user
460   directly interacting with the software agent at the time of a
461   request.  In many cases, a user agent is installed or configured to
462   run in the background and save its results for later inspection (or
463   save only a subset of those results that might be interesting or
464   erroneous).  Spiders, for example, are typically given a start URI
465   and configured to follow certain behavior while crawling the Web as a
466   hypertext graph.
467
468   The implementation diversity of HTTP means that not all user agents
469   can make interactive suggestions to their user or provide adequate
470   warning for security or privacy concerns.  In the few cases where
471   this specification requires reporting of errors to the user, it is
472   acceptable for such reporting to only be observable in an error
473   console or log file.  Likewise, requirements that an automated action
474   be confirmed by the user before proceeding might be met via advance
475   configuration choices, run-time options, or simple avoidance of the
476   unsafe action; confirmation does not imply any specific user
477   interface or interruption of normal processing if the user has
478   already made that choice.
479
4802.3.  Intermediaries
481
482   HTTP enables the use of intermediaries to satisfy requests through a
483   chain of connections.  There are three common forms of HTTP
484   intermediary: proxy, gateway, and tunnel.  In some cases, a single
485   intermediary might act as an origin server, proxy, gateway, or
486   tunnel, switching behavior based on the nature of each request.
487
488            >             >             >             >
489       UA =========== A =========== B =========== C =========== O
490                  <             <             <             <
491
492   The figure above shows three intermediaries (A, B, and C) between the
493   user agent and origin server.  A request or response message that
494   travels the whole chain will pass through four separate connections.
495   Some HTTP communication options might apply only to the connection
496   with the nearest, non-tunnel neighbor, only to the endpoints of the
497   chain, or to all connections along the chain.  Although the diagram
498   is linear, each participant might be engaged in multiple,
499   simultaneous communications.  For example, B might be receiving
500   requests from many clients other than A, and/or forwarding requests
501   to servers other than C, at the same time that it is handling A's
502
503
504
505
506Fielding & Reschke           Standards Track                    [Page 9]
507
508RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
509
510
511   request.  Likewise, later requests might be sent through a different
512   path of connections, often based on dynamic configuration for load
513   balancing.
514
515   The terms "upstream" and "downstream" are used to describe
516   directional requirements in relation to the message flow: all
517   messages flow from upstream to downstream.  The terms "inbound" and
518   "outbound" are used to describe directional requirements in relation
519   to the request route: "inbound" means toward the origin server and
520   "outbound" means toward the user agent.
521
522   A "proxy" is a message-forwarding agent that is selected by the
523   client, usually via local configuration rules, to receive requests
524   for some type(s) of absolute URI and attempt to satisfy those
525   requests via translation through the HTTP interface.  Some
526   translations are minimal, such as for proxy requests for "http" URIs,
527   whereas other requests might require translation to and from entirely
528   different application-level protocols.  Proxies are often used to
529   group an organization's HTTP requests through a common intermediary
530   for the sake of security, annotation services, or shared caching.
531   Some proxies are designed to apply transformations to selected
532   messages or payloads while they are being forwarded, as described in
533   Section 5.7.2.
534
535   A "gateway" (a.k.a. "reverse proxy") is an intermediary that acts as
536   an origin server for the outbound connection but translates received
537   requests and forwards them inbound to another server or servers.
538   Gateways are often used to encapsulate legacy or untrusted
539   information services, to improve server performance through
540   "accelerator" caching, and to enable partitioning or load balancing
541   of HTTP services across multiple machines.
542
543   All HTTP requirements applicable to an origin server also apply to
544   the outbound communication of a gateway.  A gateway communicates with
545   inbound servers using any protocol that it desires, including private
546   extensions to HTTP that are outside the scope of this specification.
547   However, an HTTP-to-HTTP gateway that wishes to interoperate with
548   third-party HTTP servers ought to conform to user agent requirements
549   on the gateway's inbound connection.
550
551   A "tunnel" acts as a blind relay between two connections without
552   changing the messages.  Once active, a tunnel is not considered a
553   party to the HTTP communication, though the tunnel might have been
554   initiated by an HTTP request.  A tunnel ceases to exist when both
555   ends of the relayed connection are closed.  Tunnels are used to
556   extend a virtual connection through an intermediary, such as when
557   Transport Layer Security (TLS, [RFC5246]) is used to establish
558   confidential communication through a shared firewall proxy.
559
560
561
562Fielding & Reschke           Standards Track                   [Page 10]
563
564RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
565
566
567   The above categories for intermediary only consider those acting as
568   participants in the HTTP communication.  There are also
569   intermediaries that can act on lower layers of the network protocol
570   stack, filtering or redirecting HTTP traffic without the knowledge or
571   permission of message senders.  Network intermediaries are
572   indistinguishable (at a protocol level) from a man-in-the-middle
573   attack, often introducing security flaws or interoperability problems
574   due to mistakenly violating HTTP semantics.
575
576   For example, an "interception proxy" [RFC3040] (also commonly known
577   as a "transparent proxy" [RFC1919] or "captive portal") differs from
578   an HTTP proxy because it is not selected by the client.  Instead, an
579   interception proxy filters or redirects outgoing TCP port 80 packets
580   (and occasionally other common port traffic).  Interception proxies
581   are commonly found on public network access points, as a means of
582   enforcing account subscription prior to allowing use of non-local
583   Internet services, and within corporate firewalls to enforce network
584   usage policies.
585
586   HTTP is defined as a stateless protocol, meaning that each request
587   message can be understood in isolation.  Many implementations depend
588   on HTTP's stateless design in order to reuse proxied connections or
589   dynamically load balance requests across multiple servers.  Hence, a
590   server MUST NOT assume that two requests on the same connection are
591   from the same user agent unless the connection is secured and
592   specific to that agent.  Some non-standard HTTP extensions (e.g.,
593   [RFC4559]) have been known to violate this requirement, resulting in
594   security and interoperability problems.
595
5962.4.  Caches
597
598   A "cache" is a local store of previous response messages and the
599   subsystem that controls its message storage, retrieval, and deletion.
600   A cache stores cacheable responses in order to reduce the response
601   time and network bandwidth consumption on future, equivalent
602   requests.  Any client or server MAY employ a cache, though a cache
603   cannot be used by a server while it is acting as a tunnel.
604
605   The effect of a cache is that the request/response chain is shortened
606   if one of the participants along the chain has a cached response
607   applicable to that request.  The following illustrates the resulting
608   chain if B has a cached copy of an earlier response from O (via C)
609   for a request that has not been cached by UA or A.
610
611               >             >
612          UA =========== A =========== B - - - - - - C - - - - - - O
613                     <             <
614
615
616
617
618Fielding & Reschke           Standards Track                   [Page 11]
619
620RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
621
622
623   A response is "cacheable" if a cache is allowed to store a copy of
624   the response message for use in answering subsequent requests.  Even
625   when a response is cacheable, there might be additional constraints
626   placed by the client or by the origin server on when that cached
627   response can be used for a particular request.  HTTP requirements for
628   cache behavior and cacheable responses are defined in Section 2 of
629   [RFC7234].
630
631   There is a wide variety of architectures and configurations of caches
632   deployed across the World Wide Web and inside large organizations.
633   These include national hierarchies of proxy caches to save
634   transoceanic bandwidth, collaborative systems that broadcast or
635   multicast cache entries, archives of pre-fetched cache entries for
636   use in off-line or high-latency environments, and so on.
637
6382.5.  Conformance and Error Handling
639
640   This specification targets conformance criteria according to the role
641   of a participant in HTTP communication.  Hence, HTTP requirements are
642   placed on senders, recipients, clients, servers, user agents,
643   intermediaries, origin servers, proxies, gateways, or caches,
644   depending on what behavior is being constrained by the requirement.
645   Additional (social) requirements are placed on implementations,
646   resource owners, and protocol element registrations when they apply
647   beyond the scope of a single communication.
648
649   The verb "generate" is used instead of "send" where a requirement
650   differentiates between creating a protocol element and merely
651   forwarding a received element downstream.
652
653   An implementation is considered conformant if it complies with all of
654   the requirements associated with the roles it partakes in HTTP.
655
656   Conformance includes both the syntax and semantics of protocol
657   elements.  A sender MUST NOT generate protocol elements that convey a
658   meaning that is known by that sender to be false.  A sender MUST NOT
659   generate protocol elements that do not match the grammar defined by
660   the corresponding ABNF rules.  Within a given message, a sender MUST
661   NOT generate protocol elements or syntax alternatives that are only
662   allowed to be generated by participants in other roles (i.e., a role
663   that the sender does not have for that message).
664
665   When a received protocol element is parsed, the recipient MUST be
666   able to parse any value of reasonable length that is applicable to
667   the recipient's role and that matches the grammar defined by the
668   corresponding ABNF rules.  Note, however, that some received protocol
669   elements might not be parsed.  For example, an intermediary
670
671
672
673
674Fielding & Reschke           Standards Track                   [Page 12]
675
676RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
677
678
679   forwarding a message might parse a header-field into generic
680   field-name and field-value components, but then forward the header
681   field without further parsing inside the field-value.
682
683   HTTP does not have specific length limitations for many of its
684   protocol elements because the lengths that might be appropriate will
685   vary widely, depending on the deployment context and purpose of the
686   implementation.  Hence, interoperability between senders and
687   recipients depends on shared expectations regarding what is a
688   reasonable length for each protocol element.  Furthermore, what is
689   commonly understood to be a reasonable length for some protocol
690   elements has changed over the course of the past two decades of HTTP
691   use and is expected to continue changing in the future.
692
693   At a minimum, a recipient MUST be able to parse and process protocol
694   element lengths that are at least as long as the values that it
695   generates for those same protocol elements in other messages.  For
696   example, an origin server that publishes very long URI references to
697   its own resources needs to be able to parse and process those same
698   references when received as a request target.
699
700   A recipient MUST interpret a received protocol element according to
701   the semantics defined for it by this specification, including
702   extensions to this specification, unless the recipient has determined
703   (through experience or configuration) that the sender incorrectly
704   implements what is implied by those semantics.  For example, an
705   origin server might disregard the contents of a received
706   Accept-Encoding header field if inspection of the User-Agent header
707   field indicates a specific implementation version that is known to
708   fail on receipt of certain content codings.
709
710   Unless noted otherwise, a recipient MAY attempt to recover a usable
711   protocol element from an invalid construct.  HTTP does not define
712   specific error handling mechanisms except when they have a direct
713   impact on security, since different applications of the protocol
714   require different error handling strategies.  For example, a Web
715   browser might wish to transparently recover from a response where the
716   Location header field doesn't parse according to the ABNF, whereas a
717   systems control client might consider any form of error recovery to
718   be dangerous.
719
7202.6.  Protocol Versioning
721
722   HTTP uses a "<major>.<minor>" numbering scheme to indicate versions
723   of the protocol.  This specification defines version "1.1".  The
724   protocol version as a whole indicates the sender's conformance with
725   the set of requirements laid out in that version's corresponding
726   specification of HTTP.
727
728
729
730Fielding & Reschke           Standards Track                   [Page 13]
731
732RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
733
734
735   The version of an HTTP message is indicated by an HTTP-version field
736   in the first line of the message.  HTTP-version is case-sensitive.
737
738     HTTP-version  = HTTP-name "/" DIGIT "." DIGIT
739     HTTP-name     = %x48.54.54.50 ; "HTTP", case-sensitive
740
741   The HTTP version number consists of two decimal digits separated by a
742   "." (period or decimal point).  The first digit ("major version")
743   indicates the HTTP messaging syntax, whereas the second digit ("minor
744   version") indicates the highest minor version within that major
745   version to which the sender is conformant and able to understand for
746   future communication.  The minor version advertises the sender's
747   communication capabilities even when the sender is only using a
748   backwards-compatible subset of the protocol, thereby letting the
749   recipient know that more advanced features can be used in response
750   (by servers) or in future requests (by clients).
751
752   When an HTTP/1.1 message is sent to an HTTP/1.0 recipient [RFC1945]
753   or a recipient whose version is unknown, the HTTP/1.1 message is
754   constructed such that it can be interpreted as a valid HTTP/1.0
755   message if all of the newer features are ignored.  This specification
756   places recipient-version requirements on some new features so that a
757   conformant sender will only use compatible features until it has
758   determined, through configuration or the receipt of a message, that
759   the recipient supports HTTP/1.1.
760
761   The interpretation of a header field does not change between minor
762   versions of the same major HTTP version, though the default behavior
763   of a recipient in the absence of such a field can change.  Unless
764   specified otherwise, header fields defined in HTTP/1.1 are defined
765   for all versions of HTTP/1.x.  In particular, the Host and Connection
766   header fields ought to be implemented by all HTTP/1.x implementations
767   whether or not they advertise conformance with HTTP/1.1.
768
769   New header fields can be introduced without changing the protocol
770   version if their defined semantics allow them to be safely ignored by
771   recipients that do not recognize them.  Header field extensibility is
772   discussed in Section 3.2.1.
773
774   Intermediaries that process HTTP messages (i.e., all intermediaries
775   other than those acting as tunnels) MUST send their own HTTP-version
776   in forwarded messages.  In other words, they are not allowed to
777   blindly forward the first line of an HTTP message without ensuring
778   that the protocol version in that message matches a version to which
779   that intermediary is conformant for both the receiving and sending of
780   messages.  Forwarding an HTTP message without rewriting the
781
782
783
784
785
786Fielding & Reschke           Standards Track                   [Page 14]
787
788RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
789
790
791   HTTP-version might result in communication errors when downstream
792   recipients use the message sender's version to determine what
793   features are safe to use for later communication with that sender.
794
795   A client SHOULD send a request version equal to the highest version
796   to which the client is conformant and whose major version is no
797   higher than the highest version supported by the server, if this is
798   known.  A client MUST NOT send a version to which it is not
799   conformant.
800
801   A client MAY send a lower request version if it is known that the
802   server incorrectly implements the HTTP specification, but only after
803   the client has attempted at least one normal request and determined
804   from the response status code or header fields (e.g., Server) that
805   the server improperly handles higher request versions.
806
807   A server SHOULD send a response version equal to the highest version
808   to which the server is conformant that has a major version less than
809   or equal to the one received in the request.  A server MUST NOT send
810   a version to which it is not conformant.  A server can send a 505
811   (HTTP Version Not Supported) response if it wishes, for any reason,
812   to refuse service of the client's major protocol version.
813
814   A server MAY send an HTTP/1.0 response to a request if it is known or
815   suspected that the client incorrectly implements the HTTP
816   specification and is incapable of correctly processing later version
817   responses, such as when a client fails to parse the version number
818   correctly or when an intermediary is known to blindly forward the
819   HTTP-version even when it doesn't conform to the given minor version
820   of the protocol.  Such protocol downgrades SHOULD NOT be performed
821   unless triggered by specific client attributes, such as when one or
822   more of the request header fields (e.g., User-Agent) uniquely match
823   the values sent by a client known to be in error.
824
825   The intention of HTTP's versioning design is that the major number
826   will only be incremented if an incompatible message syntax is
827   introduced, and that the minor number will only be incremented when
828   changes made to the protocol have the effect of adding to the message
829   semantics or implying additional capabilities of the sender.
830   However, the minor version was not incremented for the changes
831   introduced between [RFC2068] and [RFC2616], and this revision has
832   specifically avoided any such changes to the protocol.
833
834   When an HTTP message is received with a major version number that the
835   recipient implements, but a higher minor version number than what the
836   recipient implements, the recipient SHOULD process the message as if
837   it were in the highest minor version within that major version to
838   which the recipient is conformant.  A recipient can assume that a
839
840
841
842Fielding & Reschke           Standards Track                   [Page 15]
843
844RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
845
846
847   message with a higher minor version, when sent to a recipient that
848   has not yet indicated support for that higher version, is
849   sufficiently backwards-compatible to be safely processed by any
850   implementation of the same major version.
851
8522.7.  Uniform Resource Identifiers
853
854   Uniform Resource Identifiers (URIs) [RFC3986] are used throughout
855   HTTP as the means for identifying resources (Section 2 of [RFC7231]).
856   URI references are used to target requests, indicate redirects, and
857   define relationships.
858
859   The definitions of "URI-reference", "absolute-URI", "relative-part",
860   "scheme", "authority", "port", "host", "path-abempty", "segment",
861   "query", and "fragment" are adopted from the URI generic syntax.  An
862   "absolute-path" rule is defined for protocol elements that can
863   contain a non-empty path component.  (This rule differs slightly from
864   the path-abempty rule of RFC 3986, which allows for an empty path to
865   be used in references, and path-absolute rule, which does not allow
866   paths that begin with "//".)  A "partial-URI" rule is defined for
867   protocol elements that can contain a relative URI but not a fragment
868   component.
869
870     URI-reference = <URI-reference, see [RFC3986], Section 4.1>
871     absolute-URI  = <absolute-URI, see [RFC3986], Section 4.3>
872     relative-part = <relative-part, see [RFC3986], Section 4.2>
873     scheme        = <scheme, see [RFC3986], Section 3.1>
874     authority     = <authority, see [RFC3986], Section 3.2>
875     uri-host      = <host, see [RFC3986], Section 3.2.2>
876     port          = <port, see [RFC3986], Section 3.2.3>
877     path-abempty  = <path-abempty, see [RFC3986], Section 3.3>
878     segment       = <segment, see [RFC3986], Section 3.3>
879     query         = <query, see [RFC3986], Section 3.4>
880     fragment      = <fragment, see [RFC3986], Section 3.5>
881
882     absolute-path = 1*( "/" segment )
883     partial-URI   = relative-part [ "?" query ]
884
885   Each protocol element in HTTP that allows a URI reference will
886   indicate in its ABNF production whether the element allows any form
887   of reference (URI-reference), only a URI in absolute form
888   (absolute-URI), only the path and optional query components, or some
889   combination of the above.  Unless otherwise indicated, URI references
890   are parsed relative to the effective request URI (Section 5.5).
891
892
893
894
895
896
897
898Fielding & Reschke           Standards Track                   [Page 16]
899
900RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
901
902
9032.7.1.  http URI Scheme
904
905   The "http" URI scheme is hereby defined for the purpose of minting
906   identifiers according to their association with the hierarchical
907   namespace governed by a potential HTTP origin server listening for
908   TCP ([RFC0793]) connections on a given port.
909
910     http-URI = "http:" "//" authority path-abempty [ "?" query ]
911                [ "#" fragment ]
912
913   The origin server for an "http" URI is identified by the authority
914   component, which includes a host identifier and optional TCP port
915   ([RFC3986], Section 3.2.2).  The hierarchical path component and
916   optional query component serve as an identifier for a potential
917   target resource within that origin server's name space.  The optional
918   fragment component allows for indirect identification of a secondary
919   resource, independent of the URI scheme, as defined in Section 3.5 of
920   [RFC3986].
921
922   A sender MUST NOT generate an "http" URI with an empty host
923   identifier.  A recipient that processes such a URI reference MUST
924   reject it as invalid.
925
926   If the host identifier is provided as an IP address, the origin
927   server is the listener (if any) on the indicated TCP port at that IP
928   address.  If host is a registered name, the registered name is an
929   indirect identifier for use with a name resolution service, such as
930   DNS, to find an address for that origin server.  If the port
931   subcomponent is empty or not given, TCP port 80 (the reserved port
932   for WWW services) is the default.
933
934   Note that the presence of a URI with a given authority component does
935   not imply that there is always an HTTP server listening for
936   connections on that host and port.  Anyone can mint a URI.  What the
937   authority component determines is who has the right to respond
938   authoritatively to requests that target the identified resource.  The
939   delegated nature of registered names and IP addresses creates a
940   federated namespace, based on control over the indicated host and
941   port, whether or not an HTTP server is present.  See Section 9.1 for
942   security considerations related to establishing authority.
943
944   When an "http" URI is used within a context that calls for access to
945   the indicated resource, a client MAY attempt access by resolving the
946   host to an IP address, establishing a TCP connection to that address
947   on the indicated port, and sending an HTTP request message
948   (Section 3) containing the URI's identifying data (Section 5) to the
949   server.  If the server responds to that request with a non-interim
950
951
952
953
954Fielding & Reschke           Standards Track                   [Page 17]
955
956RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
957
958
959   HTTP response message, as described in Section 6 of [RFC7231], then
960   that response is considered an authoritative answer to the client's
961   request.
962
963   Although HTTP is independent of the transport protocol, the "http"
964   scheme is specific to TCP-based services because the name delegation
965   process depends on TCP for establishing authority.  An HTTP service
966   based on some other underlying connection protocol would presumably
967   be identified using a different URI scheme, just as the "https"
968   scheme (below) is used for resources that require an end-to-end
969   secured connection.  Other protocols might also be used to provide
970   access to "http" identified resources -- it is only the authoritative
971   interface that is specific to TCP.
972
973   The URI generic syntax for authority also includes a deprecated
974   userinfo subcomponent ([RFC3986], Section 3.2.1) for including user
975   authentication information in the URI.  Some implementations make use
976   of the userinfo component for internal configuration of
977   authentication information, such as within command invocation
978   options, configuration files, or bookmark lists, even though such
979   usage might expose a user identifier or password.  A sender MUST NOT
980   generate the userinfo subcomponent (and its "@" delimiter) when an
981   "http" URI reference is generated within a message as a request
982   target or header field value.  Before making use of an "http" URI
983   reference received from an untrusted source, a recipient SHOULD parse
984   for userinfo and treat its presence as an error; it is likely being
985   used to obscure the authority for the sake of phishing attacks.
