source: draft-ietf-httpbis/latest/auth48/rfc7230.abdiff.txt @ 2638

Last change on this file since 2638 was 2638, checked in by julian.reschke@…, 9 years ago

"Author's Addresses Section" (#553)

File size: 100.1 KB
Line 
1
2INTRODUCTION, paragraph 1:
3OLD:
4
5 HTTPbis Working Group                                   R. Fielding, Ed.
6 Internet-Draft                                                     Adobe
7 Obsoletes: 2145, 2616                                    J. Reschke, Ed.
8 (if approved)                                                 greenbytes
9 Updates: 2817, 2818 (if approved)                            May 6, 2014
10 Intended status: Standards Track
11 Expires: November 7, 2014
12
13NEW:
14
15 Internet Engineering Task Force (IETF)                  R. Fielding, Ed.
16 Request for Comments: 7230                                         Adobe
17 Obsoletes: 2145, 2616                                    J. Reschke, Ed.
18 Updates: 2817, 2818                                           greenbytes
19 Category: Standards Track                                       May 2014
20 ISSN: 2070-1721
21
22
23INTRODUCTION, paragraph 2:
24OLD:
25
26    Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing
27                  draft-ietf-httpbis-p1-messaging-latest
28
29NEW:
30
31    Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing
32
33
34INTRODUCTION, paragraph 5:
35OLD:
36
37 Editorial Note (To be removed by RFC Editor)
38 
39    Discussion of this draft takes place on the HTTPBIS working group
40    mailing list (ietf-http-wg@w3.org), which is archived at
41    <http://lists.w3.org/Archives/Public/ietf-http-wg/>.
42 
43    The current issues list is at
44    <http://tools.ietf.org/wg/httpbis/trac/report/3> and related
45    documents (including fancy diffs) can be found at
46    <http://tools.ietf.org/wg/httpbis/>.
47 
48    _This is a temporary document for the purpose of tracking the
49    editorial changes made during the AUTH48 (RFC publication) phase._
50 
51 Status of This Memo
52
53NEW:
54
55 Status of This Memo
56
57
58INTRODUCTION, paragraph 6:
59OLD:
60
61    This Internet-Draft is submitted in full conformance with the
62    provisions of BCP 78 and BCP 79.
63 
64    Internet-Drafts are working documents of the Internet Engineering
65    Task Force (IETF).  Note that other groups may also distribute
66    working documents as Internet-Drafts.  The list of current Internet-
67    Drafts is at http://datatracker.ietf.org/drafts/current/.
68
69NEW:
70
71    This is an Internet Standards Track document.
72
73
74INTRODUCTION, paragraph 7:
75OLD:
76
77    Internet-Drafts are draft documents valid for a maximum of six months
78    and may be updated, replaced, or obsoleted by other documents at any
79    time.  It is inappropriate to use Internet-Drafts as reference
80    material or to cite them other than as "work in progress."
81
82NEW:
83
84    This document is a product of the Internet Engineering Task Force
85    (IETF).  It represents the consensus of the IETF community.  It has
86    received public review and has been approved for publication by the
87    Internet Engineering Steering Group (IESG).  Further information on
88    Internet Standards is available in Section 2 of RFC 5741.
89
90
91INTRODUCTION, paragraph 8:
92OLD:
93
94    This Internet-Draft will expire on November 7, 2014.
95
96NEW:
97
98    Information about the current status of this document, any errata,
99    and how to provide feedback on it may be obtained at
100    http://www.rfc-editor.org/info/rfc7230.
101
102
103Section 11., paragraph 0:
104OLD:
105
106    1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  5
107      1.1.  Requirements Notation  . . . . . . . . . . . . . . . . . .  6
108      1.2.  Syntax Notation  . . . . . . . . . . . . . . . . . . . . .  6
109    2.  Architecture . . . . . . . . . . . . . . . . . . . . . . . . .  6
110      2.1.  Client/Server Messaging  . . . . . . . . . . . . . . . . .  7
111      2.2.  Implementation Diversity . . . . . . . . . . . . . . . . .  8
112      2.3.  Intermediaries . . . . . . . . . . . . . . . . . . . . . .  9
113      2.4.  Caches . . . . . . . . . . . . . . . . . . . . . . . . . . 11
114      2.5.  Conformance and Error Handling . . . . . . . . . . . . . . 12
115      2.6.  Protocol Versioning  . . . . . . . . . . . . . . . . . . . 13
116      2.7.  Uniform Resource Identifiers . . . . . . . . . . . . . . . 16
117        2.7.1.  http URI Scheme  . . . . . . . . . . . . . . . . . . . 16
118        2.7.2.  https URI Scheme . . . . . . . . . . . . . . . . . . . 18
119        2.7.3.  http and https URI Normalization and Comparison  . . . 19
120 
121    3.  Message Format . . . . . . . . . . . . . . . . . . . . . . . . 19
122      3.1.  Start Line . . . . . . . . . . . . . . . . . . . . . . . . 20
123        3.1.1.  Request Line . . . . . . . . . . . . . . . . . . . . . 21
124        3.1.2.  Status Line  . . . . . . . . . . . . . . . . . . . . . 22
125      3.2.  Header Fields  . . . . . . . . . . . . . . . . . . . . . . 22
126        3.2.1.  Field Extensibility  . . . . . . . . . . . . . . . . . 23
127        3.2.2.  Field Order  . . . . . . . . . . . . . . . . . . . . . 23
128        3.2.3.  Whitespace . . . . . . . . . . . . . . . . . . . . . . 24
129        3.2.4.  Field Parsing  . . . . . . . . . . . . . . . . . . . . 25
130        3.2.5.  Field Limits . . . . . . . . . . . . . . . . . . . . . 26
131        3.2.6.  Field Value Components . . . . . . . . . . . . . . . . 26
132      3.3.  Message Body . . . . . . . . . . . . . . . . . . . . . . . 27
133        3.3.1.  Transfer-Encoding  . . . . . . . . . . . . . . . . . . 28
134        3.3.2.  Content-Length . . . . . . . . . . . . . . . . . . . . 30
135        3.3.3.  Message Body Length  . . . . . . . . . . . . . . . . . 31
136      3.4.  Handling Incomplete Messages . . . . . . . . . . . . . . . 33
137      3.5.  Message Parsing Robustness . . . . . . . . . . . . . . . . 34
138    4.  Transfer Codings . . . . . . . . . . . . . . . . . . . . . . . 35
139      4.1.  Chunked Transfer Coding  . . . . . . . . . . . . . . . . . 35
140        4.1.1.  Chunk Extensions . . . . . . . . . . . . . . . . . . . 36
141        4.1.2.  Chunked Trailer Part . . . . . . . . . . . . . . . . . 36
142        4.1.3.  Decoding Chunked . . . . . . . . . . . . . . . . . . . 37
143      4.2.  Compression Codings  . . . . . . . . . . . . . . . . . . . 38
144        4.2.1.  Compress Coding  . . . . . . . . . . . . . . . . . . . 38
145        4.2.2.  Deflate Coding . . . . . . . . . . . . . . . . . . . . 38
146        4.2.3.  Gzip Coding  . . . . . . . . . . . . . . . . . . . . . 38
147      4.3.  TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
148      4.4.  Trailer  . . . . . . . . . . . . . . . . . . . . . . . . . 39
149    5.  Message Routing  . . . . . . . . . . . . . . . . . . . . . . . 40
150      5.1.  Identifying a Target Resource  . . . . . . . . . . . . . . 40
151      5.2.  Connecting Inbound . . . . . . . . . . . . . . . . . . . . 40
152      5.3.  Request Target . . . . . . . . . . . . . . . . . . . . . . 41
153        5.3.1.  origin-form  . . . . . . . . . . . . . . . . . . . . . 41
154        5.3.2.  absolute-form  . . . . . . . . . . . . . . . . . . . . 42
155        5.3.3.  authority-form . . . . . . . . . . . . . . . . . . . . 42
156        5.3.4.  asterisk-form  . . . . . . . . . . . . . . . . . . . . 42
157      5.4.  Host . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
158      5.5.  Effective Request URI  . . . . . . . . . . . . . . . . . . 44
159      5.6.  Associating a Response to a Request  . . . . . . . . . . . 46
160      5.7.  Message Forwarding . . . . . . . . . . . . . . . . . . . . 46
161        5.7.1.  Via  . . . . . . . . . . . . . . . . . . . . . . . . . 47
162        5.7.2.  Transformations  . . . . . . . . . . . . . . . . . . . 48
163    6.  Connection Management  . . . . . . . . . . . . . . . . . . . . 49
164      6.1.  Connection . . . . . . . . . . . . . . . . . . . . . . . . 50
165      6.2.  Establishment  . . . . . . . . . . . . . . . . . . . . . . 51
166      6.3.  Persistence  . . . . . . . . . . . . . . . . . . . . . . . 52
167        6.3.1.  Retrying Requests  . . . . . . . . . . . . . . . . . . 53
168        6.3.2.  Pipelining . . . . . . . . . . . . . . . . . . . . . . 53
169 
170      6.4.  Concurrency  . . . . . . . . . . . . . . . . . . . . . . . 54
171      6.5.  Failures and Time-outs . . . . . . . . . . . . . . . . . . 54
172      6.6.  Tear-down  . . . . . . . . . . . . . . . . . . . . . . . . 55
173      6.7.  Upgrade  . . . . . . . . . . . . . . . . . . . . . . . . . 56
174    7.  ABNF List Extension: #rule . . . . . . . . . . . . . . . . . . 58
175    8.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 60
176      8.1.  Header Field Registration  . . . . . . . . . . . . . . . . 60
177      8.2.  URI Scheme Registration  . . . . . . . . . . . . . . . . . 60
178      8.3.  Internet Media Type Registration . . . . . . . . . . . . . 61
179        8.3.1.  Internet Media Type message/http . . . . . . . . . . . 61
180        8.3.2.  Internet Media Type application/http . . . . . . . . . 62
181      8.4.  Transfer Coding Registry . . . . . . . . . . . . . . . . . 63
182        8.4.1.  Procedure  . . . . . . . . . . . . . . . . . . . . . . 63
183        8.4.2.  Registration . . . . . . . . . . . . . . . . . . . . . 64
184      8.5.  Content Coding Registration  . . . . . . . . . . . . . . . 64
185      8.6.  Upgrade Token Registry . . . . . . . . . . . . . . . . . . 65
186        8.6.1.  Procedure  . . . . . . . . . . . . . . . . . . . . . . 65
187        8.6.2.  Upgrade Token Registration . . . . . . . . . . . . . . 66
188    9.  Security Considerations  . . . . . . . . . . . . . . . . . . . 66
189      9.1.  Establishing Authority . . . . . . . . . . . . . . . . . . 66
190      9.2.  Risks of Intermediaries  . . . . . . . . . . . . . . . . . 67
191      9.3.  Attacks via Protocol Element Length  . . . . . . . . . . . 68
192      9.4.  Response Splitting . . . . . . . . . . . . . . . . . . . . 68
193      9.5.  Request Smuggling  . . . . . . . . . . . . . . . . . . . . 69
194      9.6.  Message Integrity  . . . . . . . . . . . . . . . . . . . . 69
195      9.7.  Message Confidentiality  . . . . . . . . . . . . . . . . . 70
196      9.8.  Privacy of Server Log Information  . . . . . . . . . . . . 70
197    10. Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 71
198    11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 72
199      11.1. Normative References . . . . . . . . . . . . . . . . . . . 72
200      11.2. Informative References . . . . . . . . . . . . . . . . . . 74
201    Appendix A.  HTTP Version History  . . . . . . . . . . . . . . . . 76
202      A.1.  Changes from HTTP/1.0  . . . . . . . . . . . . . . . . . . 77
203        A.1.1.  Multi-homed Web Servers  . . . . . . . . . . . . . . . 77
204        A.1.2.  Keep-Alive Connections . . . . . . . . . . . . . . . . 77
205        A.1.3.  Introduction of Transfer-Encoding  . . . . . . . . . . 78
206      A.2.  Changes from RFC 2616  . . . . . . . . . . . . . . . . . . 78
207    Appendix B.  Collected ABNF  . . . . . . . . . . . . . . . . . . . 80
208    Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
209
210NEW:
211
212    1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  5
213      1.1.  Requirements Notation  . . . . . . . . . . . . . . . . . .  6
214      1.2.  Syntax Notation  . . . . . . . . . . . . . . . . . . . . .  6
215    2.  Architecture . . . . . . . . . . . . . . . . . . . . . . . . .  6
216      2.1.  Client/Server Messaging  . . . . . . . . . . . . . . . . .  7
217      2.2.  Implementation Diversity . . . . . . . . . . . . . . . . .  8
218      2.3.  Intermediaries . . . . . . . . . . . . . . . . . . . . . .  9
219      2.4.  Caches . . . . . . . . . . . . . . . . . . . . . . . . . . 11
220      2.5.  Conformance and Error Handling . . . . . . . . . . . . . . 12
221      2.6.  Protocol Versioning  . . . . . . . . . . . . . . . . . . . 13
222      2.7.  Uniform Resource Identifiers . . . . . . . . . . . . . . . 16
223        2.7.1.  http URI Scheme  . . . . . . . . . . . . . . . . . . . 16
224        2.7.2.  https URI Scheme . . . . . . . . . . . . . . . . . . . 18
225        2.7.3.  http and https URI Normalization and Comparison  . . . 19
226    3.  Message Format . . . . . . . . . . . . . . . . . . . . . . . . 19
227      3.1.  Start Line . . . . . . . . . . . . . . . . . . . . . . . . 20
228        3.1.1.  Request Line . . . . . . . . . . . . . . . . . . . . . 21
229        3.1.2.  Status Line  . . . . . . . . . . . . . . . . . . . . . 22
230      3.2.  Header Fields  . . . . . . . . . . . . . . . . . . . . . . 22
231        3.2.1.  Field Extensibility  . . . . . . . . . . . . . . . . . 23
232        3.2.2.  Field Order  . . . . . . . . . . . . . . . . . . . . . 23
233        3.2.3.  Whitespace . . . . . . . . . . . . . . . . . . . . . . 24
234        3.2.4.  Field Parsing  . . . . . . . . . . . . . . . . . . . . 25
235        3.2.5.  Field Limits . . . . . . . . . . . . . . . . . . . . . 26
236        3.2.6.  Field Value Components . . . . . . . . . . . . . . . . 26
237      3.3.  Message Body . . . . . . . . . . . . . . . . . . . . . . . 27
238        3.3.1.  Transfer-Encoding  . . . . . . . . . . . . . . . . . . 28
239        3.3.2.  Content-Length . . . . . . . . . . . . . . . . . . . . 30
240        3.3.3.  Message Body Length  . . . . . . . . . . . . . . . . . 31
241      3.4.  Handling Incomplete Messages . . . . . . . . . . . . . . . 33
242      3.5.  Message Parsing Robustness . . . . . . . . . . . . . . . . 34
243    4.  Transfer Codings . . . . . . . . . . . . . . . . . . . . . . . 35
244      4.1.  Chunked Transfer Coding  . . . . . . . . . . . . . . . . . 35
245        4.1.1.  Chunk Extensions . . . . . . . . . . . . . . . . . . . 36
246        4.1.2.  Chunked Trailer Part . . . . . . . . . . . . . . . . . 36
247        4.1.3.  Decoding Chunked . . . . . . . . . . . . . . . . . . . 37
248      4.2.  Compression Codings  . . . . . . . . . . . . . . . . . . . 38
249        4.2.1.  Compress Coding  . . . . . . . . . . . . . . . . . . . 38
250        4.2.2.  Deflate Coding . . . . . . . . . . . . . . . . . . . . 38
251        4.2.3.  Gzip Coding  . . . . . . . . . . . . . . . . . . . . . 38
252      4.3.  TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
253      4.4.  Trailer  . . . . . . . . . . . . . . . . . . . . . . . . . 39
254    5.  Message Routing  . . . . . . . . . . . . . . . . . . . . . . . 40
255      5.1.  Identifying a Target Resource  . . . . . . . . . . . . . . 40
256      5.2.  Connecting Inbound . . . . . . . . . . . . . . . . . . . . 40
257      5.3.  Request Target . . . . . . . . . . . . . . . . . . . . . . 41
258        5.3.1.  origin-form  . . . . . . . . . . . . . . . . . . . . . 41
259        5.3.2.  absolute-form  . . . . . . . . . . . . . . . . . . . . 42
260        5.3.3.  authority-form . . . . . . . . . . . . . . . . . . . . 42
261        5.3.4.  asterisk-form  . . . . . . . . . . . . . . . . . . . . 42
262      5.4.  Host . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
263      5.5.  Effective Request URI  . . . . . . . . . . . . . . . . . . 44
264      5.6.  Associating a Response to a Request  . . . . . . . . . . . 46
265      5.7.  Message Forwarding . . . . . . . . . . . . . . . . . . . . 46
266        5.7.1.  Via  . . . . . . . . . . . . . . . . . . . . . . . . . 47
267        5.7.2.  Transformations  . . . . . . . . . . . . . . . . . . . 48
268    6.  Connection Management  . . . . . . . . . . . . . . . . . . . . 49
269      6.1.  Connection . . . . . . . . . . . . . . . . . . . . . . . . 50
270      6.2.  Establishment  . . . . . . . . . . . . . . . . . . . . . . 51
271      6.3.  Persistence  . . . . . . . . . . . . . . . . . . . . . . . 52
272        6.3.1.  Retrying Requests  . . . . . . . . . . . . . . . . . . 53
273        6.3.2.  Pipelining . . . . . . . . . . . . . . . . . . . . . . 53
274      6.4.  Concurrency  . . . . . . . . . . . . . . . . . . . . . . . 54
275      6.5.  Failures and Timeouts  . . . . . . . . . . . . . . . . . . 54
276      6.6.  Teardown . . . . . . . . . . . . . . . . . . . . . . . . . 55
277      6.7.  Upgrade  . . . . . . . . . . . . . . . . . . . . . . . . . 56
278    7.  ABNF List Extension: #rule . . . . . . . . . . . . . . . . . . 58
279    8.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 60
280      8.1.  Header Field Registration  . . . . . . . . . . . . . . . . 60
281      8.2.  URI Scheme Registration  . . . . . . . . . . . . . . . . . 60
282      8.3.  Internet Media Type Registration . . . . . . . . . . . . . 61
283        8.3.1.  Internet Media Type message/http . . . . . . . . . . . 61
284        8.3.2.  Internet Media Type application/http . . . . . . . . . 62
285      8.4.  Transfer Coding Registry . . . . . . . . . . . . . . . . . 63
286        8.4.1.  Procedure  . . . . . . . . . . . . . . . . . . . . . . 63
287        8.4.2.  Registration . . . . . . . . . . . . . . . . . . . . . 64
288      8.5.  Content Coding Registration  . . . . . . . . . . . . . . . 64
289      8.6.  Upgrade Token Registry . . . . . . . . . . . . . . . . . . 65
290        8.6.1.  Procedure  . . . . . . . . . . . . . . . . . . . . . . 65
291        8.6.2.  Upgrade Token Registration . . . . . . . . . . . . . . 66
292    9.  Security Considerations  . . . . . . . . . . . . . . . . . . . 66
293      9.1.  Establishing Authority . . . . . . . . . . . . . . . . . . 66
294      9.2.  Risks of Intermediaries  . . . . . . . . . . . . . . . . . 67
295      9.3.  Attacks via Protocol Element Length  . . . . . . . . . . . 68
296      9.4.  Response Splitting . . . . . . . . . . . . . . . . . . . . 68
297      9.5.  Request Smuggling  . . . . . . . . . . . . . . . . . . . . 69
298      9.6.  Message Integrity  . . . . . . . . . . . . . . . . . . . . 69
299      9.7.  Message Confidentiality  . . . . . . . . . . . . . . . . . 70
300      9.8.  Privacy of Server Log Information  . . . . . . . . . . . . 70
301    10. Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 71
302    11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 72
303      11.1. Normative References . . . . . . . . . . . . . . . . . . . 72
304      11.2. Informative References . . . . . . . . . . . . . . . . . . 74
305    Appendix A.  HTTP Version History  . . . . . . . . . . . . . . . . 76
306      A.1.  Changes from HTTP/1.0  . . . . . . . . . . . . . . . . . . 76
307        A.1.1.  Multihomed Web Servers . . . . . . . . . . . . . . . . 77
308        A.1.2.  Keep-Alive Connections . . . . . . . . . . . . . . . . 77
309        A.1.3.  Introduction of Transfer-Encoding  . . . . . . . . . . 78
310      A.2.  Changes from RFC 2616  . . . . . . . . . . . . . . . . . . 78
311    Appendix B.  Collected ABNF  . . . . . . . . . . . . . . . . . . . 80
312    Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
313
314
315Section 1., paragraph 8:
316OLD:
317
318    This HTTP/1.1 specification obsoletes RFC 2616 and RFC 2145 (on HTTP
319    versioning).  This specification also updates the use of CONNECT to
320    establish a tunnel, previously defined in RFC 2817, and defines the
321    "https" URI scheme that was described informally in RFC 2818.