986
9872.7.2.  https URI Scheme
988
989   The "https" URI scheme is hereby defined for the purpose of minting
990   identifiers according to their association with the hierarchical
991   namespace governed by a potential HTTP origin server listening to a
992   given TCP port for TLS-secured connections ([RFC5246]).
993
994   All of the requirements listed above for the "http" scheme are also
995   requirements for the "https" scheme, except that TCP port 443 is the
996   default if the port subcomponent is empty or not given, and the user
997   agent MUST ensure that its connection to the origin server is secured
998   through the use of strong encryption, end-to-end, prior to sending
999   the first HTTP request.
1000
1001     https-URI = "https:" "//" authority path-abempty [ "?" query ]
1002                 [ "#" fragment ]
1003
1004   Note that the "https" URI scheme depends on both TLS and TCP for
1005   establishing authority.  Resources made available via the "https"
1006   scheme have no shared identity with the "http" scheme even if their
1007
1008
1009
1010Fielding & Reschke           Standards Track                   [Page 18]
1011
1012RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1013
1014
1015   resource identifiers indicate the same authority (the same host
1016   listening to the same TCP port).  They are distinct namespaces and
1017   are considered to be distinct origin servers.  However, an extension
1018   to HTTP that is defined to apply to entire host domains, such as the
1019   Cookie protocol [RFC6265], can allow information set by one service
1020   to impact communication with other services within a matching group
1021   of host domains.
1022
1023   The process for authoritative access to an "https" identified
1024   resource is defined in [RFC2818].
1025
10262.7.3.  http and https URI Normalization and Comparison
1027
1028   Since the "http" and "https" schemes conform to the URI generic
1029   syntax, such URIs are normalized and compared according to the
1030   algorithm defined in Section 6 of [RFC3986], using the defaults
1031   described above for each scheme.
1032
1033   If the port is equal to the default port for a scheme, the normal
1034   form is to omit the port subcomponent.  When not being used in
1035   absolute form as the request target of an OPTIONS request, an empty
1036   path component is equivalent to an absolute path of "/", so the
1037   normal form is to provide a path of "/" instead.  The scheme and host
1038   are case-insensitive and normally provided in lowercase; all other
1039   components are compared in a case-sensitive manner.  Characters other
1040   than those in the "reserved" set are equivalent to their
1041   percent-encoded octets: the normal form is to not encode them (see
1042   Sections 2.1 and 2.2 of [RFC3986]).
1043
1044   For example, the following three URIs are equivalent:
1045
1046      http://example.com:80/~smith/home.html
1047      http://EXAMPLE.com/%7Esmith/home.html
1048      http://EXAMPLE.com:/%7esmith/home.html
1049
10503.  Message Format
1051
1052   All HTTP/1.1 messages consist of a start-line followed by a sequence
1053   of octets in a format similar to the Internet Message Format
1054   [RFC5322]: zero or more header fields (collectively referred to as
1055   the "headers" or the "header section"), an empty line indicating the
1056   end of the header section, and an optional message body.
1057
1058     HTTP-message   = start-line
1059                      *( header-field CRLF )
1060                      CRLF
1061                      [ message-body ]
1062
1063
1064
1065
1066Fielding & Reschke           Standards Track                   [Page 19]
1067
1068RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1069
1070
1071   The normal procedure for parsing an HTTP message is to read the
1072   start-line into a structure, read each header field into a hash table
1073   by field name until the empty line, and then use the parsed data to
1074   determine if a message body is expected.  If a message body has been
1075   indicated, then it is read as a stream until an amount of octets
1076   equal to the message body length is read or the connection is closed.
1077
1078   A recipient MUST parse an HTTP message as a sequence of octets in an
1079   encoding that is a superset of US-ASCII [USASCII].  Parsing an HTTP
1080   message as a stream of Unicode characters, without regard for the
1081   specific encoding, creates security vulnerabilities due to the
1082   varying ways that string processing libraries handle invalid
1083   multibyte character sequences that contain the octet LF (%x0A).
1084   String-based parsers can only be safely used within protocol elements
1085   after the element has been extracted from the message, such as within
1086   a header field-value after message parsing has delineated the
1087   individual fields.
1088
1089   An HTTP message can be parsed as a stream for incremental processing
1090   or forwarding downstream.  However, recipients cannot rely on
1091   incremental delivery of partial messages, since some implementations
1092   will buffer or delay message forwarding for the sake of network
1093   efficiency, security checks, or payload transformations.
1094
1095   A sender MUST NOT send whitespace between the start-line and the
1096   first header field.  A recipient that receives whitespace between the
1097   start-line and the first header field MUST either reject the message
1098   as invalid or consume each whitespace-preceded line without further
1099   processing of it (i.e., ignore the entire line, along with any
1100   subsequent lines preceded by whitespace, until a properly formed
1101   header field is received or the header section is terminated).
1102
1103   The presence of such whitespace in a request might be an attempt to
1104   trick a server into ignoring that field or processing the line after
1105   it as a new request, either of which might result in a security
1106   vulnerability if other implementations within the request chain
1107   interpret the same message differently.  Likewise, the presence of
1108   such whitespace in a response might be ignored by some clients or
1109   cause others to cease parsing.
1110
11113.1.  Start Line
1112
1113   An HTTP message can be either a request from client to server or a
1114   response from server to client.  Syntactically, the two types of
1115   message differ only in the start-line, which is either a request-line
1116   (for requests) or a status-line (for responses), and in the algorithm
1117   for determining the length of the message body (Section 3.3).
1118
1119
1120
1121
1122Fielding & Reschke           Standards Track                   [Page 20]
1123
1124RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1125
1126
1127   In theory, a client could receive requests and a server could receive
1128   responses, distinguishing them by their different start-line formats,
1129   but, in practice, servers are implemented to only expect a request (a
1130   response is interpreted as an unknown or invalid request method) and
1131   clients are implemented to only expect a response.
1132
1133     start-line     = request-line / status-line
1134
11353.1.1.  Request Line
1136
1137   A request-line begins with a method token, followed by a single space
1138   (SP), the request-target, another single space (SP), the protocol
1139   version, and ends with CRLF.
1140
1141     request-line   = method SP request-target SP HTTP-version CRLF
1142
1143   The method token indicates the request method to be performed on the
1144   target resource.  The request method is case-sensitive.
1145
1146     method         = token
1147
1148   The request methods defined by this specification can be found in
1149   Section 4 of [RFC7231], along with information regarding the HTTP
1150   method registry and considerations for defining new methods.
1151
1152   The request-target identifies the target resource upon which to apply
1153   the request, as defined in Section 5.3.
1154
1155   Recipients typically parse the request-line into its component parts
1156   by splitting on whitespace (see Section 3.5), since no whitespace is
1157   allowed in the three components.  Unfortunately, some user agents
1158   fail to properly encode or exclude whitespace found in hypertext
1159   references, resulting in those disallowed characters being sent in a
1160   request-target.
1161
1162   Recipients of an invalid request-line SHOULD respond with either a
1163   400 (Bad Request) error or a 301 (Moved Permanently) redirect with
1164   the request-target properly encoded.  A recipient SHOULD NOT attempt
1165   to autocorrect and then process the request without a redirect, since
1166   the invalid request-line might be deliberately crafted to bypass
1167   security filters along the request chain.
1168
1169   HTTP does not place a predefined limit on the length of a
1170   request-line, as described in Section 2.5.  A server that receives a
1171   method longer than any that it implements SHOULD respond with a 501
1172   (Not Implemented) status code.  A server that receives a
1173
1174
1175
1176
1177
1178Fielding & Reschke           Standards Track                   [Page 21]
1179
1180RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1181
1182
1183   request-target longer than any URI it wishes to parse MUST respond
1184   with a 414 (URI Too Long) status code (see Section 6.5.12 of
1185   [RFC7231]).
1186
1187   Various ad hoc limitations on request-line length are found in
1188   practice.  It is RECOMMENDED that all HTTP senders and recipients
1189   support, at a minimum, request-line lengths of 8000 octets.
1190
11913.1.2.  Status Line
1192
1193   The first line of a response message is the status-line, consisting
1194   of the protocol version, a space (SP), the status code, another
1195   space, a possibly empty textual phrase describing the status code,
1196   and ending with CRLF.
1197
1198     status-line = HTTP-version SP status-code SP reason-phrase CRLF
1199
1200   The status-code element is a 3-digit integer code describing the
1201   result of the server's attempt to understand and satisfy the client's
1202   corresponding request.  The rest of the response message is to be
1203   interpreted in light of the semantics defined for that status code.
1204   See Section 6 of [RFC7231] for information about the semantics of
1205   status codes, including the classes of status code (indicated by the
1206   first digit), the status codes defined by this specification,
1207   considerations for the definition of new status codes, and the IANA
1208   registry.
1209
1210     status-code    = 3DIGIT
1211
1212   The reason-phrase element exists for the sole purpose of providing a
1213   textual description associated with the numeric status code, mostly
1214   out of deference to earlier Internet application protocols that were
1215   more frequently used with interactive text clients.  A client SHOULD
1216   ignore the reason-phrase content.
1217
1218     reason-phrase  = *( HTAB / SP / VCHAR / obs-text )
1219
12203.2.  Header Fields
1221
1222   Each header field consists of a case-insensitive field name followed
1223   by a colon (":"), optional leading whitespace, the field value, and
1224   optional trailing whitespace.
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234Fielding & Reschke           Standards Track                   [Page 22]
1235
1236RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1237
1238
1239     header-field   = field-name ":" OWS field-value OWS
1240
1241     field-name     = token
1242     field-value    = *( field-content / obs-fold )
1243     field-content  = field-vchar [ 1*( SP / HTAB ) field-vchar ]
1244     field-vchar    = VCHAR / obs-text
1245
1246     obs-fold       = CRLF 1*( SP / HTAB )
1247                    ; obsolete line folding
1248                    ; see Section 3.2.4
1249
1250   The field-name token labels the corresponding field-value as having
1251   the semantics defined by that header field.  For example, the Date
1252   header field is defined in Section 7.1.1.2 of [RFC7231] as containing
1253   the origination timestamp for the message in which it appears.
1254
12553.2.1.  Field Extensibility
1256
1257   Header fields are fully extensible: there is no limit on the
1258   introduction of new field names, each presumably defining new
1259   semantics, nor on the number of header fields used in a given
1260   message.  Existing fields are defined in each part of this
1261   specification and in many other specifications outside this document
1262   set.
1263
1264   New header fields can be defined such that, when they are understood
1265   by a recipient, they might override or enhance the interpretation of
1266   previously defined header fields, define preconditions on request
1267   evaluation, or refine the meaning of responses.
1268
1269   A proxy MUST forward unrecognized header fields unless the field-name
1270   is listed in the Connection header field (Section 6.1) or the proxy
1271   is specifically configured to block, or otherwise transform, such
1272   fields.  Other recipients SHOULD ignore unrecognized header fields.
1273   These requirements allow HTTP's functionality to be enhanced without
1274   requiring prior update of deployed intermediaries.
1275
1276   All defined header fields ought to be registered with IANA in the
1277   "Message Headers" registry, as described in Section 8.3 of [RFC7231].
1278
12793.2.2.  Field Order
1280
1281   The order in which header fields with differing field names are
1282   received is not significant.  However, it is good practice to send
1283   header fields that contain control data first, such as Host on
1284   requests and Date on responses, so that implementations can decide
1285   when not to handle a message as early as possible.  A server MUST NOT
1286   apply a request to the target resource until the entire request
1287
1288
1289
1290Fielding & Reschke           Standards Track                   [Page 23]
1291
1292RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1293
1294
1295   header section is received, since later header fields might include
1296   conditionals, authentication credentials, or deliberately misleading
1297   duplicate header fields that would impact request processing.
1298
1299   A sender MUST NOT generate multiple header fields with the same field
1300   name in a message unless either the entire field value for that
1301   header field is defined as a comma-separated list [i.e., #(values)]
1302   or the header field is a well-known exception (as noted below).
1303
1304   A recipient MAY combine multiple header fields with the same field
1305   name into one "field-name: field-value" pair, without changing the
1306   semantics of the message, by appending each subsequent field value to
1307   the combined field value in order, separated by a comma.  The order
1308   in which header fields with the same field name are received is
1309   therefore significant to the interpretation of the combined field
1310   value; a proxy MUST NOT change the order of these field values when
1311   forwarding a message.
1312
1313      Note: In practice, the "Set-Cookie" header field ([RFC6265]) often
1314      appears multiple times in a response message and does not use the
1315      list syntax, violating the above requirements on multiple header
1316      fields with the same name.  Since it cannot be combined into a
1317      single field-value, recipients ought to handle "Set-Cookie" as a
1318      special case while processing header fields.  (See Appendix A.2.3
1319      of [Kri2001] for details.)
1320
13213.2.3.  Whitespace
1322
1323   This specification uses three rules to denote the use of linear
1324   whitespace: OWS (optional whitespace), RWS (required whitespace), and
1325   BWS ("bad" whitespace).
1326
1327   The OWS rule is used where zero or more linear whitespace octets
1328   might appear.  For protocol elements where optional whitespace is
1329   preferred to improve readability, a sender SHOULD generate the
1330   optional whitespace as a single SP; otherwise, a sender SHOULD NOT
1331   generate optional whitespace except as needed to white out invalid or
1332   unwanted protocol elements during in-place message filtering.
1333
1334   The RWS rule is used when at least one linear whitespace octet is
1335   required to separate field tokens.  A sender SHOULD generate RWS as a
1336   single SP.
1337
1338   The BWS rule is used where the grammar allows optional whitespace
1339   only for historical reasons.  A sender MUST NOT generate BWS in
1340   messages.  A recipient MUST parse for such bad whitespace and remove
1341   it before interpreting the protocol element.
1342
1343
1344
1345
1346Fielding & Reschke           Standards Track                   [Page 24]
1347
1348RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1349
1350
1351     OWS            = *( SP / HTAB )
1352                    ; optional whitespace
1353     RWS            = 1*( SP / HTAB )
1354                    ; required whitespace
1355     BWS            = OWS
1356                    ; "bad" whitespace
1357
13583.2.4.  Field Parsing
1359
1360   Messages are parsed using a generic algorithm, independent of the
1361   individual header field names.  The contents within a given field
1362   value are not parsed until a later stage of message interpretation
1363   (usually after the message's entire header section has been
1364   processed).  Consequently, this specification does not use ABNF rules
1365   to define each "Field-Name: Field Value" pair, as was done in
1366   previous editions.  Instead, this specification uses ABNF rules that
1367   are named according to each registered field name, wherein the rule
1368   defines the valid grammar for that field's corresponding field values
1369   (i.e., after the field-value has been extracted from the header
1370   section by a generic field parser).
1371
1372   No whitespace is allowed between the header field-name and colon.  In
1373   the past, differences in the handling of such whitespace have led to
1374   security vulnerabilities in request routing and response handling.  A
1375   server MUST reject any received request message that contains
1376   whitespace between a header field-name and colon with a response code
1377   of 400 (Bad Request).  A proxy MUST remove any such whitespace from a
1378   response message before forwarding the message downstream.
1379
1380   A field value might be preceded and/or followed by optional
1381   whitespace (OWS); a single SP preceding the field-value is preferred
1382   for consistent readability by humans.  The field value does not
1383   include any leading or trailing whitespace: OWS occurring before the
1384   first non-whitespace octet of the field value or after the last
1385   non-whitespace octet of the field value ought to be excluded by
1386   parsers when extracting the field value from a header field.
1387
1388   Historically, HTTP header field values could be extended over
1389   multiple lines by preceding each extra line with at least one space
1390   or horizontal tab (obs-fold).  This specification deprecates such
1391   line folding except within the message/http media type
1392   (Section 8.3.1).  A sender MUST NOT generate a message that includes
1393   line folding (i.e., that has any field-value that contains a match to
1394   the obs-fold rule) unless the message is intended for packaging
1395   within the message/http media type.
1396
1397
1398
1399
1400
1401
1402Fielding & Reschke           Standards Track                   [Page 25]
1403
1404RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1405
1406
1407   A server that receives an obs-fold in a request message that is not
1408   within a message/http container MUST either reject the message by
1409   sending a 400 (Bad Request), preferably with a representation
1410   explaining that obsolete line folding is unacceptable, or replace
1411   each received obs-fold with one or more SP octets prior to
1412   interpreting the field value or forwarding the message downstream.
1413
1414   A proxy or gateway that receives an obs-fold in a response message
1415   that is not within a message/http container MUST either discard the
1416   message and replace it with a 502 (Bad Gateway) response, preferably
1417   with a representation explaining that unacceptable line folding was
1418   received, or replace each received obs-fold with one or more SP
1419   octets prior to interpreting the field value or forwarding the
1420   message downstream.
1421
1422   A user agent that receives an obs-fold in a response message that is
1423   not within a message/http container MUST replace each received
1424   obs-fold with one or more SP octets prior to interpreting the field
1425   value.
1426
1427   Historically, HTTP has allowed field content with text in the
1428   ISO-8859-1 charset [ISO-8859-1], supporting other charsets only
1429   through use of [RFC2047] encoding.  In practice, most HTTP header
1430   field values use only a subset of the US-ASCII charset [USASCII].
1431   Newly defined header fields SHOULD limit their field values to
1432   US-ASCII octets.  A recipient SHOULD treat other octets in field
1433   content (obs-text) as opaque data.
1434
14353.2.5.  Field Limits
1436
1437   HTTP does not place a predefined limit on the length of each header
1438   field or on the length of the header section as a whole, as described
1439   in Section 2.5.  Various ad hoc limitations on individual header
1440   field length are found in practice, often depending on the specific
1441   field semantics.
1442
1443   A server that receives a request header field, or set of fields,
1444   larger than it wishes to process MUST respond with an appropriate 4xx
1445   (Client Error) status code.  Ignoring such header fields would
1446   increase the server's vulnerability to request smuggling attacks
1447   (Section 9.5).
1448
1449   A client MAY discard or truncate received header fields that are
1450   larger than the client wishes to process if the field semantics are
1451   such that the dropped value(s) can be safely ignored without changing
1452   the message framing or response semantics.
1453
1454
1455
1456
1457
1458Fielding & Reschke           Standards Track                   [Page 26]
1459
1460RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1461
1462
14633.2.6.  Field Value Components
1464
1465   Most HTTP header field values are defined using common syntax
1466   components (token, quoted-string, and comment) separated by
1467   whitespace or specific delimiting characters.  Delimiters are chosen
1468   from the set of US-ASCII visual characters not allowed in a token
1469   (DQUOTE and "(),/:;<=>?@[\]{}").
1470
1471     token          = 1*tchar
1472
1473     tchar          = "!" / "#" / "$" / "%" / "&" / "'" / "*"
1474                    / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"
1475                    / DIGIT / ALPHA
1476                    ; any VCHAR, except delimiters
1477
1478   A string of text is parsed as a single value if it is quoted using
1479   double-quote marks.
1480
1481     quoted-string  = DQUOTE *( qdtext / quoted-pair ) DQUOTE
1482     qdtext         = HTAB / SP /%x21 / %x23-5B / %x5D-7E / obs-text
1483     obs-text       = %x80-FF
1484
1485   Comments can be included in some HTTP header fields by surrounding
1486   the comment text with parentheses.  Comments are only allowed in
1487   fields containing "comment" as part of their field value definition.
1488
1489     comment        = "(" *( ctext / quoted-pair / comment ) ")"
1490     ctext          = HTAB / SP / %x21-27 / %x2A-5B / %x5D-7E / obs-text
1491
1492   The backslash octet ("\") can be used as a single-octet quoting
1493   mechanism within quoted-string and comment constructs.  Recipients
1494   that process the value of a quoted-string MUST handle a quoted-pair
1495   as if it were replaced by the octet following the backslash.
1496
1497     quoted-pair    = "\" ( HTAB / SP / VCHAR / obs-text )
1498
1499   A sender SHOULD NOT generate a quoted-pair in a quoted-string except
1500   where necessary to quote DQUOTE and backslash octets occurring within
1501   that string.  A sender SHOULD NOT generate a quoted-pair in a comment
1502   except where necessary to quote parentheses ["(" and ")"] and
1503   backslash octets occurring within that comment.
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514Fielding & Reschke           Standards Track                   [Page 27]
1515
1516RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1517
1518
15193.3.  Message Body
1520
1521   The message body (if any) of an HTTP message is used to carry the
1522   payload body of that request or response.  The message body is
1523   identical to the payload body unless a transfer coding has been
1524   applied, as described in Section 3.3.1.
1525
1526     message-body = *OCTET
1527
1528   The rules for when a message body is allowed in a message differ for
1529   requests and responses.
1530
1531   The presence of a message body in a request is signaled by a
1532   Content-Length or Transfer-Encoding header field.  Request message
1533   framing is independent of method semantics, even if the method does
1534   not define any use for a message body.