322
323NEW:
324
325    This HTTP/1.1 specification obsoletes [RFC2616] and [RFC2145] (on
326    HTTP versioning).  This specification also updates the use of
327    CONNECT, previously defined in RFC 2817, to establish a tunnel, and
328    defines the "https" URI scheme that was described informally in RFC
329    2818.
330
331
332Section 2.1., paragraph 1:
333OLD:
334
335    HTTP is a stateless request/response protocol that operates by
336    exchanging messages (Section 3) across a reliable transport or
337    session-layer "connection" (Section 6).  An HTTP "client" is a
338    program that establishes a connection to a server for the purpose of
339    sending one or more HTTP requests.  An HTTP "server" is a program
340    that accepts connections in order to service HTTP requests by sending
341    HTTP responses.
342
343NEW:
344
345    HTTP is a stateless request/response protocol that operates by
346    exchanging messages (Section 3) across a reliable transport- or
347    session-layer "connection" (Section 6).  An HTTP "client" is a
348    program that establishes a connection to a server for the purpose of
349    sending one or more HTTP requests.  An HTTP "server" is a program
350    that accepts connections in order to service HTTP requests by sending
351    HTTP responses.
352
353
354Section 2.1., paragraph 2:
355OLD:
356
357    The terms client and server refer only to the roles that these
358    programs perform for a particular connection.  The same program might
359    act as a client on some connections and a server on others.  The term
360    "user agent" refers to any of the various client programs that
361    initiate a request, including (but not limited to) browsers, spiders
362    (web-based robots), command-line tools, custom applications, and
363    mobile apps.  The term "origin server" refers to the program that can
364    originate authoritative responses for a given target resource.  The
365    terms "sender" and "recipient" refer to any implementation that sends
366    or receives a given message, respectively.
367
368NEW:
369
370    The terms "client" and "server" refer only to the roles that these
371    programs perform for a particular connection.  The same program might
372    act as a client on some connections and a server on others.  The term
373    "user agent" refers to any of the various client programs that
374    initiate a request, including (but not limited to) browsers, spiders
375    (web-based robots), command-line tools, custom applications, and
376    mobile apps.  The term "origin server" refers to the program that can
377    originate authoritative responses for a given target resource.  The
378    terms "sender" and "recipient" refer to any implementation that sends
379    or receives a given message, respectively.
380
381
382Section 2.2., paragraph 1:
383OLD:
384
385    When considering the design of HTTP, it is easy to fall into a trap
386    of thinking that all user agents are general-purpose browsers and all
387    origin servers are large public websites.  That is not the case in
388    practice.  Common HTTP user agents include household appliances,
389    stereos, scales, firmware update scripts, command-line programs,
390    mobile apps, and communication devices in a multitude of shapes and
391    sizes.  Likewise, common HTTP origin servers include home automation
392    units, configurable networking components, office machines,
393    autonomous robots, news feeds, traffic cameras, ad selectors, and
394    video delivery platforms.
395
396NEW:
397
398    When considering the design of HTTP, it is easy to fall into a trap
399    of thinking that all user agents are general-purpose browsers and all
400    origin servers are large public websites.  That is not the case in
401    practice.  Common HTTP user agents include household appliances,
402    stereos, scales, firmware update scripts, command-line programs,
403    mobile apps, and communication devices in a multitude of shapes and
404    sizes.  Likewise, common HTTP origin servers include home automation
405    units, configurable networking components, office machines,
406    autonomous robots, news feeds, traffic cameras, ad selectors, and
407    video-delivery platforms.
408
409
410Section 2.3., paragraph 3:
411OLD:
412
413    The figure above shows three intermediaries (A, B, and C) between the
414    user agent and origin server.  A request or response message that
415    travels the whole chain will pass through four separate connections.
416    Some HTTP communication options might apply only to the connection
417    with the nearest, non-tunnel neighbor, only to the end-points of the
418    chain, or to all connections along the chain.  Although the diagram
419    is linear, each participant might be engaged in multiple,
420    simultaneous communications.  For example, B might be receiving
421    requests from many clients other than A, and/or forwarding requests
422    to servers other than C, at the same time that it is handling A's
423    request.  Likewise, later requests might be sent through a different
424    path of connections, often based on dynamic configuration for load
425    balancing.
426
427NEW:
428
429    The figure above shows three intermediaries (A, B, and C) between the
430    user agent and origin server.  A request or response message that
431    travels the whole chain will pass through four separate connections.
432    Some HTTP communication options might apply only to the connection
433    with the nearest, non-tunnel neighbor, only to the endpoints of the
434    chain, or to all connections along the chain.  Although the diagram
435    is linear, each participant might be engaged in multiple,
436    simultaneous communications.  For example, B might be receiving
437    requests from many clients other than A, and/or forwarding requests
438    to servers other than C, at the same time that it is handling A's
439    request.  Likewise, later requests might be sent through a different
440    path of connections, often based on dynamic configuration for load
441    balancing.
442
443
444Section 2.3., paragraph 4:
445OLD:
446
447    The terms "upstream" and "downstream" are used to describe
448    directional requirements in relation to the message flow: all
449    messages flow from upstream to downstream.  The terms inbound and
450    outbound are used to describe directional requirements in relation to
451    the request route: "inbound" means toward the origin server and
452    "outbound" means toward the user agent.
453
454NEW:
455
456    The terms "upstream" and "downstream" are used to describe
457    directional requirements in relation to the message flow: all
458    messages flow from upstream to downstream.  The terms "inbound" and
459    "outbound" are used to describe directional requirements in relation
460    to the request route: "inbound" means toward the origin server and
461    "outbound" means toward the user agent.
462
463
464Section 2.3., paragraph 5:
465OLD:
466
467    A "proxy" is a message forwarding agent that is selected by the
468    client, usually via local configuration rules, to receive requests
469    for some type(s) of absolute URI and attempt to satisfy those
470    requests via translation through the HTTP interface.  Some
471    translations are minimal, such as for proxy requests for "http" URIs,
472    whereas other requests might require translation to and from entirely
473    different application-level protocols.  Proxies are often used to
474    group an organization's HTTP requests through a common intermediary
475    for the sake of security, annotation services, or shared caching.
476    Some proxies are designed to apply transformations to selected
477    messages or payloads while they are being forwarded, as described in
478    Section 5.7.2.
479
480NEW:
481
482    A "proxy" is a message-forwarding agent that is selected by the
483    client, usually via local configuration rules, to receive requests
484    for some type(s) of absolute URI and attempt to satisfy those
485    requests via translation through the HTTP interface.  Some
486    translations are minimal, such as for proxy requests for "http" URIs,
487    whereas other requests might require translation to and from entirely
488    different application-level protocols.  Proxies are often used to
489    group an organization's HTTP requests through a common intermediary
490    for the sake of security, annotation services, or shared caching.
491    Some proxies are designed to apply transformations to selected
492    messages or payloads while they are being forwarded, as described in
493    Section 5.7.2.
494
495
496Section 2.3., paragraph 7:
497OLD:
498
499    All HTTP requirements applicable to an origin server also apply to
500    the outbound communication of a gateway.  A gateway communicates with
501    inbound servers using any protocol that it desires, including private
502    extensions to HTTP that are outside the scope of this specification.
503    However, an HTTP-to-HTTP gateway that wishes to interoperate with
504    third-party HTTP servers ought to conform to user agent requirements
505    on the gateway's inbound connection.
506
507NEW:
508
509    All HTTP requirements applicable to an origin server also apply to
510    the outbound communication of a gateway.  A gateway communicates with
511    inbound servers using any protocol that it desires, including private
512    extensions to HTTP that are outside the scope of this specification.
513    However, an HTTP-to-HTTP gateway that wishes to interoperate with
514    third-party HTTP servers ought to conform to user-agent requirements
515    on the gateway's inbound connection.
516
517
518Section 2.3., paragraph 11:
519OLD:
520
521    HTTP is defined as a stateless protocol, meaning that each request
522    message can be understood in isolation.  Many implementations depend
523    on HTTP's stateless design in order to reuse proxied connections or
524    dynamically load-balance requests across multiple servers.  Hence, a
525    server MUST NOT assume that two requests on the same connection are
526    from the same user agent unless the connection is secured and
527    specific to that agent.  Some non-standard HTTP extensions (e.g.,
528    [RFC4559]) have been known to violate this requirement, resulting in
529    security and interoperability problems.
530
531NEW:
532
533    HTTP is defined as a stateless protocol, meaning that each request
534    message can be understood in isolation.  Many implementations depend
535    on HTTP's stateless design in order to reuse proxied connections or
536    dynamically load balance requests across multiple servers.  Hence, a
537    server MUST NOT assume that two requests on the same connection are
538    from the same user agent unless the connection is secured and
539    specific to that agent.  Some non-standard HTTP extensions (e.g.,
540    [RFC4559]) have been known to violate this requirement, resulting in
541    security and interoperability problems.