1535
1536   The presence of a message body in a response depends on both the
1537   request method to which it is responding and the response status code
1538   (Section 3.1.2).  Responses to the HEAD request method (Section 4.3.2
1539   of [RFC7231]) never include a message body because the associated
1540   response header fields (e.g., Transfer-Encoding, Content-Length,
1541   etc.), if present, indicate only what their values would have been if
1542   the request method had been GET (Section 4.3.1 of [RFC7231]). 2xx
1543   (Successful) responses to a CONNECT request method (Section 4.3.6 of
1544   [RFC7231]) switch to tunnel mode instead of having a message body.
1545   All 1xx (Informational), 204 (No Content), and 304 (Not Modified)
1546   responses do not include a message body.  All other responses do
1547   include a message body, although the body might be of zero length.
1548
15493.3.1.  Transfer-Encoding
1550
1551   The Transfer-Encoding header field lists the transfer coding names
1552   corresponding to the sequence of transfer codings that have been (or
1553   will be) applied to the payload body in order to form the message
1554   body.  Transfer codings are defined in Section 4.
1555
1556     Transfer-Encoding = 1#transfer-coding
1557
1558   Transfer-Encoding is analogous to the Content-Transfer-Encoding field
1559   of MIME, which was designed to enable safe transport of binary data
1560   over a 7-bit transport service ([RFC2045], Section 6).  However, safe
1561   transport has a different focus for an 8bit-clean transfer protocol.
1562   In HTTP's case, Transfer-Encoding is primarily intended to accurately
1563   delimit a dynamically generated payload and to distinguish payload
1564   encodings that are only applied for transport efficiency or security
1565   from those that are characteristics of the selected resource.
1566
1567
1568
1569
1570Fielding & Reschke           Standards Track                   [Page 28]
1571
1572RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1573
1574
1575   A recipient MUST be able to parse the chunked transfer coding
1576   (Section 4.1) because it plays a crucial role in framing messages
1577   when the payload body size is not known in advance.  A sender MUST
1578   NOT apply chunked more than once to a message body (i.e., chunking an
1579   already chunked message is not allowed).  If any transfer coding
1580   other than chunked is applied to a request payload body, the sender
1581   MUST apply chunked as the final transfer coding to ensure that the
1582   message is properly framed.  If any transfer coding other than
1583   chunked is applied to a response payload body, the sender MUST either
1584   apply chunked as the final transfer coding or terminate the message
1585   by closing the connection.
1586
1587   For example,
1588
1589     Transfer-Encoding: gzip, chunked
1590
1591   indicates that the payload body has been compressed using the gzip
1592   coding and then chunked using the chunked coding while forming the
1593   message body.
1594
1595   Unlike Content-Encoding (Section 3.1.2.1 of [RFC7231]), Transfer-
1596   Encoding is a property of the message, not of the representation, and
1597   any recipient along the request/response chain MAY decode the
1598   received transfer coding(s) or apply additional transfer coding(s) to
1599   the message body, assuming that corresponding changes are made to the
1600   Transfer-Encoding field-value.  Additional information about the
1601   encoding parameters can be provided by other header fields not
1602   defined by this specification.
1603
1604   Transfer-Encoding MAY be sent in a response to a HEAD request or in a
1605   304 (Not Modified) response (Section 4.1 of [RFC7232]) to a GET
1606   request, neither of which includes a message body, to indicate that
1607   the origin server would have applied a transfer coding to the message
1608   body if the request had been an unconditional GET.  This indication
1609   is not required, however, because any recipient on the response chain
1610   (including the origin server) can remove transfer codings when they
1611   are not needed.
1612
1613   A server MUST NOT send a Transfer-Encoding header field in any
1614   response with a status code of 1xx (Informational) or 204 (No
1615   Content).  A server MUST NOT send a Transfer-Encoding header field in
1616   any 2xx (Successful) response to a CONNECT request (Section 4.3.6 of
1617   [RFC7231]).
1618
1619   Transfer-Encoding was added in HTTP/1.1.  It is generally assumed
1620   that implementations advertising only HTTP/1.0 support will not
1621   understand how to process a transfer-encoded payload.  A client MUST
1622   NOT send a request containing Transfer-Encoding unless it knows the
1623
1624
1625
1626Fielding & Reschke           Standards Track                   [Page 29]
1627
1628RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1629
1630
1631   server will handle HTTP/1.1 (or later) requests; such knowledge might
1632   be in the form of specific user configuration or by remembering the
1633   version of a prior received response.  A server MUST NOT send a
1634   response containing Transfer-Encoding unless the corresponding
1635   request indicates HTTP/1.1 (or later).
1636
1637   A server that receives a request message with a transfer coding it
1638   does not understand SHOULD respond with 501 (Not Implemented).
1639
16403.3.2.  Content-Length
1641
1642   When a message does not have a Transfer-Encoding header field, a
1643   Content-Length header field can provide the anticipated size, as a
1644   decimal number of octets, for a potential payload body.  For messages
1645   that do include a payload body, the Content-Length field-value
1646   provides the framing information necessary for determining where the
1647   body (and message) ends.  For messages that do not include a payload
1648   body, the Content-Length indicates the size of the selected
1649   representation (Section 3 of [RFC7231]).
1650
1651     Content-Length = 1*DIGIT
1652
1653   An example is
1654
1655     Content-Length: 3495
1656
1657   A sender MUST NOT send a Content-Length header field in any message
1658   that contains a Transfer-Encoding header field.
1659
1660   A user agent SHOULD send a Content-Length in a request message when
1661   no Transfer-Encoding is sent and the request method defines a meaning
1662   for an enclosed payload body.  For example, a Content-Length header
1663   field is normally sent in a POST request even when the value is 0
1664   (indicating an empty payload body).  A user agent SHOULD NOT send a
1665   Content-Length header field when the request message does not contain
1666   a payload body and the method semantics do not anticipate such a
1667   body.
1668
1669   A server MAY send a Content-Length header field in a response to a
1670   HEAD request (Section 4.3.2 of [RFC7231]); a server MUST NOT send
1671   Content-Length in such a response unless its field-value equals the
1672   decimal number of octets that would have been sent in the payload
1673   body of a response if the same request had used the GET method.
1674
1675   A server MAY send a Content-Length header field in a 304 (Not
1676   Modified) response to a conditional GET request (Section 4.1 of
1677   [RFC7232]); a server MUST NOT send Content-Length in such a response
1678
1679
1680
1681
1682Fielding & Reschke           Standards Track                   [Page 30]
1683
1684RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1685
1686
1687   unless its field-value equals the decimal number of octets that would
1688   have been sent in the payload body of a 200 (OK) response to the same
1689   request.
1690
1691   A server MUST NOT send a Content-Length header field in any response
1692   with a status code of 1xx (Informational) or 204 (No Content).  A
1693   server MUST NOT send a Content-Length header field in any 2xx
1694   (Successful) response to a CONNECT request (Section 4.3.6 of
1695   [RFC7231]).
1696
1697   Aside from the cases defined above, in the absence of
1698   Transfer-Encoding, an origin server SHOULD send a Content-Length
1699   header field when the payload body size is known prior to sending the
1700   complete header section.  This will allow downstream recipients to
1701   measure transfer progress, know when a received message is complete,
1702   and potentially reuse the connection for additional requests.
1703
1704   Any Content-Length field value greater than or equal to zero is
1705   valid.  Since there is no predefined limit to the length of a
1706   payload, a recipient MUST anticipate potentially large decimal
1707   numerals and prevent parsing errors due to integer conversion
1708   overflows (Section 9.3).
1709
1710   If a message is received that has multiple Content-Length header
1711   fields with field-values consisting of the same decimal value, or a
1712   single Content-Length header field with a field value containing a
1713   list of identical decimal values (e.g., "Content-Length: 42, 42"),
1714   indicating that duplicate Content-Length header fields have been
1715   generated or combined by an upstream message processor, then the
1716   recipient MUST either reject the message as invalid or replace the
1717   duplicated field-values with a single valid Content-Length field
1718   containing that decimal value prior to determining the message body
1719   length or forwarding the message.
1720
1721      Note: HTTP's use of Content-Length for message framing differs
1722      significantly from the same field's use in MIME, where it is an
1723      optional field used only within the "message/external-body"
1724      media-type.
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738Fielding & Reschke           Standards Track                   [Page 31]
1739
1740RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1741
1742
17433.3.3.  Message Body Length
1744
1745   The length of a message body is determined by one of the following
1746   (in order of precedence):
1747
1748   1.  Any response to a HEAD request and any response with a 1xx
1749       (Informational), 204 (No Content), or 304 (Not Modified) status
1750       code is always terminated by the first empty line after the
1751       header fields, regardless of the header fields present in the
1752       message, and thus cannot contain a message body.
1753
1754   2.  Any 2xx (Successful) response to a CONNECT request implies that
1755       the connection will become a tunnel immediately after the empty
1756       line that concludes the header fields.  A client MUST ignore any
1757       Content-Length or Transfer-Encoding header fields received in
1758       such a message.
1759
1760   3.  If a Transfer-Encoding header field is present and the chunked
1761       transfer coding (Section 4.1) is the final encoding, the message
1762       body length is determined by reading and decoding the chunked
1763       data until the transfer coding indicates the data is complete.
1764
1765       If a Transfer-Encoding header field is present in a response and
1766       the chunked transfer coding is not the final encoding, the
1767       message body length is determined by reading the connection until
1768       it is closed by the server.  If a Transfer-Encoding header field
1769       is present in a request and the chunked transfer coding is not
1770       the final encoding, the message body length cannot be determined
1771       reliably; the server MUST respond with the 400 (Bad Request)
1772       status code and then close the connection.
1773
1774       If a message is received with both a Transfer-Encoding and a
1775       Content-Length header field, the Transfer-Encoding overrides the
1776       Content-Length.  Such a message might indicate an attempt to
1777       perform request smuggling (Section 9.5) or response splitting
1778       (Section 9.4) and ought to be handled as an error.  A sender MUST
1779       remove the received Content-Length field prior to forwarding such
1780       a message downstream.
1781
1782   4.  If a message is received without Transfer-Encoding and with
1783       either multiple Content-Length header fields having differing
1784       field-values or a single Content-Length header field having an
1785       invalid value, then the message framing is invalid and the
1786       recipient MUST treat it as an unrecoverable error.  If this is a
1787       request message, the server MUST respond with a 400 (Bad Request)
1788       status code and then close the connection.  If this is a response
1789       message received by a proxy, the proxy MUST close the connection
1790       to the server, discard the received response, and send a 502 (Bad
1791
1792
1793
1794Fielding & Reschke           Standards Track                   [Page 32]
1795
1796RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1797
1798
1799       Gateway) response to the client.  If this is a response message
1800       received by a user agent, the user agent MUST close the
1801       connection to the server and discard the received response.
1802
1803   5.  If a valid Content-Length header field is present without
1804       Transfer-Encoding, its decimal value defines the expected message
1805       body length in octets.  If the sender closes the connection or
1806       the recipient times out before the indicated number of octets are
1807       received, the recipient MUST consider the message to be
1808       incomplete and close the connection.
1809
1810   6.  If this is a request message and none of the above are true, then
1811       the message body length is zero (no message body is present).
1812
1813   7.  Otherwise, this is a response message without a declared message
1814       body length, so the message body length is determined by the
1815       number of octets received prior to the server closing the
1816       connection.
1817
1818   Since there is no way to distinguish a successfully completed,
1819   close-delimited message from a partially received message interrupted
1820   by network failure, a server SHOULD generate encoding or
1821   length-delimited messages whenever possible.  The close-delimiting
1822   feature exists primarily for backwards compatibility with HTTP/1.0.
1823
1824   A server MAY reject a request that contains a message body but not a
1825   Content-Length by responding with 411 (Length Required).
1826
1827   Unless a transfer coding other than chunked has been applied, a
1828   client that sends a request containing a message body SHOULD use a
1829   valid Content-Length header field if the message body length is known
1830   in advance, rather than the chunked transfer coding, since some
1831   existing services respond to chunked with a 411 (Length Required)
1832   status code even though they understand the chunked transfer coding.
1833   This is typically because such services are implemented via a gateway
1834   that requires a content-length in advance of being called and the
1835   server is unable or unwilling to buffer the entire request before
1836   processing.
1837
1838   A user agent that sends a request containing a message body MUST send
1839   a valid Content-Length header field if it does not know the server
1840   will handle HTTP/1.1 (or later) requests; such knowledge can be in
1841   the form of specific user configuration or by remembering the version
1842   of a prior received response.
1843
1844   If the final response to the last request on a connection has been
1845   completely received and there remains additional data to read, a user
1846   agent MAY discard the remaining data or attempt to determine if that
1847
1848
1849
1850Fielding & Reschke           Standards Track                   [Page 33]
1851
1852RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1853
1854
1855   data belongs as part of the prior response body, which might be the
1856   case if the prior message's Content-Length value is incorrect.  A
1857   client MUST NOT process, cache, or forward such extra data as a
1858   separate response, since such behavior would be vulnerable to cache
1859   poisoning.
1860
18613.4.  Handling Incomplete Messages
1862
1863   A server that receives an incomplete request message, usually due to
1864   a canceled request or a triggered timeout exception, MAY send an
1865   error response prior to closing the connection.
1866
1867   A client that receives an incomplete response message, which can
1868   occur when a connection is closed prematurely or when decoding a
1869   supposedly chunked transfer coding fails, MUST record the message as
1870   incomplete.  Cache requirements for incomplete responses are defined
1871   in Section 3 of [RFC7234].
1872
1873   If a response terminates in the middle of the header section (before
1874   the empty line is received) and the status code might rely on header
1875   fields to convey the full meaning of the response, then the client
1876   cannot assume that meaning has been conveyed; the client might need
1877   to repeat the request in order to determine what action to take next.
1878
1879   A message body that uses the chunked transfer coding is incomplete if
1880   the zero-sized chunk that terminates the encoding has not been
1881   received.  A message that uses a valid Content-Length is incomplete
1882   if the size of the message body received (in octets) is less than the
1883   value given by Content-Length.  A response that has neither chunked
1884   transfer coding nor Content-Length is terminated by closure of the
1885   connection and, thus, is considered complete regardless of the number
1886   of message body octets received, provided that the header section was
1887   received intact.
1888
18893.5.  Message Parsing Robustness
1890
1891   Older HTTP/1.0 user agent implementations might send an extra CRLF
1892   after a POST request as a workaround for some early server
1893   applications that failed to read message body content that was not
1894   terminated by a line-ending.  An HTTP/1.1 user agent MUST NOT preface
1895   or follow a request with an extra CRLF.  If terminating the request
1896   message body with a line-ending is desired, then the user agent MUST
1897   count the terminating CRLF octets as part of the message body length.
1898
1899   In the interest of robustness, a server that is expecting to receive
1900   and parse a request-line SHOULD ignore at least one empty line (CRLF)
1901   received prior to the request-line.
1902
1903
1904
1905
1906Fielding & Reschke           Standards Track                   [Page 34]
1907
1908RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1909
1910
1911   Although the line terminator for the start-line and header fields is
1912   the sequence CRLF, a recipient MAY recognize a single LF as a line
1913   terminator and ignore any preceding CR.
1914
1915   Although the request-line and status-line grammar rules require that
1916   each of the component elements be separated by a single SP octet,
1917   recipients MAY instead parse on whitespace-delimited word boundaries
1918   and, aside from the CRLF terminator, treat any form of whitespace as
1919   the SP separator while ignoring preceding or trailing whitespace;
1920   such whitespace includes one or more of the following octets: SP,
1921   HTAB, VT (%x0B), FF (%x0C), or bare CR.  However, lenient parsing can
1922   result in security vulnerabilities if there are multiple recipients
1923   of the message and each has its own unique interpretation of
1924   robustness (see Section 9.5).
1925
1926   When a server listening only for HTTP request messages, or processing
1927   what appears from the start-line to be an HTTP request message,
1928   receives a sequence of octets that does not match the HTTP-message
1929   grammar aside from the robustness exceptions listed above, the server
1930   SHOULD respond with a 400 (Bad Request) response.
1931
19324.  Transfer Codings
1933
1934   Transfer coding names are used to indicate an encoding transformation
1935   that has been, can be, or might need to be applied to a payload body
1936   in order to ensure "safe transport" through the network.  This
1937   differs from a content coding in that the transfer coding is a
1938   property of the message rather than a property of the representation
1939   that is being transferred.
1940
1941     transfer-coding    = "chunked" ; Section 4.1
1942                        / "compress" ; Section 4.2.1
1943                        / "deflate" ; Section 4.2.2
1944                        / "gzip" ; Section 4.2.3
1945                        / transfer-extension
1946     transfer-extension = token *( OWS ";" OWS transfer-parameter )
1947
1948   Parameters are in the form of a name or name=value pair.
1949
1950     transfer-parameter = token BWS "=" BWS ( token / quoted-string )
1951
1952   All transfer-coding names are case-insensitive and ought to be
1953   registered within the HTTP Transfer Coding registry, as defined in
1954   Section 8.4.  They are used in the TE (Section 4.3) and
1955   Transfer-Encoding (Section 3.3.1) header fields.
1956
1957
1958
1959
1960
1961
1962Fielding & Reschke           Standards Track                   [Page 35]
1963
1964RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
1965
1966
19674.1.  Chunked Transfer Coding
1968
1969   The chunked transfer coding wraps the payload body in order to
1970   transfer it as a series of chunks, each with its own size indicator,
1971   followed by an OPTIONAL trailer containing header fields.  Chunked
1972   enables content streams of unknown size to be transferred as a
1973   sequence of length-delimited buffers, which enables the sender to
1974   retain connection persistence and the recipient to know when it has
1975   received the entire message.
1976
1977     chunked-body   = *chunk
1978                      last-chunk
1979                      trailer-part
1980                      CRLF
1981
1982     chunk          = chunk-size [ chunk-ext ] CRLF
1983                      chunk-data CRLF
1984     chunk-size     = 1*HEXDIG
1985     last-chunk     = 1*("0") [ chunk-ext ] CRLF
1986
1987     chunk-data     = 1*OCTET ; a sequence of chunk-size octets
1988
1989   The chunk-size field is a string of hex digits indicating the size of
1990   the chunk-data in octets.  The chunked transfer coding is complete
1991   when a chunk with a chunk-size of zero is received, possibly followed
1992   by a trailer, and finally terminated by an empty line.
1993
1994   A recipient MUST be able to parse and decode the chunked transfer
1995   coding.
1996
19974.1.1.  Chunk Extensions
1998
1999   The chunked encoding allows each chunk to include zero or more chunk
2000   extensions, immediately following the chunk-size, for the sake of
2001   supplying per-chunk metadata (such as a signature or hash),
2002   mid-message control information, or randomization of message body
2003   size.
2004
2005     chunk-ext      = *( ";" chunk-ext-name [ "=" chunk-ext-val ] )
2006
2007     chunk-ext-name = token
2008     chunk-ext-val  = token / quoted-string
2009
2010   The chunked encoding is specific to each connection and is likely to
2011   be removed or recoded by each recipient (including intermediaries)
2012   before any higher-level application would have a chance to inspect
2013   the extensions.  Hence, use of chunk extensions is generally limited
2014
2015
2016
2017
2018Fielding & Reschke           Standards Track                   [Page 36]
2019
2020RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2021
2022
2023   to specialized HTTP services such as "long polling" (where client and
2024   server can have shared expectations regarding the use of chunk
2025   extensions) or for padding within an end-to-end secured connection.
2026
2027   A recipient MUST ignore unrecognized chunk extensions.  A server
2028   ought to limit the total length of chunk extensions received in a
2029   request to an amount reasonable for the services provided, in the
2030   same way that it applies length limitations and timeouts for other
2031   parts of a message, and generate an appropriate 4xx (Client Error)
2032   response if that amount is exceeded.
2033
20344.1.2.  Chunked Trailer Part
2035
2036   A trailer allows the sender to include additional fields at the end
2037   of a chunked message in order to supply metadata that might be
2038   dynamically generated while the message body is sent, such as a
2039   message integrity check, digital signature, or post-processing
2040   status.  The trailer fields are identical to header fields, except
2041   they are sent in a chunked trailer instead of the message's header
2042   section.
2043
2044     trailer-part   = *( header-field CRLF )
2045
2046   A sender MUST NOT generate a trailer that contains a field necessary
2047   for message framing (e.g., Transfer-Encoding and Content-Length),
2048   routing (e.g., Host), request modifiers (e.g., controls and
2049   conditionals in Section 5 of [RFC7231]), authentication (e.g., see
2050   [RFC7235] and [RFC6265]), response control data (e.g., see Section
2051   7.1 of [RFC7231]), or determining how to process the payload (e.g.,
2052   Content-Encoding, Content-Type, Content-Range, and Trailer).
2053
2054   When a chunked message containing a non-empty trailer is received,
2055   the recipient MAY process the fields (aside from those forbidden
2056   above) as if they were appended to the message's header section.  A
2057   recipient MUST ignore (or consider as an error) any fields that are
2058   forbidden to be sent in a trailer, since processing them as if they
2059   were present in the header section might bypass external security
2060   filters.
2061
2062   Unless the request includes a TE header field indicating "trailers"
2063   is acceptable, as described in Section 4.3, a server SHOULD NOT
2064   generate trailer fields that it believes are necessary for the user
2065   agent to receive.  Without a TE containing "trailers", the server
2066   ought to assume that the trailer fields might be silently discarded
2067   along the path to the user agent.  This requirement allows
2068   intermediaries to forward a de-chunked message to an HTTP/1.0
2069   recipient without buffering the entire response.