542
543
544Section 2.4., paragraph 5:
545OLD:
546
547    There are a wide variety of architectures and configurations of
548    caches deployed across the World Wide Web and inside large
549    organizations.  These include national hierarchies of proxy caches to
550    save transoceanic bandwidth, collaborative systems that broadcast or
551    multicast cache entries, archives of pre-fetched cache entries for
552    use in off-line or high-latency environments, and so on.
553
554NEW:
555
556    There is a wide variety of architectures and configurations of caches
557    deployed across the World Wide Web and inside large organizations.
558    These include national hierarchies of proxy caches to save
559    transoceanic bandwidth, collaborative systems that broadcast or
560    multicast cache entries, archives of pre-fetched cache entries for
561    use in off-line or high-latency environments, and so on.
562
563
564Section 2.5., paragraph 5:
565OLD:
566
567    When a received protocol element is parsed, the recipient MUST be
568    able to parse any value of reasonable length that is applicable to
569    the recipient's role and matches the grammar defined by the
570    corresponding ABNF rules.  Note, however, that some received protocol
571    elements might not be parsed.  For example, an intermediary
572    forwarding a message might parse a header-field into generic field-
573    name and field-value components, but then forward the header field
574    without further parsing inside the field-value.
575
576NEW:
577
578    When a received protocol element is parsed, the recipient MUST be
579    able to parse any value of reasonable length that is applicable to
580    the recipient's role and that matches the grammar defined by the
581    corresponding ABNF rules.  Note, however, that some received protocol
582    elements might not be parsed.  For example, an intermediary
583    forwarding a message might parse a header-field into generic field-
584    name and field-value components, but then forward the header field
585    without further parsing inside the field-value.
586
587
588Section 2.6., paragraph 2:
589OLD:
590
591    The version of an HTTP message is indicated by an HTTP-version field
592    in the first line of the message.  HTTP-version is case-sensitive.
593
594NEW:
595
596    The version of an HTTP message is indicated by an HTTP-version field
597    in the first line of the message.  HTTP-version is case sensitive.
598
599
600Section 2.6., paragraph 3:
601OLD:
602
603      HTTP-version  = HTTP-name "/" DIGIT "." DIGIT
604      HTTP-name     = %x48.54.54.50 ; "HTTP", case-sensitive
605
606NEW:
607
608      HTTP-version  = HTTP-name "/" DIGIT "." DIGIT
609      HTTP-name     = %x48.54.54.50 ; "HTTP", case sensitive
610
611
612Section 2.6., paragraph 7:
613OLD:
614
615    New header fields can be introduced without changing the protocol
616    version if their defined semantics allow them to be safely ignored by
617    recipients that do not recognize them.  Header field extensibility is
618    discussed in Section 3.2.1.
619
620NEW:
621
622    New header fields can be introduced without changing the protocol
623    version if their defined semantics allow them to be safely ignored by
624    recipients that do not recognize them.  Header-field extensibility is
625    discussed in Section 3.2.1.
626
627
628Section 2.6., paragraph 14:
629OLD:
630
631    When an HTTP message is received with a major version number that the
632    recipient implements, but a higher minor version number than what the
633    recipient implements, the recipient SHOULD process the message as if
634    it were in the highest minor version within that major version to
635    which the recipient is conformant.  A recipient can assume that a
636    message with a higher minor version, when sent to a recipient that
637    has not yet indicated support for that higher version, is
638    sufficiently backwards-compatible to be safely processed by any
639    implementation of the same major version.
640
641NEW:
642
643    When an HTTP message is received with a major version number that the
644    recipient implements, but a higher minor version number than what the
645    recipient implements, the recipient SHOULD process the message as if
646    it were in the highest minor version within that major version to
647    which the recipient is conformant.  A recipient can assume that a
648    message with a higher minor version, when sent to a recipient that
649    has not yet indicated support for that higher version, is
650    sufficiently backwards compatible to be safely processed by any
651    implementation of the same major version.
652
653
654Section 2.7., paragraph 2:
655OLD:
656
657    The definitions of "URI-reference", "absolute-URI", "relative-part",
658    "scheme", "authority", "port", "host", "path-abempty", "segment",
659    "query", and "fragment" are adopted from the URI generic syntax.  An
660    "absolute-path" rule is defined for protocol elements that can
661    contain a non-empty path component.  (This rule differs slightly from
662    RFC 3986's path-abempty rule, which allows for an empty path to be
663    used in references, and path-absolute rule, which does not allow
664    paths that begin with "//".)  A "partial-URI" rule is defined for
665    protocol elements that can contain a relative URI but not a fragment
666    component.
667
668NEW:
669
670    The definitions of "URI-reference", "absolute-URI", "relative-part",
671    "scheme", "authority", "port", "host", "path-abempty", "segment",
672    "query", and "fragment" are adopted from the URI generic syntax.  An
673    "absolute-path" rule is defined for protocol elements that can
674    contain a non-empty path component.  (This rule differs slightly from
675    the path-abempty rule of RFC 3986, which allows for an empty path to
676    be used in references, and path-absolute rule, which does not allow
677    paths that begin with "//".)  A "partial-URI" rule is defined for
678    protocol elements that can contain a relative URI but not a fragment
679    component.
680
681
682Section 2.7.1., paragraph 1:
683OLD:
684
685    The "http" URI scheme is hereby defined for the purpose of minting
686    identifiers according to their association with the hierarchical
687    namespace governed by a potential HTTP origin server listening for
688    TCP ([RFC0793]) connections on a given port.
689
690NEW:
691
692    The "http" URI scheme is hereby defined for the purpose of minting
693    identifiers according to their association with the hierarchical
694    namespace governed by a potential HTTP origin server listening for
695    TCP ([RFC793]) connections on a given port.
696
697
698Section 2.1, paragraph 0:
699OLD:
700
701    If the port is equal to the default port for a scheme, the normal
702    form is to omit the port subcomponent.  When not being used in
703    absolute form as the request target of an OPTIONS request, an empty
704    path component is equivalent to an absolute path of "/", so the
705    normal form is to provide a path of "/" instead.  The scheme and host
706    are case-insensitive and normally provided in lowercase; all other
707    components are compared in a case-sensitive manner.  Characters other
708    than those in the "reserved" set are equivalent to their percent-
709    encoded octets: the normal form is to not encode them (see Sections
710    2.1 and 2.2 of [RFC3986]).
711
712NEW:
713
714    If the port is equal to the default port for a scheme, the normal
715    form is to omit the port subcomponent.  When not being used in
716    absolute form as the request target of an OPTIONS request, an empty
717    path component is equivalent to an absolute path of "/", so the
718    normal form is to provide a path of "/" instead.  The scheme and host
719    are case insensitive and normally provided in lowercase; all other
720    components are compared in a case-sensitive manner.  Characters other
721    than those in the "reserved" set are equivalent to their percent-
722    encoded octets: the normal form is to not encode them (see Sections
723    2.1 and 2.2 of [RFC3986]).
724
725
726Section 3.1., paragraph 1:
727OLD:
728
729    An HTTP message can either be a request from client to server or a
730    response from server to client.  Syntactically, the two types of
731    message differ only in the start-line, which is either a request-line
732    (for requests) or a status-line (for responses), and in the algorithm
733    for determining the length of the message body (Section 3.3).
734
735NEW:
736
737    An HTTP message can be either a request from client to server or a
738    response from server to client.  Syntactically, the two types of
739    message differ only in the start-line, which is either a request-line
740    (for requests) or a status-line (for responses), and in the algorithm
741    for determining the length of the message body (Section 3.3).
742
743
744Section 3.1., paragraph 2:
745OLD:
746
747    In theory, a client could receive requests and a server could receive
748    responses, distinguishing them by their different start-line formats,
749    but, in practice, servers are implemented to only expect a request (a
750    response is interpreted as an unknown or invalid request method) and
751    clients are implemented to only expect a response.
752
753NEW:
754
755    In theory, a client could receive requests and a server could receive
756    responses, distinguishing them by their different start-line formats,
757    but, in practice, servers are implemented only to expect a request (a
758    response is interpreted as an unknown or invalid request method) and
759    clients are implemented to only expect a response.
760
761
762Section 3.1.1., paragraph 1:
763OLD:
764
765    A request-line begins with a method token, followed by a single space
766    (SP), the request-target, another single space (SP), the protocol
767    version, and ending with CRLF.
768
769NEW:
770
771    A request-line begins with a method token and is followed by a single
772    space (SP), the request-target, another single space (SP), the
773    protocol version, and ends with CRLF.
774
775
776Section 3.1.1., paragraph 3:
777OLD:
778
779    The method token indicates the request method to be performed on the
780    target resource.  The request method is case-sensitive.
781
782NEW:
783
784    The method token indicates the request method to be performed on the
785    target resource.  The request method is case sensitive.
786
787
788Section 400, paragraph 1:
789OLD:
790
791    HTTP does not place a pre-defined limit on the length of a request-
792    line, as described in Section 2.5.  A server that receives a method
793    longer than any that it implements SHOULD respond with a 501 (Not
794    Implemented) status code.  A server that receives a request-target
795    longer than any URI it wishes to parse MUST respond with a 414 (URI
796    Too Long) status code (see Section 6.5.12 of [RFC7231]).
797
798NEW:
799
800    HTTP does not place a predefined limit on the length of a request-
801    line, as described in Section 2.5.  A server that receives a method
802    longer than any that it implements SHOULD respond with a 501 (Not
803    Implemented) status code.  A server that receives a request-target
804    longer than any URI it wishes to parse MUST respond with a 414 (URI
805    Too Long) status code (see Section 6.5.12 of [RFC7231]).
806
807
808Section 400, paragraph 2:
809OLD:
810
811    Various ad-hoc limitations on request-line length are found in
812    practice.  It is RECOMMENDED that all HTTP senders and recipients
813    support, at a minimum, request-line lengths of 8000 octets.
814
815NEW:
816
817    Various ad hoc limitations on request-line length are found in
818    practice.  It is RECOMMENDED that all HTTP senders and recipients
819    support, at a minimum, request-line lengths of 8000 octets.
820
821
822Section 3.1.2., paragraph 1:
823OLD:
824
825    The first line of a response message is the status-line, consisting
826    of the protocol version, a space (SP), the status code, another
827    space, a possibly-empty textual phrase describing the status code,
828    and ending with CRLF.
829
830NEW:
831
832    The first line of a response message is the status-line, consisting
833    of the protocol version, a space (SP), the status code, another space
834    (SP), a possibly empty textual phrase describing the status code,
835    and, finally, CRLF.
836
837
838Section 3.2.1., paragraph 4:
839OLD:
840
841    All defined header fields ought to be registered with IANA in the
842    Message Header Field Registry, as described in Section 8.3 of
843    [RFC7231].
844
845NEW:
846
847    All defined header fields ought to be registered with IANA in the
848    "Message Headers" field registry, as described in Section 8.3 of
849    [RFC7231].
850
851
852Section 3.2.2., paragraph 4:
853OLD:
854
855       Note: In practice, the "Set-Cookie" header field ([RFC6265]) often
856       appears multiple times in a response message and does not use the
857       list syntax, violating the above requirements on multiple header
858       fields with the same name.  Since it cannot be combined into a
859       single field-value, recipients ought to handle "Set-Cookie" as a
860       special case while processing header fields.  (See Appendix A.2.3
861       of [Kri2001] for details.)
862
863NEW:
864
865       Note: In practice, the "Set-Cookie" header field ([RFC6265]) often
866       appears multiple times in a response message and does not use the
867       list syntax, violating the above requirements on multiple header
868       fields with the same name.  Since it cannot be combined into a
869       single field-value, recipients ought to handle Set-Cookie as a
870       special case while processing header fields.  (See Appendix A.2.3
871       of [Kri2001] for details.)
872
873
874Section 3.2.3., paragraph 2:
875OLD:
876
877    The OWS rule is used where zero or more linear whitespace octets
878    might appear.  For protocol elements where optional whitespace is
879    preferred to improve readability, a sender SHOULD generate the
880    optional whitespace as a single SP; otherwise, a sender SHOULD NOT
881    generate optional whitespace except as needed to white-out invalid or
882    unwanted protocol elements during in-place message filtering.
883
884NEW:
885
886    The OWS rule is used where zero or more linear whitespace octets
887    might appear.  For protocol elements where optional whitespace is
888    preferred to improve readability, a sender SHOULD generate the
889    optional whitespace as a single SP; otherwise, a sender SHOULD NOT
890    generate optional whitespace except as needed to white out invalid or
891    unwanted protocol elements during in-place message filtering.
892
893
894Section 3.2.4., paragraph 1:
895OLD:
896
897    Messages are parsed using a generic algorithm, independent of the
898    individual header field names.  The contents within a given field
899    value are not parsed until a later stage of message interpretation
900    (usually after the message's entire header section has been
901    processed).  Consequently, this specification does not use ABNF rules
902    to define each "Field-Name: Field Value" pair, as was done in
903    previous editions.  Instead, this specification uses ABNF rules which
904    are named according to each registered field name, wherein the rule
905    defines the valid grammar for that field's corresponding field values
906    (i.e., after the field-value has been extracted from the header
907    section by a generic field parser).
908
909NEW:
910
911    Messages are parsed using a generic algorithm, independent of the
912    individual header field names.  The contents within a given field
913    value are not parsed until a later stage of message interpretation
914    (usually after the message's entire header section has been
915    processed).  Consequently, this specification does not use ABNF rules
916    to define each "field-name: field-value" pair, as was done in
917    previous editions.  Instead, this specification uses ABNF rules that
918    are named according to each registered field name, wherein the rule
919    defines the valid grammar for that field's corresponding field values
920    (i.e., after the field-value has been extracted from the header
921    section by a generic field parser).
922
923
924Section 3.2.4., paragraph 8:
925OLD:
926
927    Historically, HTTP has allowed field content with text in the ISO-
928    8859-1 [ISO-8859-1] charset, supporting other charsets only through
929    use of [RFC2047] encoding.  In practice, most HTTP header field
930    values use only a subset of the US-ASCII charset [USASCII].  Newly
931    defined header fields SHOULD limit their field values to US-ASCII
932    octets.  A recipient SHOULD treat other octets in field content (obs-
933    text) as opaque data.
934
935NEW:
936
937    Historically, HTTP has allowed field content with text in the
938    ISO-8859-1 [ISO-8859-1] charset, supporting other charsets only
939    through use of [RFC2047] encoding.  In practice, most HTTP header
940    field values use only a subset of the US-ASCII charset [USASCII].
941    Newly defined header fields SHOULD limit their field values to
942    US-ASCII octets.  A recipient SHOULD treat other octets in field
943    content (obs-text) as opaque data.
944
945
946Section 3.2.5., paragraph 1:
947OLD:
948
949    HTTP does not place a pre-defined limit on the length of each header
950    field or on the length of the header section as a whole, as described
951    in Section 2.5.  Various ad-hoc limitations on individual header
952    field length are found in practice, often depending on the specific
953    field semantics.
954
955NEW:
956
957    HTTP does not place a predefined limit on the length of each header
958    field or on the length of the header section as a whole, as described
959    in Section 2.5.  Various ad hoc limitations on individual header
960    field length are found in practice, often depending on the specific
961    field semantics.
962
963
964Section 7., paragraph 1:
965OLD:
966
967    Since there is no way to distinguish a successfully completed, close-
968    delimited message from a partially-received message interrupted by
969    network failure, a server SHOULD generate encoding or length-
970    delimited messages whenever possible.  The close-delimiting feature
971    exists primarily for backwards compatibility with HTTP/1.0.
972
973NEW:
974
975    Since there is no way to distinguish a successfully completed, close-
976    delimited message from a partially received message interrupted by
977    network failure, a server SHOULD generate encoding or length-
978    delimited messages whenever possible.  The close-delimiting feature
979    exists primarily for backwards compatibility with HTTP/1.0.
980
981
982Section 3.4., paragraph 1:
983OLD:
984
985    A server that receives an incomplete request message, usually due to
986    a canceled request or a triggered time-out exception, MAY send an
987    error response prior to closing the connection.
988
989NEW:
990
991    A server that receives an incomplete request message, usually due to
992    a canceled request or a triggered timeout exception, MAY send an
993    error response prior to closing the connection.
994
995
996Section 4., paragraph 5:
997OLD:
998
999    All transfer-coding names are case-insensitive and ought to be
1000    registered within the HTTP Transfer Coding registry, as defined in
1001    Section 8.4.  They are used in the TE (Section 4.3) and Transfer-
1002    Encoding (Section 3.3.1) header fields.
1003
1004NEW:
1005
1006    All transfer-coding names are case insensitive and ought to be
1007    registered within the "HTTP Transfer Coding" registry, as defined in
1008    Section 8.4.  They are used in the TE (Section 4.3) and Transfer-
1009    Encoding (Section 3.3.1) header fields.
1010
1011
1012Section 4.2.3., paragraph 1:
1013OLD:
1014
1015    The "gzip" coding is an LZ77 coding with a 32 bit CRC that is
1016    commonly produced by the gzip file compression program [RFC1952].  A
1017    recipient SHOULD consider "x-gzip" to be equivalent to "gzip".
1018
1019NEW:
1020
1021    The "gzip" coding is an LZ77 coding with a 32-bit Cyclic Redundancy
1022    Check (CRC) that is commonly produced by the gzip file compression
1023    program [RFC1952].  A recipient SHOULD consider "x-gzip" to be
1024    equivalent to "gzip".
1025
1026
1027Section 5.7.2., paragraph 6:
1028OLD:
1029
1030    A proxy MUST NOT transform the payload (Section 3.3 of [RFC7231]) of
1031    a message that contains a no-transform cache-control directive
1032    (Section 5.2 of [RFC7234]).
1033
1034NEW:
1035
1036    A proxy MUST NOT transform the payload (Section 3.3 of [RFC7231]) of
1037    a message that contains a no-transform Cache-Control directive
1038    (Section 5.2 of [RFC7234]).
1039
1040
1041Section 200, paragraph 0:
1042OLD:
1043
1044    A proxy MAY transform the payload of a message that does not contain
1045    a no-transform cache-control directive.  A proxy that transforms a
1046    payload MUST add a Warning header field with the warn-code of 214
1047    ("Transformation Applied") if one is not already in the message (see
1048    Section 5.5 of [RFC7234]).  A proxy that transforms the payload of a
1049    200 (OK) response can further inform downstream recipients that a
1050    transformation has been applied by changing the response status code
1051    to 203 (Non-Authoritative Information) (Section 6.3.4 of [RFC7231]).
1052
1053NEW:
1054
1055    A proxy MAY transform the payload of a message that does not contain
1056    a no-transform Cache-Control directive.  A proxy that transforms a
1057    payload MUST add a Warning header field with the warn-code of 214
1058    ("Transformation Applied") if one is not already in the message (see
1059    Section 5.5 of [RFC7234]).  A proxy that transforms the payload of a
1060    200 (OK) response can further inform downstream recipients that a
1061    transformation has been applied by changing the response status code
1062    to 203 (Non-Authoritative Information) (Section 6.3.4 of [RFC7231]).
1063
1064
1065Section 6., paragraph 1:
1066OLD:
1067
1068    HTTP messaging is independent of the underlying transport or session-
1069    layer connection protocol(s).  HTTP only presumes a reliable
1070    transport with in-order delivery of requests and the corresponding
1071    in-order delivery of responses.  The mapping of HTTP request and
1072    response structures onto the data units of an underlying transport
1073    protocol is outside the scope of this specification.
1074
1075NEW:
1076
1077    HTTP messaging is independent of the underlying transport- or
1078    session-layer connection protocol(s).  HTTP only presumes a reliable
1079    transport with in-order delivery of requests and the corresponding
1080    in-order delivery of responses.  The mapping of HTTP request and
1081    response structures onto the data units of an underlying transport
1082    protocol is outside the scope of this specification.