2070
2071
2072
2073
2074Fielding & Reschke           Standards Track                   [Page 37]
2075
2076RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2077
2078
20794.1.3.  Decoding Chunked
2080
2081   A process for decoding the chunked transfer coding can be represented
2082   in pseudo-code as:
2083
2084     length := 0
2085     read chunk-size, chunk-ext (if any), and CRLF
2086     while (chunk-size > 0) {
2087        read chunk-data and CRLF
2088        append chunk-data to decoded-body
2089        length := length + chunk-size
2090        read chunk-size, chunk-ext (if any), and CRLF
2091     }
2092     read trailer field
2093     while (trailer field is not empty) {
2094        if (trailer field is allowed to be sent in a trailer) {
2095            append trailer field to existing header fields
2096        }
2097        read trailer-field
2098     }
2099     Content-Length := length
2100     Remove "chunked" from Transfer-Encoding
2101     Remove Trailer from existing header fields
2102
21034.2.  Compression Codings
2104
2105   The codings defined below can be used to compress the payload of a
2106   message.
2107
21084.2.1.  Compress Coding
2109
2110   The "compress" coding is an adaptive Lempel-Ziv-Welch (LZW) coding
2111   [Welch] that is commonly produced by the UNIX file compression
2112   program "compress".  A recipient SHOULD consider "x-compress" to be
2113   equivalent to "compress".
2114
21154.2.2.  Deflate Coding
2116
2117   The "deflate" coding is a "zlib" data format [RFC1950] containing a
2118   "deflate" compressed data stream [RFC1951] that uses a combination of
2119   the Lempel-Ziv (LZ77) compression algorithm and Huffman coding.
2120
2121      Note: Some non-conformant implementations send the "deflate"
2122      compressed data without the zlib wrapper.
2123
2124
2125
2126
2127
2128
2129
2130Fielding & Reschke           Standards Track                   [Page 38]
2131
2132RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2133
2134
21354.2.3.  Gzip Coding
2136
2137   The "gzip" coding is an LZ77 coding with a 32-bit Cyclic Redundancy
2138   Check (CRC) that is commonly produced by the gzip file compression
2139   program [RFC1952].  A recipient SHOULD consider "x-gzip" to be
2140   equivalent to "gzip".
2141
21424.3.  TE
2143
2144   The "TE" header field in a request indicates what transfer codings,
2145   besides chunked, the client is willing to accept in response, and
2146   whether or not the client is willing to accept trailer fields in a
2147   chunked transfer coding.
2148
2149   The TE field-value consists of a comma-separated list of transfer
2150   coding names, each allowing for optional parameters (as described in
2151   Section 4), and/or the keyword "trailers".  A client MUST NOT send
2152   the chunked transfer coding name in TE; chunked is always acceptable
2153   for HTTP/1.1 recipients.
2154
2155     TE        = #t-codings
2156     t-codings = "trailers" / ( transfer-coding [ t-ranking ] )
2157     t-ranking = OWS ";" OWS "q=" rank
2158     rank      = ( "0" [ "." 0*3DIGIT ] )
2159                / ( "1" [ "." 0*3("0") ] )
2160
2161   Three examples of TE use are below.
2162
2163     TE: deflate
2164     TE:
2165     TE: trailers, deflate;q=0.5
2166
2167   The presence of the keyword "trailers" indicates that the client is
2168   willing to accept trailer fields in a chunked transfer coding, as
2169   defined in Section 4.1.2, on behalf of itself and any downstream
2170   clients.  For requests from an intermediary, this implies that
2171   either: (a) all downstream clients are willing to accept trailer
2172   fields in the forwarded response; or, (b) the intermediary will
2173   attempt to buffer the response on behalf of downstream recipients.
2174   Note that HTTP/1.1 does not define any means to limit the size of a
2175   chunked response such that an intermediary can be assured of
2176   buffering the entire response.
2177
2178   When multiple transfer codings are acceptable, the client MAY rank
2179   the codings by preference using a case-insensitive "q" parameter
2180   (similar to the qvalues used in content negotiation fields, Section
2181
2182
2183
2184
2185
2186Fielding & Reschke           Standards Track                   [Page 39]
2187
2188RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2189
2190
2191   5.3.1 of [RFC7231]).  The rank value is a real number in the range 0
2192   through 1, where 0.001 is the least preferred and 1 is the most
2193   preferred; a value of 0 means "not acceptable".
2194
2195   If the TE field-value is empty or if no TE field is present, the only
2196   acceptable transfer coding is chunked.  A message with no transfer
2197   coding is always acceptable.
2198
2199   Since the TE header field only applies to the immediate connection, a
2200   sender of TE MUST also send a "TE" connection option within the
2201   Connection header field (Section 6.1) in order to prevent the TE
2202   field from being forwarded by intermediaries that do not support its
2203   semantics.
2204
22054.4.  Trailer
2206
2207   When a message includes a message body encoded with the chunked
2208   transfer coding and the sender desires to send metadata in the form
2209   of trailer fields at the end of the message, the sender SHOULD
2210   generate a Trailer header field before the message body to indicate
2211   which fields will be present in the trailers.  This allows the
2212   recipient to prepare for receipt of that metadata before it starts
2213   processing the body, which is useful if the message is being streamed
2214   and the recipient wishes to confirm an integrity check on the fly.
2215
2216     Trailer = 1#field-name
2217
22185.  Message Routing
2219
2220   HTTP request message routing is determined by each client based on
2221   the target resource, the client's proxy configuration, and
2222   establishment or reuse of an inbound connection.  The corresponding
2223   response routing follows the same connection chain back to the
2224   client.
2225
22265.1.  Identifying a Target Resource
2227
2228   HTTP is used in a wide variety of applications, ranging from
2229   general-purpose computers to home appliances.  In some cases,
2230   communication options are hard-coded in a client's configuration.
2231   However, most HTTP clients rely on the same resource identification
2232   mechanism and configuration techniques as general-purpose Web
2233   browsers.
2234
2235   HTTP communication is initiated by a user agent for some purpose.
2236   The purpose is a combination of request semantics, which are defined
2237   in [RFC7231], and a target resource upon which to apply those
2238   semantics.  A URI reference (Section 2.7) is typically used as an
2239
2240
2241
2242Fielding & Reschke           Standards Track                   [Page 40]
2243
2244RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2245
2246
2247   identifier for the "target resource", which a user agent would
2248   resolve to its absolute form in order to obtain the "target URI".
2249   The target URI excludes the reference's fragment component, if any,
2250   since fragment identifiers are reserved for client-side processing
2251   ([RFC3986], Section 3.5).
2252
22535.2.  Connecting Inbound
2254
2255   Once the target URI is determined, a client needs to decide whether a
2256   network request is necessary to accomplish the desired semantics and,
2257   if so, where that request is to be directed.
2258
2259   If the client has a cache [RFC7234] and the request can be satisfied
2260   by it, then the request is usually directed there first.
2261
2262   If the request is not satisfied by a cache, then a typical client
2263   will check its configuration to determine whether a proxy is to be
2264   used to satisfy the request.  Proxy configuration is implementation-
2265   dependent, but is often based on URI prefix matching, selective
2266   authority matching, or both, and the proxy itself is usually
2267   identified by an "http" or "https" URI.  If a proxy is applicable,
2268   the client connects inbound by establishing (or reusing) a connection
2269   to that proxy.
2270
2271   If no proxy is applicable, a typical client will invoke a handler
2272   routine, usually specific to the target URI's scheme, to connect
2273   directly to an authority for the target resource.  How that is
2274   accomplished is dependent on the target URI scheme and defined by its
2275   associated specification, similar to how this specification defines
2276   origin server access for resolution of the "http" (Section 2.7.1) and
2277   "https" (Section 2.7.2) schemes.
2278
2279   HTTP requirements regarding connection management are defined in
2280   Section 6.
2281
22825.3.  Request Target
2283
2284   Once an inbound connection is obtained, the client sends an HTTP
2285   request message (Section 3) with a request-target derived from the
2286   target URI.  There are four distinct formats for the request-target,
2287   depending on both the method being requested and whether the request
2288   is to a proxy.
2289
2290     request-target = origin-form
2291                    / absolute-form
2292                    / authority-form
2293                    / asterisk-form
2294
2295
2296
2297
2298Fielding & Reschke           Standards Track                   [Page 41]
2299
2300RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2301
2302
23035.3.1.  origin-form
2304
2305   The most common form of request-target is the origin-form.
2306
2307     origin-form    = absolute-path [ "?" query ]
2308
2309   When making a request directly to an origin server, other than a
2310   CONNECT or server-wide OPTIONS request (as detailed below), a client
2311   MUST send only the absolute path and query components of the target
2312   URI as the request-target.  If the target URI's path component is
2313   empty, the client MUST send "/" as the path within the origin-form of
2314   request-target.  A Host header field is also sent, as defined in
2315   Section 5.4.
2316
2317   For example, a client wishing to retrieve a representation of the
2318   resource identified as
2319
2320     http://www.example.org/where?q=now
2321
2322   directly from the origin server would open (or reuse) a TCP
2323   connection to port 80 of the host "www.example.org" and send the
2324   lines:
2325
2326     GET /where?q=now HTTP/1.1
2327     Host: www.example.org
2328
2329   followed by the remainder of the request message.
2330
23315.3.2.  absolute-form
2332
2333   When making a request to a proxy, other than a CONNECT or server-wide
2334   OPTIONS request (as detailed below), a client MUST send the target
2335   URI in absolute-form as the request-target.
2336
2337     absolute-form  = absolute-URI
2338
2339   The proxy is requested to either service that request from a valid
2340   cache, if possible, or make the same request on the client's behalf
2341   to either the next inbound proxy server or directly to the origin
2342   server indicated by the request-target.  Requirements on such
2343   "forwarding" of messages are defined in Section 5.7.
2344
2345   An example absolute-form of request-line would be:
2346
2347     GET http://www.example.org/pub/WWW/TheProject.html HTTP/1.1
2348
2349
2350
2351
2352
2353
2354Fielding & Reschke           Standards Track                   [Page 42]
2355
2356RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2357
2358
2359   To allow for transition to the absolute-form for all requests in some
2360   future version of HTTP, a server MUST accept the absolute-form in
2361   requests, even though HTTP/1.1 clients will only send them in
2362   requests to proxies.
2363
23645.3.3.  authority-form
2365
2366   The authority-form of request-target is only used for CONNECT
2367   requests (Section 4.3.6 of [RFC7231]).
2368
2369     authority-form = authority
2370
2371   When making a CONNECT request to establish a tunnel through one or
2372   more proxies, a client MUST send only the target URI's authority
2373   component (excluding any userinfo and its "@" delimiter) as the
2374   request-target.  For example,
2375
2376     CONNECT www.example.com:80 HTTP/1.1
2377
23785.3.4.  asterisk-form
2379
2380   The asterisk-form of request-target is only used for a server-wide
2381   OPTIONS request (Section 4.3.7 of [RFC7231]).
2382
2383     asterisk-form  = "*"
2384
2385   When a client wishes to request OPTIONS for the server as a whole, as
2386   opposed to a specific named resource of that server, the client MUST
2387   send only "*" (%x2A) as the request-target.  For example,
2388
2389     OPTIONS * HTTP/1.1
2390
2391   If a proxy receives an OPTIONS request with an absolute-form of
2392   request-target in which the URI has an empty path and no query
2393   component, then the last proxy on the request chain MUST send a
2394   request-target of "*" when it forwards the request to the indicated
2395   origin server.
2396
2397   For example, the request
2398
2399     OPTIONS http://www.example.org:8001 HTTP/1.1
2400
2401   would be forwarded by the final proxy as
2402
2403     OPTIONS * HTTP/1.1
2404     Host: www.example.org:8001
2405
2406   after connecting to port 8001 of host "www.example.org".
2407
2408
2409
2410Fielding & Reschke           Standards Track                   [Page 43]
2411
2412RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2413
2414
24155.4.  Host
2416
2417   The "Host" header field in a request provides the host and port
2418   information from the target URI, enabling the origin server to
2419   distinguish among resources while servicing requests for multiple
2420   host names on a single IP address.
2421
2422     Host = uri-host [ ":" port ] ; Section 2.7.1
2423
2424   A client MUST send a Host header field in all HTTP/1.1 request
2425   messages.  If the target URI includes an authority component, then a
2426   client MUST send a field-value for Host that is identical to that
2427   authority component, excluding any userinfo subcomponent and its "@"
2428   delimiter (Section 2.7.1).  If the authority component is missing or
2429   undefined for the target URI, then a client MUST send a Host header
2430   field with an empty field-value.
2431
2432   Since the Host field-value is critical information for handling a
2433   request, a user agent SHOULD generate Host as the first header field
2434   following the request-line.
2435
2436   For example, a GET request to the origin server for
2437   <http://www.example.org/pub/WWW/> would begin with:
2438
2439     GET /pub/WWW/ HTTP/1.1
2440     Host: www.example.org
2441
2442   A client MUST send a Host header field in an HTTP/1.1 request even if
2443   the request-target is in the absolute-form, since this allows the
2444   Host information to be forwarded through ancient HTTP/1.0 proxies
2445   that might not have implemented Host.
2446
2447   When a proxy receives a request with an absolute-form of
2448   request-target, the proxy MUST ignore the received Host header field
2449   (if any) and instead replace it with the host information of the
2450   request-target.  A proxy that forwards such a request MUST generate a
2451   new Host field-value based on the received request-target rather than
2452   forward the received Host field-value.
2453
2454   Since the Host header field acts as an application-level routing
2455   mechanism, it is a frequent target for malware seeking to poison a
2456   shared cache or redirect a request to an unintended server.  An
2457   interception proxy is particularly vulnerable if it relies on the
2458   Host field-value for redirecting requests to internal servers, or for
2459   use as a cache key in a shared cache, without first verifying that
2460   the intercepted connection is targeting a valid IP address for that
2461   host.
2462
2463
2464
2465
2466Fielding & Reschke           Standards Track                   [Page 44]
2467
2468RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2469
2470
2471   A server MUST respond with a 400 (Bad Request) status code to any
2472   HTTP/1.1 request message that lacks a Host header field and to any
2473   request message that contains more than one Host header field or a
2474   Host header field with an invalid field-value.
2475
24765.5.  Effective Request URI
2477
2478   Since the request-target often contains only part of the user agent's
2479   target URI, a server reconstructs the intended target as an
2480   "effective request URI" to properly service the request.  This
2481   reconstruction involves both the server's local configuration and
2482   information communicated in the request-target, Host header field,
2483   and connection context.
2484
2485   For a user agent, the effective request URI is the target URI.
2486
2487   If the request-target is in absolute-form, the effective request URI
2488   is the same as the request-target.  Otherwise, the effective request
2489   URI is constructed as follows:
2490
2491      If the server's configuration (or outbound gateway) provides a
2492      fixed URI scheme, that scheme is used for the effective request
2493      URI.  Otherwise, if the request is received over a TLS-secured TCP
2494      connection, the effective request URI's scheme is "https"; if not,
2495      the scheme is "http".
2496
2497      If the server's configuration (or outbound gateway) provides a
2498      fixed URI authority component, that authority is used for the
2499      effective request URI.  If not, then if the request-target is in
2500      authority-form, the effective request URI's authority component is
2501      the same as the request-target.  If not, then if a Host header
2502      field is supplied with a non-empty field-value, the authority
2503      component is the same as the Host field-value.  Otherwise, the
2504      authority component is assigned the default name configured for
2505      the server and, if the connection's incoming TCP port number
2506      differs from the default port for the effective request URI's
2507      scheme, then a colon (":") and the incoming port number (in
2508      decimal form) are appended to the authority component.
2509
2510      If the request-target is in authority-form or asterisk-form, the
2511      effective request URI's combined path and query component is
2512      empty.  Otherwise, the combined path and query component is the
2513      same as the request-target.
2514
2515      The components of the effective request URI, once determined as
2516      above, can be combined into absolute-URI form by concatenating the
2517      scheme, "://", authority, and combined path and query component.
2518
2519
2520
2521
2522Fielding & Reschke           Standards Track                   [Page 45]
2523
2524RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2525
2526
2527   Example 1: the following message received over an insecure TCP
2528   connection
2529
2530     GET /pub/WWW/TheProject.html HTTP/1.1
2531     Host: www.example.org:8080
2532
2533   has an effective request URI of
2534
2535     http://www.example.org:8080/pub/WWW/TheProject.html
2536
2537   Example 2: the following message received over a TLS-secured TCP
2538   connection
2539
2540     OPTIONS * HTTP/1.1
2541     Host: www.example.org
2542
2543   has an effective request URI of
2544
2545     https://www.example.org
2546
2547   Recipients of an HTTP/1.0 request that lacks a Host header field
2548   might need to use heuristics (e.g., examination of the URI path for
2549   something unique to a particular host) in order to guess the
2550   effective request URI's authority component.
2551
2552   Once the effective request URI has been constructed, an origin server
2553   needs to decide whether or not to provide service for that URI via
2554   the connection in which the request was received.  For example, the
2555   request might have been misdirected, deliberately or accidentally,
2556   such that the information within a received request-target or Host
2557   header field differs from the host or port upon which the connection
2558   has been made.  If the connection is from a trusted gateway, that
2559   inconsistency might be expected; otherwise, it might indicate an
2560   attempt to bypass security filters, trick the server into delivering
2561   non-public content, or poison a cache.  See Section 9 for security
2562   considerations regarding message routing.
2563
25645.6.  Associating a Response to a Request
2565
2566   HTTP does not include a request identifier for associating a given
2567   request message with its corresponding one or more response messages.
2568   Hence, it relies on the order of response arrival to correspond
2569   exactly to the order in which requests are made on the same
2570   connection.  More than one response message per request only occurs
2571   when one or more informational responses (1xx, see Section 6.2 of
2572   [RFC7231]) precede a final response to the same request.
2573
2574
2575
2576
2577
2578Fielding & Reschke           Standards Track                   [Page 46]
2579
2580RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2581
2582
2583   A client that has more than one outstanding request on a connection
2584   MUST maintain a list of outstanding requests in the order sent and
2585   MUST associate each received response message on that connection to
2586   the highest ordered request that has not yet received a final
2587   (non-1xx) response.
2588
25895.7.  Message Forwarding
2590
2591   As described in Section 2.3, intermediaries can serve a variety of
2592   roles in the processing of HTTP requests and responses.  Some
2593   intermediaries are used to improve performance or availability.
2594   Others are used for access control or to filter content.  Since an
2595   HTTP stream has characteristics similar to a pipe-and-filter
2596   architecture, there are no inherent limits to the extent an
2597   intermediary can enhance (or interfere) with either direction of the
2598   stream.
2599
2600   An intermediary not acting as a tunnel MUST implement the Connection
2601   header field, as specified in Section 6.1, and exclude fields from
2602   being forwarded that are only intended for the incoming connection.
2603
2604   An intermediary MUST NOT forward a message to itself unless it is
2605   protected from an infinite request loop.  In general, an intermediary
2606   ought to recognize its own server names, including any aliases, local
2607   variations, or literal IP addresses, and respond to such requests
2608   directly.
2609
26105.7.1.  Via
2611
2612   The "Via" header field indicates the presence of intermediate
2613   protocols and recipients between the user agent and the server (on
2614   requests) or between the origin server and the client (on responses),
2615   similar to the "Received" header field in email (Section 3.6.7 of
2616   [RFC5322]).  Via can be used for tracking message forwards, avoiding
2617   request loops, and identifying the protocol capabilities of senders
2618   along the request/response chain.
2619
2620     Via = 1#( received-protocol RWS received-by [ RWS comment ] )
2621
2622     received-protocol = [ protocol-name "/" ] protocol-version
2623                         ; see Section 6.7
2624     received-by       = ( uri-host [ ":" port ] ) / pseudonym
2625     pseudonym         = token
2626
2627   Multiple Via field values represent each proxy or gateway that has
2628   forwarded the message.  Each intermediary appends its own information
2629   about how the message was received, such that the end result is
2630   ordered according to the sequence of forwarding recipients.
2631
2632
2633
2634Fielding & Reschke           Standards Track                   [Page 47]
2635
2636RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2637
2638
2639   A proxy MUST send an appropriate Via header field, as described
2640   below, in each message that it forwards.  An HTTP-to-HTTP gateway
2641   MUST send an appropriate Via header field in each inbound request
2642   message and MAY send a Via header field in forwarded response
2643   messages.
2644
2645   For each intermediary, the received-protocol indicates the protocol
2646   and protocol version used by the upstream sender of the message.
2647   Hence, the Via field value records the advertised protocol
2648   capabilities of the request/response chain such that they remain
2649   visible to downstream recipients; this can be useful for determining
2650   what backwards-incompatible features might be safe to use in
2651   response, or within a later request, as described in Section 2.6.
2652   For brevity, the protocol-name is omitted when the received protocol
2653   is HTTP.
2654
2655   The received-by portion of the field value is normally the host and
2656   optional port number of a recipient server or client that
2657   subsequently forwarded the message.  However, if the real host is
2658   considered to be sensitive information, a sender MAY replace it with
2659   a pseudonym.  If a port is not provided, a recipient MAY interpret
2660   that as meaning it was received on the default TCP port, if any, for
2661   the received-protocol.