1083
1084
1085Section 6., paragraph 3:
1086OLD:
1087
1088    HTTP implementations are expected to engage in connection management,
1089    which includes maintaining the state of current connections,
1090    establishing a new connection or reusing an existing connection,
1091    processing messages received on a connection, detecting connection
1092    failures, and closing each connection.  Most clients maintain
1093    multiple connections in parallel, including more than one connection
1094    per server endpoint.  Most servers are designed to maintain thousands
1095    of concurrent connections, while controlling request queues to enable
1096    fair use and detect denial of service attacks.
1097
1098NEW:
1099
1100    HTTP implementations are expected to engage in connection management,
1101    which includes maintaining the state of current connections,
1102    establishing a new connection or reusing an existing connection,
1103    processing messages received on a connection, detecting connection
1104    failures, and closing each connection.  Most clients maintain
1105    multiple connections in parallel, including more than one connection
1106    per server endpoint.  Most servers are designed to maintain thousands
1107    of concurrent connections, while controlling request queues to enable
1108    fair use and detect denial-of-service attacks.
1109
1110
1111Section 6.1., paragraph 6:
1112OLD:
1113
1114    Connection options are case-insensitive.
1115
1116NEW:
1117
1118    Connection options are case insensitive.
1119
1120
1121Section 6.2., paragraph 1:
1122OLD:
1123
1124    It is beyond the scope of this specification to describe how
1125    connections are established via various transport or session-layer
1126    protocols.  Each connection applies to only one transport link.
1127
1128NEW:
1129
1130    It is beyond the scope of this specification to describe how
1131    connections are established via various transport- or session-layer
1132    protocols.  Each connection applies to only one transport link.
1133
1134
1135Section 6.3., paragraph 1:
1136OLD:
1137
1138    HTTP/1.1 defaults to the use of "persistent connections", allowing
1139    multiple requests and responses to be carried over a single
1140    connection.  The "close" connection-option is used to signal that a
1141    connection will not persist after the current request/response.  HTTP
1142    implementations SHOULD support persistent connections.
1143
1144NEW:
1145
1146    HTTP/1.1 defaults to the use of "persistent connections", allowing
1147    multiple requests and responses to be carried over a single
1148    connection.  The "close" connection option is used to signal that a
1149    connection will not persist after the current request/response.  HTTP
1150    implementations SHOULD support persistent connections.
1151
1152
1153Section 6.3., paragraph 3:
1154OLD:
1155
1156    o  If the close connection option is present, the connection will not
1157       persist after the current response; else,
1158
1159NEW:
1160
1161    o  If the "close" connection option is present, the connection will
1162       not persist after the current response; else,
1163
1164
1165Section 6.3., paragraph 7:
1166OLD:
1167
1168    A client MAY send additional requests on a persistent connection
1169    until it sends or receives a close connection option or receives an
1170    HTTP/1.0 response without a "keep-alive" connection option.
1171
1172NEW:
1173
1174    A client MAY send additional requests on a persistent connection
1175    until it sends or receives a "close" connection option or receives an
1176    HTTP/1.0 response without a "keep-alive" connection option.
1177
1178
1179Section 6.3., paragraph 10:
1180OLD:
1181
1182    See Appendix A.1.2 for more information on backward compatibility
1183    with HTTP/1.0 clients.
1184
1185NEW:
1186
1187    See Appendix A.1.2 for more information on backwards compatibility
1188    with HTTP/1.0 clients.
1189
1190
1191Section 6.3.2., paragraph 1:
1192OLD:
1193
1194    A client that supports persistent connections MAY "pipeline" its
1195    requests (i.e., send multiple requests without waiting for each
1196    response).  A server MAY process a sequence of pipelined requests in
1197    parallel if they all have safe methods (Section 4.2.1 of [RFC7231]),
1198    but MUST send the corresponding responses in the same order that the
1199    requests were received.
1200
1201NEW:
1202
1203    A client that supports persistent connections MAY "pipeline" its
1204    requests (i.e., send multiple requests without waiting for each
1205    response).  A server MAY process a sequence of pipelined requests in
1206    parallel if they all have safe methods (Section 4.2.1 of [RFC7231]),
1207    but it MUST send the corresponding responses in the same order that
1208    the requests were received.
1209
1210
1211Section 6.4., paragraph 4:
1212OLD:
1213
1214    Note that a server might reject traffic that it deems abusive or
1215    characteristic of a denial of service attack, such as an excessive
1216    number of open connections from a single client.
1217
1218NEW:
1219
1220    Note that a server might reject traffic that it deems abusive or
1221    characteristic of a denial-of-service attack, such as an excessive
1222    number of open connections from a single client.
1223
1224
1225Section 6.4., paragraph 5:
1226OLD:
1227
1228 6.5.  Failures and Time-outs
1229
1230NEW:
1231
1232 6.5.  Failures and Timeouts
1233
1234
1235Section 6.4., paragraph 6:
1236OLD:
1237
1238    Servers will usually have some time-out value beyond which they will
1239    no longer maintain an inactive connection.  Proxy servers might make
1240    this a higher value since it is likely that the client will be making
1241    more connections through the same proxy server.  The use of
1242    persistent connections places no requirements on the length (or
1243    existence) of this time-out for either the client or the server.
1244
1245NEW:
1246
1247    Servers will usually have some timeout value beyond which they will
1248    no longer maintain an inactive connection.  Proxy servers might make
1249    this a higher value since it is likely that the client will be making
1250    more connections through the same proxy server.  The use of
1251    persistent connections places no requirements on the length (or
1252    existence) of this timeout for either the client or the server.
1253
1254
1255Section 6.4., paragraph 7:
1256OLD:
1257
1258    A client or server that wishes to time-out SHOULD issue a graceful
1259    close on the connection.  Implementations SHOULD constantly monitor
1260    open connections for a received closure signal and respond to it as
1261    appropriate, since prompt closure of both sides of a connection
1262    enables allocated system resources to be reclaimed.
1263
1264NEW:
1265
1266    A client or server that wishes to time out SHOULD issue a graceful
1267    close on the connection.  Implementations SHOULD constantly monitor
1268    open connections for a received closure signal and respond to it as
1269    appropriate, since prompt closure of both sides of a connection
1270    enables allocated system resources to be reclaimed.
1271
1272
1273Section 6.4., paragraph 9:
1274OLD:
1275
1276    A server SHOULD sustain persistent connections, when possible, and
1277    allow the underlying transport's flow control mechanisms to resolve
1278    temporary overloads, rather than terminate connections with the
1279    expectation that clients will retry.  The latter technique can
1280    exacerbate network congestion.
1281
1282NEW:
1283
1284    A server SHOULD sustain persistent connections, when possible, and
1285    allow the underlying transport's flow-control mechanisms to resolve
1286    temporary overloads, rather than terminate connections with the
1287    expectation that clients will retry.  The latter technique can
1288    exacerbate network congestion.
1289
1290
1291Section 6.4., paragraph 11:
1292OLD:
1293
1294 6.6.  Tear-down
1295
1296NEW:
1297
1298 6.6.  Teardown
1299
1300
1301Section 6.4., paragraph 13:
1302OLD:
1303
1304    A client that sends a close connection option MUST NOT send further
1305    requests on that connection (after the one containing close) and MUST
1306    close the connection after reading the final response message
1307    corresponding to this request.
1308
1309NEW:
1310
1311    A client that sends a "close" connection option MUST NOT send further
1312    requests on that connection (after the one containing close) and MUST
1313    close the connection after reading the final response message
1314    corresponding to this request.
1315
1316
1317Section 6.4., paragraph 14:
1318OLD:
1319
1320    A server that receives a close connection option MUST initiate a
1321    close of the connection (see below) after it sends the final response
1322    to the request that contained close.  The server SHOULD send a close
1323    connection option in its final response on that connection.  The
1324    server MUST NOT process any further requests received on that
1325    connection.
1326
1327NEW:
1328
1329    A server that receives a "close" connection option MUST initiate a
1330    close of the connection (see below) after it sends the final response
1331    to the request that contained close.  The server SHOULD send a close
1332    connection option in its final response on that connection.  The
1333    server MUST NOT process any further requests received on that
1334    connection.
1335
1336
1337Section 6.4., paragraph 15:
1338OLD:
1339
1340    A server that sends a close connection option MUST initiate a close
1341    of the connection (see below) after it sends the response containing
1342    close.  The server MUST NOT process any further requests received on
1343    that connection.
1344
1345NEW:
1346
1347    A server that sends a "close" connection option MUST initiate a close
1348    of the connection (see below) after it sends the response containing
1349    close.  The server MUST NOT process any further requests received on
1350    that connection.
1351
1352
1353Section 6.4., paragraph 16:
1354OLD:
1355
1356    A client that receives a close connection option MUST cease sending
1357    requests on that connection and close the connection after reading
1358    the response message containing the close; if additional pipelined
1359    requests had been sent on the connection, the client SHOULD NOT
1360    assume that they will be processed by the server.
1361
1362NEW:
1363
1364    A client that receives a "close" connection option MUST cease sending
1365    requests on that connection and close the connection after reading
1366    the response message containing the close; if additional pipelined
1367    requests had been sent on the connection, the client SHOULD NOT
1368    assume that they will be processed by the server.
1369
1370
1371Section 6.4., paragraph 17:
1372OLD:
1373
1374    If a server performs an immediate close of a TCP connection, there is
1375    a significant risk that the client will not be able to read the last
1376    HTTP response.  If the server receives additional data from the
1377    client on a fully-closed connection, such as another request that was
1378    sent by the client before receiving the server's response, the
1379    server's TCP stack will send a reset packet to the client;
1380    unfortunately, the reset packet might erase the client's
1381    unacknowledged input buffers before they can be read and interpreted
1382    by the client's HTTP parser.
1383
1384NEW:
1385
1386    If a server performs an immediate close of a TCP connection, there is
1387    a significant risk that the client will not be able to read the last
1388    HTTP response.  If the server receives additional data from the
1389    client on a fully closed connection, such as another request that was
1390    sent by the client before receiving the server's response, the
1391    server's TCP stack will send a reset packet to the client;
1392    unfortunately, the reset packet might erase the client's
1393    unacknowledged input buffers before they can be read and interpreted
1394    by the client's HTTP parser.