2662
2663   A sender MAY generate comments in the Via header field to identify
2664   the software of each recipient, analogous to the User-Agent and
2665   Server header fields.  However, all comments in the Via field are
2666   optional, and a recipient MAY remove them prior to forwarding the
2667   message.
2668
2669   For example, a request message could be sent from an HTTP/1.0 user
2670   agent to an internal proxy code-named "fred", which uses HTTP/1.1 to
2671   forward the request to a public proxy at p.example.net, which
2672   completes the request by forwarding it to the origin server at
2673   www.example.com.  The request received by www.example.com would then
2674   have the following Via header field:
2675
2676     Via: 1.0 fred, 1.1 p.example.net
2677
2678   An intermediary used as a portal through a network firewall SHOULD
2679   NOT forward the names and ports of hosts within the firewall region
2680   unless it is explicitly enabled to do so.  If not enabled, such an
2681   intermediary SHOULD replace each received-by host of any host behind
2682   the firewall by an appropriate pseudonym for that host.
2683
2684
2685
2686
2687
2688
2689
2690Fielding & Reschke           Standards Track                   [Page 48]
2691
2692RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2693
2694
2695   An intermediary MAY combine an ordered subsequence of Via header
2696   field entries into a single such entry if the entries have identical
2697   received-protocol values.  For example,
2698
2699     Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy
2700
2701   could be collapsed to
2702
2703     Via: 1.0 ricky, 1.1 mertz, 1.0 lucy
2704
2705   A sender SHOULD NOT combine multiple entries unless they are all
2706   under the same organizational control and the hosts have already been
2707   replaced by pseudonyms.  A sender MUST NOT combine entries that have
2708   different received-protocol values.
2709
27105.7.2.  Transformations
2711
2712   Some intermediaries include features for transforming messages and
2713   their payloads.  A proxy might, for example, convert between image
2714   formats in order to save cache space or to reduce the amount of
2715   traffic on a slow link.  However, operational problems might occur
2716   when these transformations are applied to payloads intended for
2717   critical applications, such as medical imaging or scientific data
2718   analysis, particularly when integrity checks or digital signatures
2719   are used to ensure that the payload received is identical to the
2720   original.
2721
2722   An HTTP-to-HTTP proxy is called a "transforming proxy" if it is
2723   designed or configured to modify messages in a semantically
2724   meaningful way (i.e., modifications, beyond those required by normal
2725   HTTP processing, that change the message in a way that would be
2726   significant to the original sender or potentially significant to
2727   downstream recipients).  For example, a transforming proxy might be
2728   acting as a shared annotation server (modifying responses to include
2729   references to a local annotation database), a malware filter, a
2730   format transcoder, or a privacy filter.  Such transformations are
2731   presumed to be desired by whichever client (or client organization)
2732   selected the proxy.
2733
2734   If a proxy receives a request-target with a host name that is not a
2735   fully qualified domain name, it MAY add its own domain to the host
2736   name it received when forwarding the request.  A proxy MUST NOT
2737   change the host name if the request-target contains a fully qualified
2738   domain name.
2739
2740
2741
2742
2743
2744
2745
2746Fielding & Reschke           Standards Track                   [Page 49]
2747
2748RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2749
2750
2751   A proxy MUST NOT modify the "absolute-path" and "query" parts of the
2752   received request-target when forwarding it to the next inbound
2753   server, except as noted above to replace an empty path with "/" or
2754   "*".
2755
2756   A proxy MAY modify the message body through application or removal of
2757   a transfer coding (Section 4).
2758
2759   A proxy MUST NOT transform the payload (Section 3.3 of [RFC7231]) of
2760   a message that contains a no-transform cache-control directive
2761   (Section 5.2 of [RFC7234]).
2762
2763   A proxy MAY transform the payload of a message that does not contain
2764   a no-transform cache-control directive.  A proxy that transforms a
2765   payload MUST add a Warning header field with the warn-code of 214
2766   ("Transformation Applied") if one is not already in the message (see
2767   Section 5.5 of [RFC7234]).  A proxy that transforms the payload of a
2768   200 (OK) response can further inform downstream recipients that a
2769   transformation has been applied by changing the response status code
2770   to 203 (Non-Authoritative Information) (Section 6.3.4 of [RFC7231]).
2771
2772   A proxy SHOULD NOT modify header fields that provide information
2773   about the endpoints of the communication chain, the resource state,
2774   or the selected representation (other than the payload) unless the
2775   field's definition specifically allows such modification or the
2776   modification is deemed necessary for privacy or security.
2777
27786.  Connection Management
2779
2780   HTTP messaging is independent of the underlying transport- or
2781   session-layer connection protocol(s).  HTTP only presumes a reliable
2782   transport with in-order delivery of requests and the corresponding
2783   in-order delivery of responses.  The mapping of HTTP request and
2784   response structures onto the data units of an underlying transport
2785   protocol is outside the scope of this specification.
2786
2787   As described in Section 5.2, the specific connection protocols to be
2788   used for an HTTP interaction are determined by client configuration
2789   and the target URI.  For example, the "http" URI scheme
2790   (Section 2.7.1) indicates a default connection of TCP over IP, with a
2791   default TCP port of 80, but the client might be configured to use a
2792   proxy via some other connection, port, or protocol.
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802Fielding & Reschke           Standards Track                   [Page 50]
2803
2804RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2805
2806
2807   HTTP implementations are expected to engage in connection management,
2808   which includes maintaining the state of current connections,
2809   establishing a new connection or reusing an existing connection,
2810   processing messages received on a connection, detecting connection
2811   failures, and closing each connection.  Most clients maintain
2812   multiple connections in parallel, including more than one connection
2813   per server endpoint.  Most servers are designed to maintain thousands
2814   of concurrent connections, while controlling request queues to enable
2815   fair use and detect denial-of-service attacks.
2816
28176.1.  Connection
2818
2819   The "Connection" header field allows the sender to indicate desired
2820   control options for the current connection.  In order to avoid
2821   confusing downstream recipients, a proxy or gateway MUST remove or
2822   replace any received connection options before forwarding the
2823   message.
2824
2825   When a header field aside from Connection is used to supply control
2826   information for or about the current connection, the sender MUST list
2827   the corresponding field-name within the Connection header field.  A
2828   proxy or gateway MUST parse a received Connection header field before
2829   a message is forwarded and, for each connection-option in this field,
2830   remove any header field(s) from the message with the same name as the
2831   connection-option, and then remove the Connection header field itself
2832   (or replace it with the intermediary's own connection options for the
2833   forwarded message).
2834
2835   Hence, the Connection header field provides a declarative way of
2836   distinguishing header fields that are only intended for the immediate
2837   recipient ("hop-by-hop") from those fields that are intended for all
2838   recipients on the chain ("end-to-end"), enabling the message to be
2839   self-descriptive and allowing future connection-specific extensions
2840   to be deployed without fear that they will be blindly forwarded by
2841   older intermediaries.
2842
2843   The Connection header field's value has the following grammar:
2844
2845     Connection        = 1#connection-option
2846     connection-option = token
2847
2848   Connection options are case-insensitive.
2849
2850   A sender MUST NOT send a connection option corresponding to a header
2851   field that is intended for all recipients of the payload.  For
2852   example, Cache-Control is never appropriate as a connection option
2853   (Section 5.2 of [RFC7234]).
2854
2855
2856
2857
2858Fielding & Reschke           Standards Track                   [Page 51]
2859
2860RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2861
2862
2863   The connection options do not always correspond to a header field
2864   present in the message, since a connection-specific header field
2865   might not be needed if there are no parameters associated with a
2866   connection option.  In contrast, a connection-specific header field
2867   that is received without a corresponding connection option usually
2868   indicates that the field has been improperly forwarded by an
2869   intermediary and ought to be ignored by the recipient.
2870
2871   When defining new connection options, specification authors ought to
2872   survey existing header field names and ensure that the new connection
2873   option does not share the same name as an already deployed header
2874   field.  Defining a new connection option essentially reserves that
2875   potential field-name for carrying additional information related to
2876   the connection option, since it would be unwise for senders to use
2877   that field-name for anything else.
2878
2879   The "close" connection option is defined for a sender to signal that
2880   this connection will be closed after completion of the response.  For
2881   example,
2882
2883     Connection: close
2884
2885   in either the request or the response header fields indicates that
2886   the sender is going to close the connection after the current
2887   request/response is complete (Section 6.6).
2888
2889   A client that does not support persistent connections MUST send the
2890   "close" connection option in every request message.
2891
2892   A server that does not support persistent connections MUST send the
2893   "close" connection option in every response message that does not
2894   have a 1xx (Informational) status code.
2895
28966.2.  Establishment
2897
2898   It is beyond the scope of this specification to describe how
2899   connections are established via various transport- or session-layer
2900   protocols.  Each connection applies to only one transport link.
2901
29026.3.  Persistence
2903
2904   HTTP/1.1 defaults to the use of "persistent connections", allowing
2905   multiple requests and responses to be carried over a single
2906   connection.  The "close" connection option is used to signal that a
2907   connection will not persist after the current request/response.  HTTP
2908   implementations SHOULD support persistent connections.
2909
2910
2911
2912
2913
2914Fielding & Reschke           Standards Track                   [Page 52]
2915
2916RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2917
2918
2919   A recipient determines whether a connection is persistent or not
2920   based on the most recently received message's protocol version and
2921   Connection header field (if any):
2922
2923   o  If the "close" connection option is present, the connection will
2924      not persist after the current response; else,
2925
2926   o  If the received protocol is HTTP/1.1 (or later), the connection
2927      will persist after the current response; else,
2928
2929   o  If the received protocol is HTTP/1.0, the "keep-alive" connection
2930      option is present, the recipient is not a proxy, and the recipient
2931      wishes to honor the HTTP/1.0 "keep-alive" mechanism, the
2932      connection will persist after the current response; otherwise,
2933
2934   o  The connection will close after the current response.
2935
2936   A client MAY send additional requests on a persistent connection
2937   until it sends or receives a "close" connection option or receives an
2938   HTTP/1.0 response without a "keep-alive" connection option.
2939
2940   In order to remain persistent, all messages on a connection need to
2941   have a self-defined message length (i.e., one not defined by closure
2942   of the connection), as described in Section 3.3.  A server MUST read
2943   the entire request message body or close the connection after sending
2944   its response, since otherwise the remaining data on a persistent
2945   connection would be misinterpreted as the next request.  Likewise, a
2946   client MUST read the entire response message body if it intends to
2947   reuse the same connection for a subsequent request.
2948
2949   A proxy server MUST NOT maintain a persistent connection with an
2950   HTTP/1.0 client (see Section 19.7.1 of [RFC2068] for information and
2951   discussion of the problems with the Keep-Alive header field
2952   implemented by many HTTP/1.0 clients).
2953
2954   See Appendix A.1.2 for more information on backwards compatibility
2955   with HTTP/1.0 clients.
2956
29576.3.1.  Retrying Requests
2958
2959   Connections can be closed at any time, with or without intention.
2960   Implementations ought to anticipate the need to recover from
2961   asynchronous close events.
2962
2963
2964
2965
2966
2967
2968
2969
2970Fielding & Reschke           Standards Track                   [Page 53]
2971
2972RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
2973
2974
2975   When an inbound connection is closed prematurely, a client MAY open a
2976   new connection and automatically retransmit an aborted sequence of
2977   requests if all of those requests have idempotent methods (Section
2978   4.2.2 of [RFC7231]).  A proxy MUST NOT automatically retry
2979   non-idempotent requests.
2980
2981   A user agent MUST NOT automatically retry a request with a non-
2982   idempotent method unless it has some means to know that the request
2983   semantics are actually idempotent, regardless of the method, or some
2984   means to detect that the original request was never applied.  For
2985   example, a user agent that knows (through design or configuration)
2986   that a POST request to a given resource is safe can repeat that
2987   request automatically.  Likewise, a user agent designed specifically
2988   to operate on a version control repository might be able to recover
2989   from partial failure conditions by checking the target resource
2990   revision(s) after a failed connection, reverting or fixing any
2991   changes that were partially applied, and then automatically retrying
2992   the requests that failed.
2993
2994   A client SHOULD NOT automatically retry a failed automatic retry.
2995
29966.3.2.  Pipelining
2997
2998   A client that supports persistent connections MAY "pipeline" its
2999   requests (i.e., send multiple requests without waiting for each
3000   response).  A server MAY process a sequence of pipelined requests in
3001   parallel if they all have safe methods (Section 4.2.1 of [RFC7231]),
3002   but it MUST send the corresponding responses in the same order that
3003   the requests were received.
3004
3005   A client that pipelines requests SHOULD retry unanswered requests if
3006   the connection closes before it receives all of the corresponding
3007   responses.  When retrying pipelined requests after a failed
3008   connection (a connection not explicitly closed by the server in its
3009   last complete response), a client MUST NOT pipeline immediately after
3010   connection establishment, since the first remaining request in the
3011   prior pipeline might have caused an error response that can be lost
3012   again if multiple requests are sent on a prematurely closed
3013   connection (see the TCP reset problem described in Section 6.6).
3014
3015   Idempotent methods (Section 4.2.2 of [RFC7231]) are significant to
3016   pipelining because they can be automatically retried after a
3017   connection failure.  A user agent SHOULD NOT pipeline requests after
3018   a non-idempotent method, until the final response status code for
3019   that method has been received, unless the user agent has a means to
3020   detect and recover from partial failure conditions involving the
3021   pipelined sequence.
3022
3023
3024
3025
3026Fielding & Reschke           Standards Track                   [Page 54]
3027
3028RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3029
3030
3031   An intermediary that receives pipelined requests MAY pipeline those
3032   requests when forwarding them inbound, since it can rely on the
3033   outbound user agent(s) to determine what requests can be safely
3034   pipelined.  If the inbound connection fails before receiving a
3035   response, the pipelining intermediary MAY attempt to retry a sequence
3036   of requests that have yet to receive a response if the requests all
3037   have idempotent methods; otherwise, the pipelining intermediary
3038   SHOULD forward any received responses and then close the
3039   corresponding outbound connection(s) so that the outbound user
3040   agent(s) can recover accordingly.
3041
30426.4.  Concurrency
3043
3044   A client ought to limit the number of simultaneous open connections
3045   that it maintains to a given server.
3046
3047   Previous revisions of HTTP gave a specific number of connections as a
3048   ceiling, but this was found to be impractical for many applications.
3049   As a result, this specification does not mandate a particular maximum
3050   number of connections but, instead, encourages clients to be
3051   conservative when opening multiple connections.
3052
3053   Multiple connections are typically used to avoid the "head-of-line
3054   blocking" problem, wherein a request that takes significant
3055   server-side processing and/or has a large payload blocks subsequent
3056   requests on the same connection.  However, each connection consumes
3057   server resources.  Furthermore, using multiple connections can cause
3058   undesirable side effects in congested networks.
3059
3060   Note that a server might reject traffic that it deems abusive or
3061   characteristic of a denial-of-service attack, such as an excessive
3062   number of open connections from a single client.
3063
30646.5.  Failures and Timeouts
3065
3066   Servers will usually have some timeout value beyond which they will
3067   no longer maintain an inactive connection.  Proxy servers might make
3068   this a higher value since it is likely that the client will be making
3069   more connections through the same proxy server.  The use of
3070   persistent connections places no requirements on the length (or
3071   existence) of this timeout for either the client or the server.
3072
3073   A client or server that wishes to time out SHOULD issue a graceful
3074   close on the connection.  Implementations SHOULD constantly monitor
3075   open connections for a received closure signal and respond to it as
3076   appropriate, since prompt closure of both sides of a connection
3077   enables allocated system resources to be reclaimed.
3078
3079
3080
3081
3082Fielding & Reschke           Standards Track                   [Page 55]
3083
3084RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3085
3086
3087   A client, server, or proxy MAY close the transport connection at any
3088   time.  For example, a client might have started to send a new request
3089   at the same time that the server has decided to close the "idle"
3090   connection.  From the server's point of view, the connection is being
3091   closed while it was idle, but from the client's point of view, a
3092   request is in progress.
3093
3094   A server SHOULD sustain persistent connections, when possible, and
3095   allow the underlying transport's flow-control mechanisms to resolve
3096   temporary overloads, rather than terminate connections with the
3097   expectation that clients will retry.  The latter technique can
3098   exacerbate network congestion.
3099
3100   A client sending a message body SHOULD monitor the network connection
3101   for an error response while it is transmitting the request.  If the
3102   client sees a response that indicates the server does not wish to
3103   receive the message body and is closing the connection, the client
3104   SHOULD immediately cease transmitting the body and close its side of
3105   the connection.
3106
31076.6.  Tear-down
3108
3109   The Connection header field (Section 6.1) provides a "close"
3110   connection option that a sender SHOULD send when it wishes to close
3111   the connection after the current request/response pair.
3112
3113   A client that sends a "close" connection option MUST NOT send further
3114   requests on that connection (after the one containing "close") and
3115   MUST close the connection after reading the final response message
3116   corresponding to this request.
3117
3118   A server that receives a "close" connection option MUST initiate a
3119   close of the connection (see below) after it sends the final response
3120   to the request that contained "close".  The server SHOULD send a
3121   "close" connection option in its final response on that connection.
3122   The server MUST NOT process any further requests received on that
3123   connection.
3124
3125   A server that sends a "close" connection option MUST initiate a close
3126   of the connection (see below) after it sends the response containing
3127   "close".  The server MUST NOT process any further requests received
3128   on that connection.
3129
3130   A client that receives a "close" connection option MUST cease sending
3131   requests on that connection and close the connection after reading
3132   the response message containing the "close"; if additional pipelined
3133   requests had been sent on the connection, the client SHOULD NOT
3134   assume that they will be processed by the server.
3135
3136
3137
3138Fielding & Reschke           Standards Track                   [Page 56]
3139
3140RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3141
3142
3143   If a server performs an immediate close of a TCP connection, there is
3144   a significant risk that the client will not be able to read the last
3145   HTTP response.  If the server receives additional data from the
3146   client on a fully closed connection, such as another request that was
3147   sent by the client before receiving the server's response, the
3148   server's TCP stack will send a reset packet to the client;
3149   unfortunately, the reset packet might erase the client's
3150   unacknowledged input buffers before they can be read and interpreted
3151   by the client's HTTP parser.
3152
3153   To avoid the TCP reset problem, servers typically close a connection
3154   in stages.  First, the server performs a half-close by closing only
3155   the write side of the read/write connection.  The server then
3156   continues to read from the connection until it receives a
3157   corresponding close by the client, or until the server is reasonably
3158   certain that its own TCP stack has received the client's
3159   acknowledgement of the packet(s) containing the server's last
3160   response.  Finally, the server fully closes the connection.
3161
3162   It is unknown whether the reset problem is exclusive to TCP or might
3163   also be found in other transport connection protocols.
3164
31656.7.  Upgrade
3166
3167   The "Upgrade" header field is intended to provide a simple mechanism
3168   for transitioning from HTTP/1.1 to some other protocol on the same
3169   connection.  A client MAY send a list of protocols in the Upgrade
3170   header field of a request to invite the server to switch to one or
3171   more of those protocols, in order of descending preference, before
3172   sending the final response.  A server MAY ignore a received Upgrade
3173   header field if it wishes to continue using the current protocol on
3174   that connection.  Upgrade cannot be used to insist on a protocol
3175   change.
3176
3177     Upgrade          = 1#protocol
3178
3179     protocol         = protocol-name ["/" protocol-version]
3180     protocol-name    = token
3181     protocol-version = token
3182
3183   A server that sends a 101 (Switching Protocols) response MUST send an
3184   Upgrade header field to indicate the new protocol(s) to which the
3185   connection is being switched; if multiple protocol layers are being
3186   switched, the sender MUST list the protocols in layer-ascending
3187   order.  A server MUST NOT switch to a protocol that was not indicated
3188   by the client in the corresponding request's Upgrade header field.  A
3189
3190
3191
3192
3193
3194Fielding & Reschke           Standards Track                   [Page 57]
3195
3196RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3197
3198
3199   server MAY choose to ignore the order of preference indicated by the
3200   client and select the new protocol(s) based on other factors, such as
3201   the nature of the request or the current load on the server.
3202
3203   A server that sends a 426 (Upgrade Required) response MUST send an
3204   Upgrade header field to indicate the acceptable protocols, in order
3205   of descending preference.
3206
3207   A server MAY send an Upgrade header field in any other response to
3208   advertise that it implements support for upgrading to the listed
3209   protocols, in order of descending preference, when appropriate for a
3210   future request.
3211
3212   The following is a hypothetical example sent by a client:
3213
3214     GET /hello.txt HTTP/1.1
3215     Host: www.example.com
3216     Connection: upgrade
3217     Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11
3218
3219
3220   The capabilities and nature of the application-level communication
3221   after the protocol change is entirely dependent upon the new
3222   protocol(s) chosen.  However, immediately after sending the 101
3223   (Switching Protocols) response, the server is expected to continue
3224   responding to the original request as if it had received its
3225   equivalent within the new protocol (i.e., the server still has an
3226   outstanding request to satisfy after the protocol has been changed,
3227   and is expected to do so without requiring the request to be
3228   repeated).
3229
3230   For example, if the Upgrade header field is received in a GET request
3231   and the server decides to switch protocols, it first responds with a
3232   101 (Switching Protocols) message in HTTP/1.1 and then immediately
3233   follows that with the new protocol's equivalent of a response to a
3234   GET on the target resource.  This allows a connection to be upgraded
3235   to protocols with the same semantics as HTTP without the latency cost
3236   of an additional round trip.  A server MUST NOT switch protocols
3237   unless the received message semantics can be honored by the new
3238   protocol; an OPTIONS request can be honored by any protocol.
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250Fielding & Reschke           Standards Track                   [Page 58]
3251
3252RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3253
3254
3255   The following is an example response to the above hypothetical
3256   request:
3257
3258     HTTP/1.1 101 Switching Protocols
3259     Connection: upgrade
3260     Upgrade: HTTP/2.0
3261
3262     [... data stream switches to HTTP/2.0 with an appropriate response
3263     (as defined by new protocol) to the "GET /hello.txt" request ...]
3264
3265   When Upgrade is sent, the sender MUST also send a Connection header
3266   field (Section 6.1) that contains an "upgrade" connection option, in
3267   order to prevent Upgrade from being accidentally forwarded by
3268   intermediaries that might not implement the listed protocols.  A
3269   server MUST ignore an Upgrade header field that is received in an
3270   HTTP/1.0 request.
3271
3272   A client cannot begin using an upgraded protocol on the connection
3273   until it has completely sent the request message (i.e., the client
3274   can't change the protocol it is sending in the middle of a message).
3275   If a server receives both an Upgrade and an Expect header field with
3276   the "100-continue" expectation (Section 5.1.1 of [RFC7231]), the
3277   server MUST send a 100 (Continue) response before sending a 101
3278   (Switching Protocols) response.
3279
3280   The Upgrade header field only applies to switching protocols on top
3281   of the existing connection; it cannot be used to switch the
3282   underlying connection (transport) protocol, nor to switch the
3283   existing communication to a different connection.  For those
3284   purposes, it is more appropriate to use a 3xx (Redirection) response
3285   (Section 6.4 of [RFC7231]).
3286
3287   This specification only defines the protocol name "HTTP" for use by
3288   the family of Hypertext Transfer Protocols, as defined by the HTTP
3289   version rules of Section 2.6 and future updates to this
3290   specification.  Additional tokens ought to be registered with IANA
3291   using the registration procedure defined in Section 8.6.
3292
32937.  ABNF List Extension: #rule
3294
3295   A #rule extension to the ABNF rules of [RFC5234] is used to improve
3296   readability in the definitions of some header field values.
3297
3298   A construct "#" is defined, similar to "*", for defining
3299   comma-delimited lists of elements.  The full form is "<n>#<m>element"
3300   indicating at least <n> and at most <m> elements, each separated by a
3301   single comma (",") and optional whitespace (OWS).
3302
3303
3304
3305
3306Fielding & Reschke           Standards Track                   [Page 59]
3307
3308RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3309
3310
3311   In any production that uses the list construct, a sender MUST NOT
3312   generate empty list elements.  In other words, a sender MUST generate
3313   lists that satisfy the following syntax:
3314
3315     1#element => element *( OWS "," OWS element )
3316
3317   and:
3318
3319     #element => [ 1#element ]
3320
3321   and for n >= 1 and m > 1:
3322
3323     <n>#<m>element => element <n-1>*<m-1>( OWS "," OWS element )
3324
3325   For compatibility with legacy list rules, a recipient MUST parse and
3326   ignore a reasonable number of empty list elements: enough to handle
3327   common mistakes by senders that merge values, but not so much that
3328   they could be used as a denial-of-service mechanism.  In other words,
3329   a recipient MUST accept lists that satisfy the following syntax:
3330
3331     #element => [ ( "," / element ) *( OWS "," [ OWS element ] ) ]
3332
3333     1#element => *( "," OWS ) element *( OWS "," [ OWS element ] )
3334
3335   Empty elements do not contribute to the count of elements present.
3336   For example, given these ABNF productions:
3337
3338     example-list      = 1#example-list-elmt
3339     example-list-elmt = token ; see Section 3.2.6
3340
3341   Then the following are valid values for example-list (not including
3342   the double quotes, which are present for delimitation only):
3343
3344     "foo,bar"
3345     "foo ,bar,"
3346     "foo , ,bar,charlie   "
3347
3348   In contrast, the following values would be invalid, since at least
3349   one non-empty element is required by the example-list production:
3350
3351     ""
3352     ","
3353     ",   ,"
3354
3355   Appendix B shows the collected ABNF for recipients after the list
3356   constructs have been expanded.
3357
3358
3359
3360
3361
3362Fielding & Reschke           Standards Track                   [Page 60]
3363
3364RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3365
3366
33678.  IANA Considerations
3368
33698.1.  Header Field Registration
3370
3371   HTTP header fields are registered within the "Message Headers"
3372   registry maintained at
3373   <http://www.iana.org/assignments/message-headers/>.
3374
3375   This document defines the following HTTP header fields, so the
3376   "Permanent Message Header Field Names" registry has been updated
3377   accordingly (see [BCP90]).
3378
3379   +-------------------+----------+----------+---------------+
3380   | Header Field Name | Protocol | Status   | Reference     |
3381   +-------------------+----------+----------+---------------+
3382   | Connection        | http     | standard | Section 6.1   |
3383   | Content-Length    | http     | standard | Section 3.3.2 |
3384   | Host              | http     | standard | Section 5.4   |
3385   | TE                | http     | standard | Section 4.3   |
3386   | Trailer           | http     | standard | Section 4.4   |
3387   | Transfer-Encoding | http     | standard | Section 3.3.1 |
3388   | Upgrade           | http     | standard | Section 6.7   |
3389   | Via               | http     | standard | Section 5.7.1 |
3390   +-------------------+----------+----------+---------------+
3391
3392   Furthermore, the header field-name "Close" has been registered as
3393   "reserved", since using that name as an HTTP header field might
3394   conflict with the "close" connection option of the Connection header
3395   field (Section 6.1).
3396
3397   +-------------------+----------+----------+-------------+
3398   | Header Field Name | Protocol | Status   | Reference   |
3399   +-------------------+----------+----------+-------------+
3400   | Close             | http     | reserved | Section 8.1 |
3401   +-------------------+----------+----------+-------------+
3402
3403   The change controller is: "IETF (iesg@ietf.org) - Internet
3404   Engineering Task Force".
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418Fielding & Reschke           Standards Track                   [Page 61]
3419
3420RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3421
3422
34238.2.  URI Scheme Registration
3424
3425   IANA maintains the registry of URI Schemes [BCP115] at
3426   <http://www.iana.org/assignments/uri-schemes/>.
3427
3428   This document defines the following URI schemes, so the "Permanent
3429   URI Schemes" registry has been updated accordingly.
3430
3431   +------------+------------------------------------+---------------+
3432   | URI Scheme | Description                        | Reference     |
3433   +------------+------------------------------------+---------------+
3434   | http       | Hypertext Transfer Protocol        | Section 2.7.1 |
3435   | https      | Hypertext Transfer Protocol Secure | Section 2.7.2 |
3436   +------------+------------------------------------+---------------+
3437
34388.3.  Internet Media Type Registration
3439
3440   IANA maintains the registry of Internet media types [BCP13] at
3441   <http://www.iana.org/assignments/media-types>.
3442
3443   This document serves as the specification for the Internet media
3444   types "message/http" and "application/http".  The following has been
3445   registered with IANA.
3446
34478.3.1.  Internet Media Type message/http
3448
3449   The message/http type can be used to enclose a single HTTP request or
3450   response message, provided that it obeys the MIME restrictions for
3451   all "message" types regarding line length and encodings.
3452
3453   Type name:  message
3454
3455   Subtype name:  http
3456
3457   Required parameters:  N/A
3458
3459   Optional parameters:  version, msgtype
3460
3461      version:  The HTTP-version number of the enclosed message (e.g.,
3462         "1.1").  If not present, the version can be determined from the
3463         first line of the body.
3464
3465      msgtype:  The message type -- "request" or "response".  If not
3466         present, the type can be determined from the first line of the
3467         body.
3468
3469   Encoding considerations:  only "7bit", "8bit", or "binary" are
3470      permitted
3471
3472
3473
3474Fielding & Reschke           Standards Track                   [Page 62]
3475
3476RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3477
3478
3479   Security considerations:  see Section 9
3480
3481   Interoperability considerations:  N/A
3482
3483   Published specification:  This specification (see Section 8.3.1).
3484
3485   Applications that use this media type:  N/A
3486
3487   Fragment identifier considerations:  N/A
3488
3489   Additional information:
3490
3491      Magic number(s):  N/A
3492
3493      Deprecated alias names for this type:  N/A
3494
3495      File extension(s):  N/A
3496
3497      Macintosh file type code(s):  N/A
3498
3499   Person and email address to contact for further information:
3500      See Authors' Addresses section.
3501
3502   Intended usage:  COMMON
3503
3504   Restrictions on usage:  N/A
3505
3506   Author:  See Authors' Addresses section.
3507
3508   Change controller:  IESG
3509
35108.3.2.  Internet Media Type application/http
3511
3512   The application/http type can be used to enclose a pipeline of one or
3513   more HTTP request or response messages (not intermixed).
3514
3515   Type name:  application
3516
3517   Subtype name:  http
3518
3519   Required parameters:  N/A
3520
3521   Optional parameters:  version, msgtype
3522
3523      version:  The HTTP-version number of the enclosed messages (e.g.,
3524         "1.1").  If not present, the version can be determined from the
3525         first line of the body.
3526
3527
3528
3529
3530Fielding & Reschke           Standards Track                   [Page 63]
3531
3532RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3533
3534
3535      msgtype:  The message type -- "request" or "response".  If not
3536         present, the type can be determined from the first line of the
3537         body.
3538
3539   Encoding considerations:  HTTP messages enclosed by this type are in
3540      "binary" format; use of an appropriate Content-Transfer-Encoding
3541      is required when transmitted via email.
3542
3543   Security considerations:  see Section 9
3544
3545   Interoperability considerations:  N/A
3546
3547   Published specification:  This specification (see Section 8.3.2).
3548
3549   Applications that use this media type:  N/A
3550
3551   Fragment identifier considerations:  N/A
3552
3553   Additional information:
3554
3555      Deprecated alias names for this type:  N/A
3556
3557      Magic number(s):  N/A
3558
3559      File extension(s):  N/A
3560
3561      Macintosh file type code(s):  N/A
3562
3563   Person and email address to contact for further information:
3564      See Authors' Addresses section.
3565
3566   Intended usage:  COMMON
3567
3568   Restrictions on usage:  N/A
3569
3570   Author:  See Authors' Addresses section.
3571
3572   Change controller:  IESG
3573
35748.4.  Transfer Coding Registry
3575
3576   The "HTTP Transfer Coding Registry" defines the namespace for
3577   transfer coding names.  It is maintained at
3578   <http://www.iana.org/assignments/http-parameters>.
3579
3580
3581
3582
3583
3584
3585
3586Fielding & Reschke           Standards Track                   [Page 64]
3587
3588RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3589
3590
35918.4.1.  Procedure
3592
3593   Registrations MUST include the following fields:
3594
3595   o  Name
3596
3597   o  Description
3598
3599   o  Pointer to specification text
3600
3601   Names of transfer codings MUST NOT overlap with names of content
3602   codings (Section 3.1.2.1 of [RFC7231]) unless the encoding
3603   transformation is identical, as is the case for the compression
3604   codings defined in Section 4.2.
3605
3606   Values to be added to this namespace require IETF Review (see Section
3607   4.1 of [RFC5226]), and MUST conform to the purpose of transfer coding
3608   defined in this specification.
3609
3610   Use of program names for the identification of encoding formats is
3611   not desirable and is discouraged for future encodings.
3612
36138.4.2.  Registration
3614
3615   The "HTTP Transfer Coding Registry" has been updated with the
3616   registrations below:
3617
3618   +------------+--------------------------------------+---------------+
3619   | Name       | Description                          | Reference     |
3620   +------------+--------------------------------------+---------------+
3621   | chunked    | Transfer in a series of chunks       | Section 4.1   |
3622   | compress   | UNIX "compress" data format [Welch]  | Section 4.2.1 |
3623   | deflate    | "deflate" compressed data            | Section 4.2.2 |
3624   |            | ([RFC1951]) inside the "zlib" data   |               |
3625   |            | format ([RFC1950])                   |               |
3626   | gzip       | GZIP file format [RFC1952]           | Section 4.2.3 |
3627   | x-compress | Deprecated (alias for compress)      | Section 4.2.1 |
3628   | x-gzip     | Deprecated (alias for gzip)          | Section 4.2.3 |
3629   +------------+--------------------------------------+---------------+
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642Fielding & Reschke           Standards Track                   [Page 65]
3643
3644RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3645
3646
36478.5.  Content Coding Registration
3648
3649   IANA maintains the "HTTP Content Coding Registry" at
3650   <http://www.iana.org/assignments/http-parameters>.
3651
3652   The "HTTP Content Coding Registry" has been updated with the
3653   registrations below:
3654
3655   +------------+--------------------------------------+---------------+
3656   | Name       | Description                          | Reference     |
3657   +------------+--------------------------------------+---------------+
3658   | compress   | UNIX "compress" data format [Welch]  | Section 4.2.1 |
3659   | deflate    | "deflate" compressed data            | Section 4.2.2 |
3660   |            | ([RFC1951]) inside the "zlib" data   |               |
3661   |            | format ([RFC1950])                   |               |
3662   | gzip       | GZIP file format [RFC1952]           | Section 4.2.3 |
3663   | x-compress | Deprecated (alias for compress)      | Section 4.2.1 |
3664   | x-gzip     | Deprecated (alias for gzip)          | Section 4.2.3 |
3665   +------------+--------------------------------------+---------------+
3666
36678.6.  Upgrade Token Registry
3668
3669   The "Hypertext Transfer Protocol (HTTP) Upgrade Token Registry"
3670   defines the namespace for protocol-name tokens used to identify
3671   protocols in the Upgrade header field.  The registry is maintained at
3672   <http://www.iana.org/assignments/http-upgrade-tokens>.
3673
36748.6.1.  Procedure
3675
3676   Each registered protocol name is associated with contact information
3677   and an optional set of specifications that details how the connection
3678   will be processed after it has been upgraded.
3679
3680   Registrations happen on a "First Come First Served" basis (see
3681   Section 4.1 of [RFC5226]) and are subject to the following rules:
3682
3683   1.  A protocol-name token, once registered, stays registered forever.
3684
3685   2.  The registration MUST name a responsible party for the
3686       registration.
3687
3688   3.  The registration MUST name a point of contact.
3689
3690   4.  The registration MAY name a set of specifications associated with
3691       that token.  Such specifications need not be publicly available.
3692
3693   5.  The registration SHOULD name a set of expected "protocol-version"
3694       tokens associated with that token at the time of registration.
3695
3696
3697
3698Fielding & Reschke           Standards Track                   [Page 66]
3699
3700RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3701
3702
3703   6.  The responsible party MAY change the registration at any time.
3704       The IANA will keep a record of all such changes, and make them
3705       available upon request.
3706
3707   7.  The IESG MAY reassign responsibility for a protocol token.  This
3708       will normally only be used in the case when a responsible party
3709       cannot be contacted.
3710
3711   This registration procedure for HTTP Upgrade Tokens replaces that
3712   previously defined in Section 7.2 of [RFC2817].
3713
37148.6.2.  Upgrade Token Registration
3715
3716   The "HTTP" entry in the upgrade token registry has been updated with
3717   the registration below:
3718
3719   +-------+----------------------+----------------------+-------------+
3720   | Value | Description          | Expected Version     | Reference   |
3721   |       |                      | Tokens               |             |
3722   +-------+----------------------+----------------------+-------------+
3723   | HTTP  | Hypertext Transfer   | any DIGIT.DIGIT      | Section 2.6 |
3724   |       | Protocol             | (e.g, "2.0")         |             |
3725   +-------+----------------------+----------------------+-------------+
3726
3727   The responsible party is: "IETF (iesg@ietf.org) - Internet
3728   Engineering Task Force".
3729
37309.  Security Considerations
3731
3732   This section is meant to inform developers, information providers,
3733   and users of known security considerations relevant to HTTP message
3734   syntax, parsing, and routing.  Security considerations about HTTP
3735   semantics and payloads are addressed in [RFC7231].
3736
37379.1.  Establishing Authority
3738
3739   HTTP relies on the notion of an authoritative response: a response
3740   that has been determined by (or at the direction of) the authority
3741   identified within the target URI to be the most appropriate response
3742   for that request given the state of the target resource at the time
3743   of response message origination.  Providing a response from a
3744   non-authoritative source, such as a shared cache, is often useful to
3745   improve performance and availability, but only to the extent that the
3746   source can be trusted or the distrusted response can be safely used.
3747
3748   Unfortunately, establishing authority can be difficult.  For example,
3749   phishing is an attack on the user's perception of authority, where
3750   that perception can be misled by presenting similar branding in
3751
3752
3753
3754Fielding & Reschke           Standards Track                   [Page 67]
3755
3756RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3757
3758
3759   hypertext, possibly aided by userinfo obfuscating the authority
3760   component (see Section 2.7.1).  User agents can reduce the impact of
3761   phishing attacks by enabling users to easily inspect a target URI
3762   prior to making an action, by prominently distinguishing (or
3763   rejecting) userinfo when present, and by not sending stored
3764   credentials and cookies when the referring document is from an
3765   unknown or untrusted source.
3766
3767   When a registered name is used in the authority component, the "http"
3768   URI scheme (Section 2.7.1) relies on the user's local name resolution
3769   service to determine where it can find authoritative responses.  This
3770   means that any attack on a user's network host table, cached names,
3771   or name resolution libraries becomes an avenue for attack on
3772   establishing authority.  Likewise, the user's choice of server for
3773   Domain Name Service (DNS), and the hierarchy of servers from which it
3774   obtains resolution results, could impact the authenticity of address
3775   mappings; DNS Security Extensions (DNSSEC, [RFC4033]) are one way to
3776   improve authenticity.
3777
3778   Furthermore, after an IP address is obtained, establishing authority
3779   for an "http" URI is vulnerable to attacks on Internet Protocol
3780   routing.
3781
3782   The "https" scheme (Section 2.7.2) is intended to prevent (or at
3783   least reveal) many of these potential attacks on establishing
3784   authority, provided that the negotiated TLS connection is secured and
3785   the client properly verifies that the communicating server's identity
3786   matches the target URI's authority component (see [RFC2818]).
3787   Correctly implementing such verification can be difficult (see
3788   [Georgiev]).
3789
37909.2.  Risks of Intermediaries
3791
3792   By their very nature, HTTP intermediaries are men-in-the-middle and,
3793   thus, represent an opportunity for man-in-the-middle attacks.
3794   Compromise of the systems on which the intermediaries run can result
3795   in serious security and privacy problems.  Intermediaries might have
3796   access to security-related information, personal information about
3797   individual users and organizations, and proprietary information
3798   belonging to users and content providers.  A compromised
3799   intermediary, or an intermediary implemented or configured without
3800   regard to security and privacy considerations, might be used in the
3801   commission of a wide range of potential attacks.
3802
3803   Intermediaries that contain a shared cache are especially vulnerable
3804   to cache poisoning attacks, as described in Section 8 of [RFC7234].
3805
3806
3807
3808
3809
3810Fielding & Reschke           Standards Track                   [Page 68]
3811
3812RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3813
3814
3815   Implementers need to consider the privacy and security implications
3816   of their design and coding decisions, and of the configuration
3817   options they provide to operators (especially the default
3818   configuration).
3819
3820   Users need to be aware that intermediaries are no more trustworthy
3821   than the people who run them; HTTP itself cannot solve this problem.
3822
38239.3.  Attacks via Protocol Element Length
3824
3825   Because HTTP uses mostly textual, character-delimited fields, parsers
3826   are often vulnerable to attacks based on sending very long (or very
3827   slow) streams of data, particularly where an implementation is
3828   expecting a protocol element with no predefined length.
3829
3830   To promote interoperability, specific recommendations are made for
3831   minimum size limits on request-line (Section 3.1.1) and header fields
3832   (Section 3.2).  These are minimum recommendations, chosen to be
3833   supportable even by implementations with limited resources; it is
3834   expected that most implementations will choose substantially higher
3835   limits.
3836
3837   A server can reject a message that has a request-target that is too
3838   long (Section 6.5.12 of [RFC7231]) or a request payload that is too
3839   large (Section 6.5.11 of [RFC7231]).  Additional status codes related
3840   to capacity limits have been defined by extensions to HTTP [RFC6585].
3841
3842   Recipients ought to carefully limit the extent to which they process
3843   other protocol elements, including (but not limited to) request
3844   methods, response status phrases, header field-names, numeric values,
3845   and body chunks.  Failure to limit such processing can result in
3846   buffer overflows, arithmetic overflows, or increased vulnerability to
3847   denial-of-service attacks.
3848
38499.4.  Response Splitting
3850
3851   Response splitting (a.k.a, CRLF injection) is a common technique,
3852   used in various attacks on Web usage, that exploits the line-based
3853   nature of HTTP message framing and the ordered association of
3854   requests to responses on persistent connections [Klein].  This
3855   technique can be particularly damaging when the requests pass through
3856   a shared cache.