1395
1396
1397Section 6.7., paragraph 9:
1398OLD:
1399
1400    The capabilities and nature of the application-level communication
1401    after the protocol change is entirely dependent upon the new
1402    protocol(s) chosen.  However, immediately after sending the 101
1403    response, the server is expected to continue responding to the
1404    original request as if it had received its equivalent within the new
1405    protocol (i.e., the server still has an outstanding request to
1406    satisfy after the protocol has been changed, and is expected to do so
1407    without requiring the request to be repeated).
1408
1409NEW:
1410
1411    The capabilities and nature of the application-level communication
1412    after the protocol change is entirely dependent upon the new
1413    protocol(s) chosen.  However, immediately after sending the 101
1414    (Switching Protocols) response, the server is expected to continue
1415    responding to the original request as if it had received its
1416    equivalent within the new protocol (i.e., the server still has an
1417    outstanding request to satisfy after the protocol has been changed,
1418    and is expected to do so without requiring the request to be
1419    repeated).
1420
1421
1422Section 101, paragraph 0:
1423OLD:
1424
1425    For example, if the Upgrade header field is received in a GET request
1426    and the server decides to switch protocols, it first responds with a
1427    101 (Switching Protocols) message in HTTP/1.1 and then immediately
1428    follows that with the new protocol's equivalent of a response to a
1429    GET on the target resource.  This allows a connection to be upgraded
1430    to protocols with the same semantics as HTTP without the latency cost
1431    of an additional round-trip.  A server MUST NOT switch protocols
1432    unless the received message semantics can be honored by the new
1433    protocol; an OPTIONS request can be honored by any protocol.
1434
1435NEW:
1436
1437    For example, if the Upgrade header field is received in a GET request
1438    and the server decides to switch protocols, it first responds with a
1439    101 (Switching Protocols) message in HTTP/1.1 and then immediately
1440    follows that with the new protocol's equivalent of a response to a
1441    GET on the target resource.  This allows a connection to be upgraded
1442    to protocols with the same semantics as HTTP without the latency cost
1443    of an additional round trip.  A server MUST NOT switch protocols
1444    unless the received message semantics can be honored by the new
1445    protocol; an OPTIONS request can be honored by any protocol.
1446
1447
1448Section 101, paragraph 5:
1449OLD:
1450
1451    A client cannot begin using an upgraded protocol on the connection
1452    until it has completely sent the request message (i.e., the client
1453    can't change the protocol it is sending in the middle of a message).
1454    If a server receives both Upgrade and an Expect header field with the
1455    "100-continue" expectation (Section 5.1.1 of [RFC7231]), the server
1456    MUST send a 100 (Continue) response before sending a 101 (Switching
1457    Protocols) response.
1458
1459NEW:
1460
1461    A client cannot begin using an upgraded protocol on the connection
1462    until it has completely sent the request message (i.e., the client
1463    can't change the protocol it is sending in the middle of a message).
1464    If a server receives both an Upgrade and an Expect header field with
1465    the "100-continue" expectation (Section 5.1.1 of [RFC7231]), the
1466    server MUST send a 100 (Continue) response before sending a 101
1467    (Switching Protocols) response.
1468
1469
1470Section 7., paragraph 9:
1471OLD:
1472
1473    For compatibility with legacy list rules, a recipient MUST parse and
1474    ignore a reasonable number of empty list elements: enough to handle
1475    common mistakes by senders that merge values, but not so much that
1476    they could be used as a denial of service mechanism.  In other words,
1477    a recipient MUST accept lists that satisfy the following syntax:
1478
1479NEW:
1480
1481    For compatibility with legacy list rules, a recipient MUST parse and
1482    ignore a reasonable number of empty list elements: enough to handle
1483    common mistakes by senders that merge values, but not so much that
1484    they could be used as a denial-of-service mechanism.  In other words,
1485    a recipient MUST accept lists that satisfy the following syntax:
1486
1487
1488Section 7., paragraph 14:
1489OLD:
1490
1491    Then the following are valid values for example-list (not including
1492    the double quotes, which are present for delimitation only):
1493
1494NEW:
1495
1496    Then, the following are valid values for example-list (not including
1497    the double quotes, which are present for delimitation only):
1498
1499
1500Section 8.1., paragraph 1:
1501OLD:
1502
1503    HTTP header fields are registered within the Message Header Field
1504    Registry maintained at
1505    <http://www.iana.org/assignments/message-headers/>.
1506
1507NEW:
1508
1509    HTTP header fields are registered within the "Message Header" field
1510    registry maintained at
1511    <http://www.iana.org/assignments/message-headers/>.
1512
1513
1514Section 8.1., paragraph 2:
1515OLD:
1516
1517    This document defines the following HTTP header fields, so their
1518    associated registry entries shall be updated according to the
1519    permanent registrations below (see [BCP90]):
1520
1521NEW:
1522
1523    This document defines the following HTTP header fields, so the
1524    "Permanent Message Header Field Names" registry has been updated
1525    accordingly (see [BCP90]).
1526
1527
1528Section 8.1., paragraph 4:
1529OLD:
1530
1531    Furthermore, the header field-name "Close" shall be registered as
1532    "reserved", since using that name as an HTTP header field might
1533    conflict with the "close" connection option of the "Connection"
1534    header field (Section 6.1).
1535
1536NEW:
1537
1538    Furthermore, the header field-name "Close" has been registered as
1539    "reserved", since using that name as an HTTP header field might
1540    conflict with the "close" connection option of the "Connection"
1541    header field (Section 6.1).
1542
1543
1544Section 8.2., paragraph 2:
1545OLD:
1546
1547    This document defines the following URI schemes, so their associated
1548    registry entries shall be updated according to the permanent
1549    registrations below:
1550
1551NEW:
1552
1553    This document defines the following URI schemes, so the "Permanent
1554    URI Schemes" registry has been updated accordingly.
1555
1556
1557Section 8.3., paragraph 2:
1558OLD:
1559
1560    This document serves as the specification for the Internet media
1561    types "message/http" and "application/http".  The following is to be
1562    registered with IANA.
1563
1564NEW:
1565
1566    This document serves as the specification for the Internet media
1567    types "message/http" and "application/http".  The following has been
1568    registered with IANA.
1569
1570
1571Section 8.3.1., paragraph 18:
1572OLD:
1573
1574    Person and email address to contact for further information:  See
1575       Authors' Addresses Section.
1576
1577NEW:
1578
1579    Person and email address to contact for further information:
1580       See Authors' Addresses  Section.
1581
1582
1583Section 8.3.2., paragraph 8:
1584OLD:
1585
1586    Encoding considerations:  HTTP messages enclosed by this type are in
1587       "binary" format; use of an appropriate Content-Transfer-Encoding
1588       is required when transmitted via E-mail.
1589
1590NEW:
1591
1592    Encoding considerations:  HTTP messages enclosed by this type are in
1593       "binary" format; use of an appropriate Content-Transfer-Encoding
1594       is required when transmitted via email.
1595
1596
1597Section 8.3.2., paragraph 19:
1598OLD:
1599
1600    Person and email address to contact for further information:  See
1601       Authors' Addresses Section.
1602
1603NEW:
1604
1605    Person and email address to contact for further information:
1606       See Authors' Addresses Section.
1607
1608
1609Section 8.4., paragraph 1:
1610OLD:
1611
1612    The HTTP Transfer Coding Registry defines the name space for transfer
1613    coding names.  It is maintained at
1614    <http://www.iana.org/assignments/http-parameters>.
1615
1616NEW:
1617
1618    The "HTTP Transfer Coding" registry defines the namespace for
1619    transfer coding names.  It is maintained at
1620    <http://www.iana.org/assignments/http-parameters>.
1621
1622
1623Section 8.4.1., paragraph 5:
1624OLD:
1625
1626    Values to be added to this name space require IETF Review (see
1627    Section 4.1 of [RFC5226]), and MUST conform to the purpose of
1628    transfer coding defined in this specification.
1629
1630NEW:
1631
1632    Values to be added to this namespace require IETF Review (see Section
1633    4.1 of [RFC5226]), and MUST conform to the purpose of transfer coding
1634    defined in this specification.
1635
1636
1637Section 8.4.2., paragraph 1:
1638OLD:
1639
1640    The HTTP Transfer Coding Registry shall be updated with the
1641    registrations below:
1642
1643NEW:
1644
1645    The "HTTP Transfer Coding Registry" has been updated with the
1646    registrations below:
1647
1648
1649Section 8.5., paragraph 1:
1650OLD:
1651
1652    IANA maintains the registry of HTTP Content Codings at
1653    <http://www.iana.org/assignments/http-parameters>.
1654
1655NEW:
1656
1657    IANA maintains the "HTTP Content Coding Registry" at
1658    <http://www.iana.org/assignments/http-parameters>.
1659
1660
1661Section 8.5., paragraph 2:
1662OLD:
1663
1664    The HTTP Content Codings Registry shall be updated with the
1665    registrations below:
1666
1667NEW:
1668
1669    The "HTTP Content Codings Registry" has been updated with the
1670    registrations below:
1671
1672
1673Section 8.6., paragraph 1:
1674OLD:
1675
1676    The HTTP Upgrade Token Registry defines the name space for protocol-
1677    name tokens used to identify protocols in the Upgrade header field.
1678    The registry is maintained at
1679    <http://www.iana.org/assignments/http-upgrade-tokens>.
1680
1681NEW:
1682
1683    The "Hypertext Transfer Protocol (HTTP) Upgrade Token Registry"
1684    defines the namespace for protocol-name tokens used to identify
1685    protocols in the Upgrade header field.  The registry is maintained at
1686    <http://www.iana.org/assignments/http-upgrade-tokens>.