3857
3858   Response splitting exploits a vulnerability in servers (usually
3859   within an application server) where an attacker can send encoded data
3860   within some parameter of the request that is later decoded and echoed
3861   within any of the response header fields of the response.  If the
3862   decoded data is crafted to look like the response has ended and a
3863
3864
3865
3866Fielding & Reschke           Standards Track                   [Page 69]
3867
3868RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3869
3870
3871   subsequent response has begun, the response has been split and the
3872   content within the apparent second response is controlled by the
3873   attacker.  The attacker can then make any other request on the same
3874   persistent connection and trick the recipients (including
3875   intermediaries) into believing that the second half of the split is
3876   an authoritative answer to the second request.
3877
3878   For example, a parameter within the request-target might be read by
3879   an application server and reused within a redirect, resulting in the
3880   same parameter being echoed in the Location header field of the
3881   response.  If the parameter is decoded by the application and not
3882   properly encoded when placed in the response field, the attacker can
3883   send encoded CRLF octets and other content that will make the
3884   application's single response look like two or more responses.
3885
3886   A common defense against response splitting is to filter requests for
3887   data that looks like encoded CR and LF (e.g., "%0D" and "%0A").
3888   However, that assumes the application server is only performing URI
3889   decoding, rather than more obscure data transformations like charset
3890   transcoding, XML entity translation, base64 decoding, sprintf
3891   reformatting, etc.  A more effective mitigation is to prevent
3892   anything other than the server's core protocol libraries from sending
3893   a CR or LF within the header section, which means restricting the
3894   output of header fields to APIs that filter for bad octets and not
3895   allowing application servers to write directly to the protocol
3896   stream.
3897
38989.5.  Request Smuggling
3899
3900   Request smuggling ([Linhart]) is a technique that exploits
3901   differences in protocol parsing among various recipients to hide
3902   additional requests (which might otherwise be blocked or disabled by
3903   policy) within an apparently harmless request.  Like response
3904   splitting, request smuggling can lead to a variety of attacks on HTTP
3905   usage.
3906
3907   This specification has introduced new requirements on request
3908   parsing, particularly with regard to message framing in
3909   Section 3.3.3, to reduce the effectiveness of request smuggling.
3910
39119.6.  Message Integrity
3912
3913   HTTP does not define a specific mechanism for ensuring message
3914   integrity, instead relying on the error-detection ability of
3915   underlying transport protocols and the use of length or
3916   chunk-delimited framing to detect completeness.  Additional integrity
3917   mechanisms, such as hash functions or digital signatures applied to
3918   the content, can be selectively added to messages via extensible
3919
3920
3921
3922Fielding & Reschke           Standards Track                   [Page 70]
3923
3924RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3925
3926
3927   metadata header fields.  Historically, the lack of a single integrity
3928   mechanism has been justified by the informal nature of most HTTP
3929   communication.  However, the prevalence of HTTP as an information
3930   access mechanism has resulted in its increasing use within
3931   environments where verification of message integrity is crucial.
3932
3933   User agents are encouraged to implement configurable means for
3934   detecting and reporting failures of message integrity such that those
3935   means can be enabled within environments for which integrity is
3936   necessary.  For example, a browser being used to view medical history
3937   or drug interaction information needs to indicate to the user when
3938   such information is detected by the protocol to be incomplete,
3939   expired, or corrupted during transfer.  Such mechanisms might be
3940   selectively enabled via user agent extensions or the presence of
3941   message integrity metadata in a response.  At a minimum, user agents
3942   ought to provide some indication that allows a user to distinguish
3943   between a complete and incomplete response message (Section 3.4) when
3944   such verification is desired.
3945
39469.7.  Message Confidentiality
3947
3948   HTTP relies on underlying transport protocols to provide message
3949   confidentiality when that is desired.  HTTP has been specifically
3950   designed to be independent of the transport protocol, such that it
3951   can be used over many different forms of encrypted connection, with
3952   the selection of such transports being identified by the choice of
3953   URI scheme or within user agent configuration.
3954
3955   The "https" scheme can be used to identify resources that require a
3956   confidential connection, as described in Section 2.7.2.
3957
39589.8.  Privacy of Server Log Information
3959
3960   A server is in the position to save personal data about a user's
3961   requests over time, which might identify their reading patterns or
3962   subjects of interest.  In particular, log information gathered at an
3963   intermediary often contains a history of user agent interaction,
3964   across a multitude of sites, that can be traced to individual users.
3965
3966   HTTP log information is confidential in nature; its handling is often
3967   constrained by laws and regulations.  Log information needs to be
3968   securely stored and appropriate guidelines followed for its analysis.
3969   Anonymization of personal information within individual entries
3970   helps, but it is generally not sufficient to prevent real log traces
3971   from being re-identified based on correlation with other access
3972   characteristics.  As such, access traces that are keyed to a specific
3973   client are unsafe to publish even if the key is pseudonymous.
3974
3975
3976
3977
3978Fielding & Reschke           Standards Track                   [Page 71]
3979
3980RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
3981
3982
3983   To minimize the risk of theft or accidental publication, log
3984   information ought to be purged of personally identifiable
3985   information, including user identifiers, IP addresses, and
3986   user-provided query parameters, as soon as that information is no
3987   longer necessary to support operational needs for security, auditing,
3988   or fraud control.
3989
399010.  Acknowledgments
3991
3992   This edition of HTTP/1.1 builds on the many contributions that went
3993   into RFC 1945, RFC 2068, RFC 2145, and RFC 2616, including
3994   substantial contributions made by the previous authors, editors, and
3995   Working Group Chairs: Tim Berners-Lee, Ari Luotonen, Roy T. Fielding,
3996   Henrik Frystyk Nielsen, Jim Gettys, Jeffrey C. Mogul, Larry Masinter,
3997   and Paul J. Leach.  Mark Nottingham oversaw this effort as Working
3998   Group Chair.
3999
4000   Since 1999, the following contributors have helped improve the HTTP
4001   specification by reporting bugs, asking smart questions, drafting or
4002   reviewing text, and evaluating open issues:
4003
4004   Adam Barth, Adam Roach, Addison Phillips, Adrian Chadd, Adrian Cole,
4005   Adrien W. de Croy, Alan Ford, Alan Ruttenberg, Albert Lunde, Alek
4006   Storm, Alex Rousskov, Alexandre Morgaut, Alexey Melnikov, Alisha
4007   Smith, Amichai Rothman, Amit Klein, Amos Jeffries, Andreas Maier,
4008   Andreas Petersson, Andrei Popov, Anil Sharma, Anne van Kesteren,
4009   Anthony Bryan, Asbjorn Ulsberg, Ashok Kumar, Balachander
4010   Krishnamurthy, Barry Leiba, Ben Laurie, Benjamin Carlyle, Benjamin
4011   Niven-Jenkins, Benoit Claise, Bil Corry, Bill Burke, Bjoern
4012   Hoehrmann, Bob Scheifler, Boris Zbarsky, Brett Slatkin, Brian Kell,
4013   Brian McBarron, Brian Pane, Brian Raymor, Brian Smith, Bruce Perens,
4014   Bryce Nesbitt, Cameron Heavon-Jones, Carl Kugler, Carsten Bormann,
4015   Charles Fry, Chris Burdess, Chris Newman, Christian Huitema, Cyrus
4016   Daboo, Dale Robert Anderson, Dan Wing, Dan Winship, Daniel Stenberg,
4017   Darrel Miller, Dave Cridland, Dave Crocker, Dave Kristol, Dave
4018   Thaler, David Booth, David Singer, David W. Morris, Diwakar Shetty,
4019   Dmitry Kurochkin, Drummond Reed, Duane Wessels, Edward Lee, Eitan
4020   Adler, Eliot Lear, Emile Stephan, Eran Hammer-Lahav, Eric D.
4021   Williams, Eric J. Bowman, Eric Lawrence, Eric Rescorla, Erik
4022   Aronesty, EungJun Yi, Evan Prodromou, Felix Geisendoerfer, Florian
4023   Weimer, Frank Ellermann, Fred Akalin, Fred Bohle, Frederic Kayser,
4024   Gabor Molnar, Gabriel Montenegro, Geoffrey Sneddon, Gervase Markham,
4025   Gili Tzabari, Grahame Grieve, Greg Slepak, Greg Wilkins, Grzegorz
4026   Calkowski, Harald Tveit Alvestrand, Harry Halpin, Helge Hess, Henrik
4027   Nordstrom, Henry S. Thompson, Henry Story, Herbert van de Sompel,
4028   Herve Ruellan, Howard Melman, Hugo Haas, Ian Fette, Ian Hickson, Ido
4029   Safruti, Ilari Liusvaara, Ilya Grigorik, Ingo Struck, J. Ross Nicoll,
4030   James Cloos, James H. Manger, James Lacey, James M. Snell, Jamie
4031
4032
4033
4034Fielding & Reschke           Standards Track                   [Page 72]
4035
4036RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4037
4038
4039   Lokier, Jan Algermissen, Jari Arkko, Jeff Hodges (who came up with
4040   the term 'effective Request-URI'), Jeff Pinner, Jeff Walden, Jim
4041   Luther, Jitu Padhye, Joe D. Williams, Joe Gregorio, Joe Orton, Joel
4042   Jaeggli, John C. Klensin, John C. Mallery, John Cowan, John Kemp,
4043   John Panzer, John Schneider, John Stracke, John Sullivan, Jonas
4044   Sicking, Jonathan A. Rees, Jonathan Billington, Jonathan Moore,
4045   Jonathan Silvera, Jordi Ros, Joris Dobbelsteen, Josh Cohen, Julien
4046   Pierre, Jungshik Shin, Justin Chapweske, Justin Erenkrantz, Justin
4047   James, Kalvinder Singh, Karl Dubost, Kathleen Moriarty, Keith
4048   Hoffman, Keith Moore, Ken Murchison, Koen Holtman, Konstantin
4049   Voronkov, Kris Zyp, Leif Hedstrom, Lionel Morand, Lisa Dusseault,
4050   Maciej Stachowiak, Manu Sporny, Marc Schneider, Marc Slemko, Mark
4051   Baker, Mark Pauley, Mark Watson, Markus Isomaki, Markus Lanthaler,
4052   Martin J. Duerst, Martin Musatov, Martin Nilsson, Martin Thomson,
4053   Matt Lynch, Matthew Cox, Matthew Kerwin, Max Clark, Menachem Dodge,
4054   Meral Shirazipour, Michael Burrows, Michael Hausenblas, Michael
4055   Scharf, Michael Sweet, Michael Tuexen, Michael Welzl, Mike Amundsen,
4056   Mike Belshe, Mike Bishop, Mike Kelly, Mike Schinkel, Miles Sabin,
4057   Murray S. Kucherawy, Mykyta Yevstifeyev, Nathan Rixham, Nicholas
4058   Shanks, Nico Williams, Nicolas Alvarez, Nicolas Mailhot, Noah Slater,
4059   Osama Mazahir, Pablo Castro, Pat Hayes, Patrick R. McManus, Paul E.
4060   Jones, Paul Hoffman, Paul Marquess, Pete Resnick, Peter Lepeska,
4061   Peter Occil, Peter Saint-Andre, Peter Watkins, Phil Archer, Phil
4062   Hunt, Philippe Mougin, Phillip Hallam-Baker, Piotr Dobrogost, Poul-
4063   Henning Kamp, Preethi Natarajan, Rajeev Bector, Ray Polk, Reto
4064   Bachmann-Gmuer, Richard Barnes, Richard Cyganiak, Rob Trace, Robby
4065   Simpson, Robert Brewer, Robert Collins, Robert Mattson, Robert
4066   O'Callahan, Robert Olofsson, Robert Sayre, Robert Siemer, Robert de
4067   Wilde, Roberto Javier Godoy, Roberto Peon, Roland Zink, Ronny
4068   Widjaja, Ryan Hamilton, S. Mike Dierken, Salvatore Loreto, Sam
4069   Johnston, Sam Pullara, Sam Ruby, Saurabh Kulkarni, Scott Lawrence
4070   (who maintained the original issues list), Sean B. Palmer, Sean
4071   Turner, Sebastien Barnoud, Shane McCarron, Shigeki Ohtsu, Simon
4072   Yarde, Stefan Eissing, Stefan Tilkov, Stefanos Harhalakis, Stephane
4073   Bortzmeyer, Stephen Farrell, Stephen Kent, Stephen Ludin, Stuart
4074   Williams, Subbu Allamaraju, Subramanian Moonesamy, Susan Hares,
4075   Sylvain Hellegouarch, Tapan Divekar, Tatsuhiro Tsujikawa, Tatsuya
4076   Hayashi, Ted Hardie, Ted Lemon, Thomas Broyer, Thomas Fossati, Thomas
4077   Maslen, Thomas Nadeau, Thomas Nordin, Thomas Roessler, Tim Bray, Tim
4078   Morgan, Tim Olsen, Tom Zhou, Travis Snoozy, Tyler Close, Vincent
4079   Murphy, Wenbo Zhu, Werner Baumann, Wilbur Streett, Wilfredo Sanchez
4080   Vega, William A. Rowe Jr., William Chan, Willy Tarreau, Xiaoshu Wang,
4081   Yaron Goland, Yngve Nysaeter Pettersen, Yoav Nir, Yogesh Bang,
4082   Yuchung Cheng, Yutaka Oiwa, Yves Lafon (long-time member of the
4083   editor team), Zed A. Shaw, and Zhong Yu.
4084
4085   See Section 16 of [RFC2616] for additional acknowledgements from
4086   prior revisions.
4087
4088
4089
4090Fielding & Reschke           Standards Track                   [Page 73]
4091
4092RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4093
4094
409511.  References
4096
409711.1.  Normative References
4098
4099   [RFC0793]     Postel, J., "Transmission Control Protocol", STD 7,
4100                 RFC 793, September 1981.
4101
4102   [RFC1950]     Deutsch, L. and J-L. Gailly, "ZLIB Compressed Data
4103                 Format Specification version 3.3", RFC 1950, May 1996.
4104
4105   [RFC1951]     Deutsch, P., "DEFLATE Compressed Data Format
4106                 Specification version 1.3", RFC 1951, May 1996.
4107
4108   [RFC1952]     Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L., and
4109                 G. Randers-Pehrson, "GZIP file format specification
4110                 version 4.3", RFC 1952, May 1996.
4111
4112   [RFC2119]     Bradner, S., "Key words for use in RFCs to Indicate
4113                 Requirement Levels", BCP 14, RFC 2119, March 1997.
4114
4115   [RFC3986]     Berners-Lee, T., Fielding, R., and L. Masinter,
4116                 "Uniform Resource Identifier (URI): Generic Syntax",
4117                 STD 66, RFC 3986, January 2005.
4118
4119   [RFC5234]     Crocker, D., Ed. and P. Overell, "Augmented BNF for
4120                 Syntax Specifications: ABNF", STD 68, RFC 5234,
4121                 January 2008.
4122
4123   [RFC7231]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
4124                 Transfer Protocol (HTTP/1.1): Semantics and Content",
4125                 RFC 7231, June 2014.
4126
4127   [RFC7232]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
4128                 Transfer Protocol (HTTP/1.1): Conditional Requests",
4129                 RFC 7232, June 2014.
4130
4131   [RFC7233]     Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
4132                 "Hypertext Transfer Protocol (HTTP/1.1): Range
4133                 Requests", RFC 7233, June 2014.
4134
4135   [RFC7234]     Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
4136                 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
4137                 RFC 7234, June 2014.
4138
4139   [RFC7235]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
4140                 Transfer Protocol (HTTP/1.1): Authentication",
4141                 RFC 7235, June 2014.
4142
4143
4144
4145
4146Fielding & Reschke           Standards Track                   [Page 74]
4147
4148RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4149
4150
4151   [USASCII]     American National Standards Institute, "Coded Character
4152                 Set -- 7-bit American Standard Code for Information
4153                 Interchange", ANSI X3.4, 1986.
4154
4155   [Welch]       Welch, T., "A Technique for High-Performance Data
4156                 Compression", IEEE Computer 17(6), June 1984.
4157
415811.2.  Informative References
4159
4160   [BCP115]      Hansen, T., Hardie, T., and L. Masinter, "Guidelines
4161                 and Registration Procedures for New URI Schemes",
4162                 BCP 115, RFC 4395, February 2006.
4163
4164   [BCP13]       Freed, N., Klensin, J., and T. Hansen, "Media Type
4165                 Specifications and Registration Procedures", BCP 13,
4166                 RFC 6838, January 2013.
4167
4168   [BCP90]       Klyne, G., Nottingham, M., and J. Mogul, "Registration
4169                 Procedures for Message Header Fields", BCP 90,
4170                 RFC 3864, September 2004.
4171
4172   [Georgiev]    Georgiev, M., Iyengar, S., Jana, S., Anubhai, R.,
4173                 Boneh, D., and V. Shmatikov, "The Most Dangerous Code
4174                 in the World: Validating SSL Certificates in Non-
4175                 browser Software", In Proceedings of the 2012 ACM
4176                 Conference on Computer and Communications Security (CCS
4177                 '12), pp. 38-49, October 2012,
4178                 <http://doi.acm.org/10.1145/2382196.2382204>.
4179
4180   [ISO-8859-1]  International Organization for Standardization,
4181                 "Information technology -- 8-bit single-byte coded
4182                 graphic character sets -- Part 1: Latin alphabet No.
4183                 1", ISO/IEC 8859-1:1998, 1998.
4184
4185   [Klein]       Klein, A., "Divide and Conquer - HTTP Response
4186                 Splitting, Web Cache Poisoning Attacks, and Related
4187                 Topics", March 2004, <http://packetstormsecurity.com/
4188                 papers/general/whitepaper_httpresponse.pdf>.
4189
4190   [Kri2001]     Kristol, D., "HTTP Cookies: Standards, Privacy, and
4191                 Politics", ACM Transactions on Internet
4192                 Technology 1(2), November 2001,
4193                 <http://arxiv.org/abs/cs.SE/0105018>.
4194
4195   [Linhart]     Linhart, C., Klein, A., Heled, R., and S. Orrin, "HTTP
4196                 Request Smuggling", June 2005,
4197                 <http://www.watchfire.com/news/whitepapers.aspx>.
4198
4199
4200
4201
4202Fielding & Reschke           Standards Track                   [Page 75]
4203
4204RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4205
4206
4207   [RFC1919]     Chatel, M., "Classical versus Transparent IP Proxies",
4208                 RFC 1919, March 1996.
4209
4210   [RFC1945]     Berners-Lee, T., Fielding, R., and H. Nielsen,
4211                 "Hypertext Transfer Protocol -- HTTP/1.0", RFC 1945,
4212                 May 1996.
4213
4214   [RFC2045]     Freed, N. and N. Borenstein, "Multipurpose Internet
4215                 Mail Extensions (MIME) Part One: Format of Internet
4216                 Message Bodies", RFC 2045, November 1996.
4217
4218   [RFC2047]     Moore, K., "MIME (Multipurpose Internet Mail
4219                 Extensions) Part Three: Message Header Extensions for
4220                 Non-ASCII Text", RFC 2047, November 1996.
4221
4222   [RFC2068]     Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and
4223                 T. Berners-Lee, "Hypertext Transfer Protocol --
4224                 HTTP/1.1", RFC 2068, January 1997.
4225
4226   [RFC2145]     Mogul, J., Fielding, R., Gettys, J., and H. Nielsen,
4227                 "Use and Interpretation of HTTP Version Numbers",
4228                 RFC 2145, May 1997.
4229
4230   [RFC2616]     Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
4231                 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
4232                 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.
4233
4234   [RFC2817]     Khare, R. and S. Lawrence, "Upgrading to TLS Within
4235                 HTTP/1.1", RFC 2817, May 2000.
4236
4237   [RFC2818]     Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.
4238
4239   [RFC3040]     Cooper, I., Melve, I., and G. Tomlinson, "Internet Web
4240                 Replication and Caching Taxonomy", RFC 3040,
4241                 January 2001.
4242
4243   [RFC4033]     Arends, R., Austein, R., Larson, M., Massey, D., and S.
4244                 Rose, "DNS Security Introduction and Requirements",
4245                 RFC 4033, March 2005.
4246
4247   [RFC4559]     Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based
4248                 Kerberos and NTLM HTTP Authentication in Microsoft
4249                 Windows", RFC 4559, June 2006.
4250
4251   [RFC5226]     Narten, T. and H. Alvestrand, "Guidelines for Writing
4252                 an IANA Considerations Section in RFCs", BCP 26,
4253                 RFC 5226, May 2008.
4254
4255
4256
4257
4258Fielding & Reschke           Standards Track                   [Page 76]
4259
4260RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4261
4262
4263   [RFC5246]     Dierks, T. and E. Rescorla, "The Transport Layer
4264                 Security (TLS) Protocol Version 1.2", RFC 5246,
4265                 August 2008.
4266
4267   [RFC5322]     Resnick, P., "Internet Message Format", RFC 5322,
4268                 October 2008.
4269
4270   [RFC6265]     Barth, A., "HTTP State Management Mechanism", RFC 6265,
4271                 April 2011.
4272
4273   [RFC6585]     Nottingham, M. and R. Fielding, "Additional HTTP Status
4274                 Codes", RFC 6585, April 2012.
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314Fielding & Reschke           Standards Track                   [Page 77]
4315
4316RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4317
4318
4319Appendix A.  HTTP Version History
4320
4321   HTTP has been in use since 1990.  The first version, later referred
4322   to as HTTP/0.9, was a simple protocol for hypertext data transfer
4323   across the Internet, using only a single request method (GET) and no
4324   metadata.  HTTP/1.0, as defined by [RFC1945], added a range of
4325   request methods and MIME-like messaging, allowing for metadata to be
4326   transferred and modifiers placed on the request/response semantics.
4327   However, HTTP/1.0 did not sufficiently take into consideration the
4328   effects of hierarchical proxies, caching, the need for persistent
4329   connections, or name-based virtual hosts.  The proliferation of
4330   incompletely implemented applications calling themselves "HTTP/1.0"
4331   further necessitated a protocol version change in order for two
4332   communicating applications to determine each other's true
4333   capabilities.
4334
4335   HTTP/1.1 remains compatible with HTTP/1.0 by including more stringent
4336   requirements that enable reliable implementations, adding only those
4337   features that can either be safely ignored by an HTTP/1.0 recipient
4338   or only be sent when communicating with a party advertising
4339   conformance with HTTP/1.1.
4340
4341   HTTP/1.1 has been designed to make supporting previous versions easy.
4342   A general-purpose HTTP/1.1 server ought to be able to understand any
4343   valid request in the format of HTTP/1.0, responding appropriately
4344   with an HTTP/1.1 message that only uses features understood (or
4345   safely ignored) by HTTP/1.0 clients.  Likewise, an HTTP/1.1 client
4346   can be expected to understand any valid HTTP/1.0 response.
4347
4348   Since HTTP/0.9 did not support header fields in a request, there is
4349   no mechanism for it to support name-based virtual hosts (selection of
4350   resource by inspection of the Host header field).  Any server that
4351   implements name-based virtual hosts ought to disable support for
4352   HTTP/0.9.  Most requests that appear to be HTTP/0.9 are, in fact,
4353   badly constructed HTTP/1.x requests caused by a client failing to
4354   properly encode the request-target.
4355
4356A.1.  Changes from HTTP/1.0
4357
4358   This section summarizes major differences between versions HTTP/1.0
4359   and HTTP/1.1.
4360
4361A.1.1.  Multihomed Web Servers
4362
4363   The requirements that clients and servers support the Host header
4364   field (Section 5.4), report an error if it is missing from an
4365   HTTP/1.1 request, and accept absolute URIs (Section 5.3) are among
4366   the most important changes defined by HTTP/1.1.
4367
4368
4369
4370Fielding & Reschke           Standards Track                   [Page 78]
4371
4372RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4373
4374
4375   Older HTTP/1.0 clients assumed a one-to-one relationship of IP
4376   addresses and servers; there was no other established mechanism for
4377   distinguishing the intended server of a request than the IP address
4378   to which that request was directed.  The Host header field was
4379   introduced during the development of HTTP/1.1 and, though it was
4380   quickly implemented by most HTTP/1.0 browsers, additional
4381   requirements were placed on all HTTP/1.1 requests in order to ensure
4382   complete adoption.  At the time of this writing, most HTTP-based
4383   services are dependent upon the Host header field for targeting
4384   requests.
4385
4386A.1.2.  Keep-Alive Connections
4387
4388   In HTTP/1.0, each connection is established by the client prior to
4389   the request and closed by the server after sending the response.
4390   However, some implementations implement the explicitly negotiated
4391   ("Keep-Alive") version of persistent connections described in Section
4392   19.7.1 of [RFC2068].
4393
4394   Some clients and servers might wish to be compatible with these
4395   previous approaches to persistent connections, by explicitly
4396   negotiating for them with a "Connection: keep-alive" request header
4397   field.  However, some experimental implementations of HTTP/1.0
4398   persistent connections are faulty; for example, if an HTTP/1.0 proxy
4399   server doesn't understand Connection, it will erroneously forward
4400   that header field to the next inbound server, which would result in a
4401   hung connection.
4402
4403   One attempted solution was the introduction of a Proxy-Connection
4404   header field, targeted specifically at proxies.  In practice, this
4405   was also unworkable, because proxies are often deployed in multiple
4406   layers, bringing about the same problem discussed above.
4407
4408   As a result, clients are encouraged not to send the Proxy-Connection
4409   header field in any requests.
4410
4411   Clients are also encouraged to consider the use of Connection: keep-
4412   alive in requests carefully; while they can enable persistent
4413   connections with HTTP/1.0 servers, clients using them will need to
4414   monitor the connection for "hung" requests (which indicate that the
4415   client ought stop sending the header field), and this mechanism ought
4416   not be used by clients at all when a proxy is being used.
4417
4418A.1.3.  Introduction of Transfer-Encoding
4419
4420   HTTP/1.1 introduces the Transfer-Encoding header field
4421   (Section 3.3.1).  Transfer codings need to be decoded prior to
4422   forwarding an HTTP message over a MIME-compliant protocol.
4423
4424
4425
4426Fielding & Reschke           Standards Track                   [Page 79]
4427
4428RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4429
4430
4431A.2.  Changes from RFC 2616
4432
4433   HTTP's approach to error handling has been explained.  (Section 2.5)
4434
4435   The HTTP-version ABNF production has been clarified to be case-
4436   sensitive.  Additionally, version numbers have been restricted to
4437   single digits, due to the fact that implementations are known to
4438   handle multi-digit version numbers incorrectly.  (Section 2.6)
4439
4440   Userinfo (i.e., username and password) are now disallowed in HTTP and
4441   HTTPS URIs, because of security issues related to their transmission
4442   on the wire.  (Section 2.7.1)
4443
4444   The HTTPS URI scheme is now defined by this specification;
4445   previously, it was done in Section 2.4 of [RFC2818].  Furthermore, it
4446   implies end-to-end security.  (Section 2.7.2)
4447
4448   HTTP messages can be (and often are) buffered by implementations;
4449   despite it sometimes being available as a stream, HTTP is
4450   fundamentally a message-oriented protocol.  Minimum supported sizes
4451   for various protocol elements have been suggested, to improve
4452   interoperability.  (Section 3)
4453
4454   Invalid whitespace around field-names is now required to be rejected,
4455   because accepting it represents a security vulnerability.  The ABNF
4456   productions defining header fields now only list the field value.
4457   (Section 3.2)
4458
4459   Rules about implicit linear whitespace between certain grammar
4460   productions have been removed; now whitespace is only allowed where
4461   specifically defined in the ABNF.  (Section 3.2.3)
4462
4463   Header fields that span multiple lines ("line folding") are
4464   deprecated.  (Section 3.2.4)
4465
4466   The NUL octet is no longer allowed in comment and quoted-string text,
4467   and handling of backslash-escaping in them has been clarified.  The
4468   quoted-pair rule no longer allows escaping control characters other
4469   than HTAB.  Non-US-ASCII content in header fields and the reason
4470   phrase has been obsoleted and made opaque (the TEXT rule was
4471   removed).  (Section 3.2.6)
4472
4473   Bogus Content-Length header fields are now required to be handled as
4474   errors by recipients.  (Section 3.3.2)
4475
4476   The algorithm for determining the message body length has been
4477   clarified to indicate all of the special cases (e.g., driven by
4478   methods or status codes) that affect it, and that new protocol
4479
4480
4481
4482Fielding & Reschke           Standards Track                   [Page 80]
4483
4484RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4485
4486
4487   elements cannot define such special cases.  CONNECT is a new, special
4488   case in determining message body length. "multipart/byteranges" is no
4489   longer a way of determining message body length detection.
4490   (Section 3.3.3)
4491
4492   The "identity" transfer coding token has been removed.  (Sections 3.3
4493   and 4)
4494
4495   Chunk length does not include the count of the octets in the chunk
4496   header and trailer.  Line folding in chunk extensions is disallowed.
4497   (Section 4.1)
4498
4499   The meaning of the "deflate" content coding has been clarified.
4500   (Section 4.2.2)
4501
4502   The segment + query components of RFC 3986 have been used to define
4503   the request-target, instead of abs_path from RFC 1808.  The asterisk-
4504   form of the request-target is only allowed with the OPTIONS method.
4505   (Section 5.3)
4506
4507   The term "Effective Request URI" has been introduced.  (Section 5.5)
4508
4509   Gateways do not need to generate Via header fields anymore.
4510   (Section 5.7.1)
4511
4512   Exactly when "close" connection options have to be sent has been
4513   clarified.  Also, "hop-by-hop" header fields are required to appear
4514   in the Connection header field; just because they're defined as hop-
4515   by-hop in this specification doesn't exempt them.  (Section 6.1)
4516
4517   The limit of two connections per server has been removed.  An
4518   idempotent sequence of requests is no longer required to be retried.
4519   The requirement to retry requests under certain circumstances when
4520   the server prematurely closes the connection has been removed.  Also,
4521   some extraneous requirements about when servers are allowed to close
4522   connections prematurely have been removed.  (Section 6.3)
4523
4524   The semantics of the Upgrade header field is now defined in responses
4525   other than 101 (this was incorporated from [RFC2817]).  Furthermore,
4526   the ordering in the field value is now significant.  (Section 6.7)
4527
4528   Empty list elements in list productions (e.g., a list header field
4529   containing ", ,") have been deprecated.  (Section 7)
4530
4531   Registration of Transfer Codings now requires IETF Review
4532   (Section 8.4)
4533
4534
4535
4536
4537
4538Fielding & Reschke           Standards Track                   [Page 81]
4539
4540RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4541
4542
4543   This specification now defines the Upgrade Token Registry, previously
4544   defined in Section 7.2 of [RFC2817].  (Section 8.6)
4545
4546   The expectation to support HTTP/0.9 requests has been removed.
4547   (Appendix A)
4548
4549   Issues with the Keep-Alive and Proxy-Connection header fields in
4550   requests are pointed out, with use of the latter being discouraged
4551   altogether.  (Appendix A.1.2)
4552
4553Appendix B.  Collected ABNF
4554
4555   BWS = OWS
4556
4557   Connection = *( "," OWS ) connection-option *( OWS "," [ OWS
4558    connection-option ] )
4559
4560   Content-Length = 1*DIGIT
4561
4562   HTTP-message = start-line *( header-field CRLF ) CRLF [ message-body
4563    ]
4564   HTTP-name = %x48.54.54.50 ; HTTP
4565   HTTP-version = HTTP-name "/" DIGIT "." DIGIT
4566   Host = uri-host [ ":" port ]
4567
4568   OWS = *( SP / HTAB )
4569
4570   RWS = 1*( SP / HTAB )
4571
4572   TE = [ ( "," / t-codings ) *( OWS "," [ OWS t-codings ] ) ]
4573   Trailer = *( "," OWS ) field-name *( OWS "," [ OWS field-name ] )
4574   Transfer-Encoding = *( "," OWS ) transfer-coding *( OWS "," [ OWS
4575    transfer-coding ] )
4576
4577   URI-reference = <URI-reference, see [RFC3986], Section 4.1>
4578   Upgrade = *( "," OWS ) protocol *( OWS "," [ OWS protocol ] )
4579
4580   Via = *( "," OWS ) ( received-protocol RWS received-by [ RWS comment
4581    ] ) *( OWS "," [ OWS ( received-protocol RWS received-by [ RWS
4582    comment ] ) ] )
4583
4584   absolute-URI = <absolute-URI, see [RFC3986], Section 4.3>
4585   absolute-form = absolute-URI
4586   absolute-path = 1*( "/" segment )
4587   asterisk-form = "*"
4588   authority = <authority, see [RFC3986], Section 3.2>
4589   authority-form = authority
4590
4591
4592
4593
4594Fielding & Reschke           Standards Track                   [Page 82]
4595
4596RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4597
4598
4599   chunk = chunk-size [ chunk-ext ] CRLF chunk-data CRLF
4600   chunk-data = 1*OCTET
4601   chunk-ext = *( ";" chunk-ext-name [ "=" chunk-ext-val ] )
4602   chunk-ext-name = token
4603   chunk-ext-val = token / quoted-string
4604   chunk-size = 1*HEXDIG
4605   chunked-body = *chunk last-chunk trailer-part CRLF
4606   comment = "(" *( ctext / quoted-pair / comment ) ")"
4607   connection-option = token
4608   ctext = HTAB / SP / %x21-27 ; '!'-'''
4609    / %x2A-5B ; '*'-'['
4610    / %x5D-7E ; ']'-'~'
4611    / obs-text
4612
4613   field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ]
4614   field-name = token
4615   field-value = *( field-content / obs-fold )
4616   field-vchar = VCHAR / obs-text
4617   fragment = <fragment, see [RFC3986], Section 3.5>
4618
4619   header-field = field-name ":" OWS field-value OWS
4620   http-URI = "http://" authority path-abempty [ "?" query ] [ "#"
4621    fragment ]
4622   https-URI = "https://" authority path-abempty [ "?" query ] [ "#"
4623    fragment ]
4624
4625   last-chunk = 1*"0" [ chunk-ext ] CRLF
4626
4627   message-body = *OCTET
4628   method = token
4629
4630   obs-fold = CRLF 1*( SP / HTAB )
4631   obs-text = %x80-FF
4632   origin-form = absolute-path [ "?" query ]
4633
4634   partial-URI = relative-part [ "?" query ]
4635   path-abempty = <path-abempty, see [RFC3986], Section 3.3>
4636   port = <port, see [RFC3986], Section 3.2.3>
4637   protocol = protocol-name [ "/" protocol-version ]
4638   protocol-name = token
4639   protocol-version = token
4640   pseudonym = token
4641
4642   qdtext = HTAB / SP / "!" / %x23-5B ; '#'-'['
4643    / %x5D-7E ; ']'-'~'
4644    / obs-text
4645   query = <query, see [RFC3986], Section 3.4>
4646   quoted-pair = "\" ( HTAB / SP / VCHAR / obs-text )
4647
4648
4649
4650Fielding & Reschke           Standards Track                   [Page 83]
4651
4652RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4653
4654
4655   quoted-string = DQUOTE *( qdtext / quoted-pair ) DQUOTE
4656
4657   rank = ( "0" [ "." *3DIGIT ] ) / ( "1" [ "." *3"0" ] )
4658   reason-phrase = *( HTAB / SP / VCHAR / obs-text )
4659   received-by = ( uri-host [ ":" port ] ) / pseudonym
4660   received-protocol = [ protocol-name "/" ] protocol-version
4661   relative-part = <relative-part, see [RFC3986], Section 4.2>
4662   request-line = method SP request-target SP HTTP-version CRLF
4663   request-target = origin-form / absolute-form / authority-form /
4664    asterisk-form
4665
4666   scheme = <scheme, see [RFC3986], Section 3.1>
4667   segment = <segment, see [RFC3986], Section 3.3>
4668   start-line = request-line / status-line
4669   status-code = 3DIGIT
4670   status-line = HTTP-version SP status-code SP reason-phrase CRLF
4671
4672   t-codings = "trailers" / ( transfer-coding [ t-ranking ] )
4673   t-ranking = OWS ";" OWS "q=" rank
4674   tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /
4675    "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
4676   token = 1*tchar
4677   trailer-part = *( header-field CRLF )
4678   transfer-coding = "chunked" / "compress" / "deflate" / "gzip" /
4679    transfer-extension
4680   transfer-extension = token *( OWS ";" OWS transfer-parameter )
4681   transfer-parameter = token BWS "=" BWS ( token / quoted-string )
4682
4683   uri-host = <host, see [RFC3986], Section 3.2.2>
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706Fielding & Reschke           Standards Track                   [Page 84]
4707
4708RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4709
4710
4711Index
4712
4713   A
4714      absolute-form (of request-target)  42
4715      accelerator  10
4716      application/http Media Type  63
4717      asterisk-form (of request-target)  43
4718      authoritative response  67
4719      authority-form (of request-target)  42-43
4720
4721   B
4722      browser  7
4723
4724   C
4725      cache  11
4726      cacheable  12
4727      captive portal  11
4728      chunked (Coding Format)  28, 32, 36
4729      client  7
4730      close  51, 56
4731      compress (Coding Format)  38
4732      connection  7
4733      Connection header field  51, 56
4734      Content-Length header field  30
4735
4736   D
4737      deflate (Coding Format)  38
4738      Delimiters  27
4739      downstream  10
4740
4741   E
4742      effective request URI  45
4743
4744   G
4745      gateway  10
4746      Grammar
4747         absolute-form  42
4748         absolute-path  16
4749         absolute-URI  16
4750         ALPHA  6
4751         asterisk-form  41, 43
4752         authority  16
4753         authority-form  42-43
4754         BWS  25
4755         chunk  36
4756         chunk-data  36
4757         chunk-ext  36
4758         chunk-ext-name  36
4759
4760
4761
4762Fielding & Reschke           Standards Track                   [Page 85]
4763
4764RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4765
4766
4767         chunk-ext-val  36
4768         chunk-size  36
4769         chunked-body  36
4770         comment  27
4771         Connection  51
4772         connection-option  51
4773         Content-Length  30
4774         CR  6
4775         CRLF  6
4776         ctext  27
4777         CTL  6
4778         DIGIT  6
4779         DQUOTE  6
4780         field-content  23
4781         field-name  23, 40
4782         field-value  23
4783         field-vchar  23
4784         fragment  16
4785         header-field  23, 37
4786         HEXDIG  6
4787         Host  44
4788         HTAB  6
4789         HTTP-message  19
4790         HTTP-name  14
4791         http-URI  17
4792         HTTP-version  14
4793         https-URI  18
4794         last-chunk  36
4795         LF  6
4796         message-body  28
4797         method  21
4798         obs-fold  23
4799         obs-text  27
4800         OCTET  6
4801         origin-form  42
4802         OWS  25
4803         partial-URI  16
4804         port  16
4805         protocol-name  47
4806         protocol-version  47
4807         pseudonym  47
4808         qdtext  27
4809         query  16
4810         quoted-pair  27
4811         quoted-string  27
4812         rank  39
4813         reason-phrase  22
4814         received-by  47
4815
4816
4817
4818Fielding & Reschke           Standards Track                   [Page 86]
4819
4820RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4821
4822
4823         received-protocol  47
4824         request-line  21
4825         request-target  41
4826         RWS  25
4827         scheme  16
4828         segment  16
4829         SP  6
4830         start-line  21
4831         status-code  22
4832         status-line  22
4833         t-codings  39
4834         t-ranking  39
4835         tchar  27
4836         TE  39
4837         token  27
4838         Trailer  40
4839         trailer-part  37
4840         transfer-coding  35
4841         Transfer-Encoding  28
4842         transfer-extension  35
4843         transfer-parameter  35
4844         Upgrade  57
4845         uri-host  16
4846         URI-reference  16
4847         VCHAR  6
4848         Via  47
4849      gzip (Coding Format)  39
4850
4851   H
4852      header field  19
4853      header section  19
4854      headers  19
4855      Host header field  44
4856      http URI scheme  17
4857      https URI scheme  17
4858   I
4859      inbound  9
4860      interception proxy  11
4861      intermediary  9
4862
4863   M
4864      Media Type
4865         application/http  63
4866         message/http  62
4867      message  7
4868      message/http Media Type  62
4869      method  21
4870
4871
4872
4873
4874Fielding & Reschke           Standards Track                   [Page 87]
4875
4876RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4877
4878
4879   N
4880      non-transforming proxy  49
4881
4882   O
4883      origin server  7
4884      origin-form (of request-target)  42
4885      outbound  10
4886
4887   P
4888      phishing  67
4889      proxy  10
4890
4891   R
4892      recipient  7
4893      request  7
4894      request-target  21
4895      resource  16
4896      response  7
4897      reverse proxy  10
4898
4899   S
4900      sender  7
4901      server  7
4902      spider  7
4903
4904   T
4905      target resource  40
4906      target URI  40
4907      TE header field  39
4908      Trailer header field  40
4909      Transfer-Encoding header field  28
4910      transforming proxy  49
4911      transparent proxy  11
4912      tunnel  10
4913
4914   U
4915      Upgrade header field  57
4916      upstream  9
4917      URI scheme
4918         http  17
4919         https  17
4920      user agent  7
4921
4922   V
4923      Via header field  47
4924
4925
4926
4927
4928
4929
4930Fielding & Reschke           Standards Track                   [Page 88]
4931
4932RFC 7230           HTTP/1.1 Message Syntax and Routing         June 2014
4933
4934
4935Authors' Addresses
4936
4937   Roy T. Fielding (editor)
4938   Adobe Systems Incorporated
4939   345 Park Ave
4940   San Jose, CA  95110
4941   USA
4942
4943   EMail: fielding@gbiv.com
4944   URI:   http://roy.gbiv.com/
4945
4946
4947   Julian F. Reschke (editor)
4948   greenbytes GmbH
4949   Hafenweg 16
4950   Muenster, NW  48155
4951   Germany
4952
4953   EMail: julian.reschke@greenbytes.de
4954   URI:   http://greenbytes.de/tech/webdav/
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986Fielding & Reschke           Standards Track                   [Page 89]
4987
Note: See TracBrowser for help on using the repository browser.