1687
1688
1689Section 8.6.2., paragraph 1:
1690OLD:
1691
1692    The "HTTP" entry in the HTTP Upgrade Token Registry shall be updated
1693    with the registration below:
1694
1695NEW:
1696
1697    The "HTTP" entry in the "HTTP Upgrade Token" registry shall be
1698    updated with the registration below:
1699
1700
1701Section 9.1., paragraph 3:
1702OLD:
1703
1704    When a registered name is used in the authority component, the "http"
1705    URI scheme (Section 2.7.1) relies on the user's local name resolution
1706    service to determine where it can find authoritative responses.  This
1707    means that any attack on a user's network host table, cached names,
1708    or name resolution libraries becomes an avenue for attack on
1709    establishing authority.  Likewise, the user's choice of server for
1710    Domain Name Service (DNS), and the hierarchy of servers from which it
1711    obtains resolution results, could impact the authenticity of address
1712    mappings; DNSSEC ([RFC4033]) is one way to improve authenticity.
1713
1714NEW:
1715
1716    When a registered name is used in the authority component, the "http"
1717    URI scheme (Section 2.7.1) relies on the user's local name resolution
1718    service to determine where it can find authoritative responses.  This
1719    means that any attack on a user's network host table, cached names,
1720    or name resolution libraries becomes an avenue for attack on
1721    establishing authority.  Likewise, the user's choice of server for
1722    Domain Name Service (DNS), and the hierarchy of servers from which it
1723    obtains resolution results, could impact the authenticity of address
1724    mappings; DNS Security Extensions (DNSSEC) ([RFC4033]) is one way to
1725    improve authenticity.
1726
1727
1728Section 9.2., paragraph 1:
1729OLD:
1730
1731    By their very nature, HTTP intermediaries are men-in-the-middle, and
1732    thus represent an opportunity for man-in-the-middle attacks.
1733    Compromise of the systems on which the intermediaries run can result
1734    in serious security and privacy problems.  Intermediaries might have
1735    access to security-related information, personal information about
1736    individual users and organizations, and proprietary information
1737    belonging to users and content providers.  A compromised
1738    intermediary, or an intermediary implemented or configured without
1739    regard to security and privacy considerations, might be used in the
1740    commission of a wide range of potential attacks.
1741
1742NEW:
1743
1744    By their very nature, HTTP intermediaries are men in the middle and,
1745    thus, represent an opportunity for man-in-the-middle attacks.
1746    Compromise of the systems on which the intermediaries run can result
1747    in serious security and privacy problems.  Intermediaries might have
1748    access to security-related information, personal information about
1749    individual users and organizations, and proprietary information
1750    belonging to users and content providers.  A compromised
1751    intermediary, or an intermediary implemented or configured without
1752    regard to security and privacy considerations, might be used in the
1753    commission of a wide range of potential attacks.
1754
1755
1756Section 9.3., paragraph 4:
1757OLD:
1758
1759    Recipients ought to carefully limit the extent to which they process
1760    other protocol elements, including (but not limited to) request
1761    methods, response status phrases, header field-names, numeric values,
1762    and body chunks.  Failure to limit such processing can result in
1763    buffer overflows, arithmetic overflows, or increased vulnerability to
1764    denial of service attacks.
1765
1766NEW:
1767
1768    Recipients ought to carefully limit the extent to which they process
1769    other protocol elements, including (but not limited to) request
1770    methods, response status phrases, header field-names, numeric values,
1771    and body chunks.  Failure to limit such processing can result in
1772    buffer overflows, arithmetic overflows, or increased vulnerability to
1773    denial-of-service attacks.
1774
1775
1776Section 9.6., paragraph 2:
1777OLD:
1778
1779    User agents are encouraged to implement configurable means for
1780    detecting and reporting failures of message integrity such that those
1781    means can be enabled within environments for which integrity is
1782    necessary.  For example, a browser being used to view medical history
1783    or drug interaction information needs to indicate to the user when
1784    such information is detected by the protocol to be incomplete,
1785    expired, or corrupted during transfer.  Such mechanisms might be
1786    selectively enabled via user agent extensions or the presence of
1787    message integrity metadata in a response.  At a minimum, user agents
1788    ought to provide some indication that allows a user to distinguish
1789    between a complete and incomplete response message (Section 3.4) when
1790    such verification is desired.
1791
1792NEW:
1793
1794    User agents are encouraged to implement configurable means for
1795    detecting and reporting failures of message integrity such that those
1796    means can be enabled within environments for which integrity is
1797    necessary.  For example, a browser being used to view medical history
1798    or drug interaction information needs to indicate to the user when
1799    such information is detected by the protocol to be incomplete,
1800    expired, or corrupted during transfer.  Such mechanisms might be
1801    selectively enabled via user-agent extensions or the presence of
1802    message integrity metadata in a response.  At a minimum, user agents
1803    ought to provide some indication that allows a user to distinguish
1804    between a complete and incomplete response message (Section 3.4) when
1805    such verification is desired.
1806
1807
1808Section 9.8., paragraph 2:
1809OLD:
1810
1811    HTTP log information is confidential in nature; its handling is often
1812    constrained by laws and regulations.  Log information needs to be
1813    securely stored and appropriate guidelines followed for its analysis.
1814    Anonymization of personal information within individual entries
1815    helps, but is generally not sufficient to prevent real log traces
1816    from being re-identified based on correlation with other access
1817    characteristics.  As such, access traces that are keyed to a specific
1818    client are unsafe to publish even if the key is pseudonymous.
1819
1820NEW:
1821
1822    HTTP log information is confidential in nature; its handling is often
1823    constrained by laws and regulations.  Log information needs to be
1824    securely stored and appropriate guidelines followed for its analysis.
1825    Anonymization of personal information within individual entries
1826    helps, but it is generally not sufficient to prevent real log traces
1827    from being re-identified based on correlation with other access
1828    characteristics.  As such, access traces that are keyed to a specific
1829    client are unsafe to publish even if the key is pseudonymous.
1830
1831
1832Section 10., paragraph 1:
1833OLD:
1834
1835    This edition of HTTP/1.1 builds on the many contributions that went
1836    into RFC 1945, RFC 2068, RFC 2145, and RFC 2616, including
1837    substantial contributions made by the previous authors, editors, and
1838    working group chairs: Tim Berners-Lee, Ari Luotonen, Roy T. Fielding,
1839    Henrik Frystyk Nielsen, Jim Gettys, Jeffrey C. Mogul, Larry Masinter,
1840    and Paul J. Leach.  Mark Nottingham oversaw this effort as working
1841    group chair.
1842
1843NEW:
1844
1845    This edition of HTTP/1.1 builds on the many contributions that went
1846    into RFC 1945, RFC 2068, RFC 2145, and RFC 2616, including
1847    substantial contributions made by the previous authors, editors, and
1848    Working Group Chairs: Tim Berners-Lee, Ari Luotonen, Roy T. Fielding,
1849    Henrik Frystyk Nielsen, Jim Gettys, Jeffrey C. Mogul, Larry Masinter,
1850    and Paul J. Leach.  Mark Nottingham oversaw this effort as Working
1851    Group Chair.
1852
1853
1854Section 11.1., paragraph 1:
1855OLD:
1856
1857    [RFC0793]     Postel, J., "Transmission Control Protocol", STD 7,
1858                  RFC 793, September 1981.
1859 
1860    [RFC1950]     Deutsch, L. and J-L. Gailly, "ZLIB Compressed Data
1861                  Format Specification version 3.3", RFC 1950, May 1996.
1862
1863NEW:
1864
1865    [RFC1950]     Deutsch, L. and J-L. Gailly, "ZLIB Compressed Data
1866                  Format Specification version 3.3", RFC 1950, May 1996.
1867
1868
1869Section 11.1., paragraph 7:
1870OLD:
1871
1872    [RFC7231]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
1873                  Transfer Protocol (HTTP/1.1): Semantics and Content",
1874                  draft-ietf-httpbis-p2-semantics-latest (work in
1875                  progress), May 2014.
1876
1877NEW:
1878
1879    [RFC7231]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
1880                  Transfer Protocol (HTTP/1.1): Semantics and Content",
1881                  RFC 7231, May 2014.
1882
1883
1884Section 11.1., paragraph 8:
1885OLD:
1886
1887    [RFC7232]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
1888                  Transfer Protocol (HTTP/1.1): Conditional Requests",
1889                  draft-ietf-httpbis-p4-conditional-latest (work in
1890                  progress), May 2014.
1891
1892NEW:
1893
1894    [RFC7232]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
1895                  Transfer Protocol (HTTP/1.1): Conditional Requests",
1896                  RFC 7232, May 2014.
1897
1898
1899Section 11.1., paragraph 9:
1900OLD:
1901
1902    [RFC7233]     Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
1903                  "Hypertext Transfer Protocol (HTTP/1.1): Range
1904                  Requests", draft-ietf-httpbis-p5-range-latest (work in
1905                  progress), May 2014.
1906
1907NEW:
1908
1909    [RFC7233]     Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
1910                  "Hypertext Transfer Protocol (HTTP/1.1): Range
1911                  Requests", RFC 7233, May 2014.
1912
1913
1914Section 11.1., paragraph 10:
1915OLD:
1916
1917    [RFC7234]     Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
1918                  Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
1919                  draft-ietf-httpbis-p6-cache-latest (work in progress),
1920                  May 2014.
1921
1922NEW:
1923
1924    [RFC7234]     Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
1925                  Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
1926                  RFC 7234, May 2014.
1927
1928
1929Section 11.1., paragraph 11:
1930OLD:
1931
1932    [RFC7235]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
1933                  Transfer Protocol (HTTP/1.1): Authentication",
1934                  draft-ietf-httpbis-p7-auth-latest (work in progress),
1935                  May 2014.
1936
1937NEW:
1938
1939    [RFC7235]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
1940                  Transfer Protocol (HTTP/1.1): Authentication",
1941                  RFC 7235, May 2014.
1942 
1943    [RFC793]      Postel, J., "Transmission Control Protocol", STD 7,
1944                  RFC 793, September 1981.
1945
1946
1947Section 11.1., paragraph 13:
1948OLD:
1949
1950    [Welch]       Welch, T., "A Technique for High Performance Data
1951                  Compression", IEEE Computer 17(6), June 1984.
1952
1953NEW:
1954
1955    [Welch]       Welch, T., "A Technique for High-Performance Data
1956                  Compression", IEEE Computer 17(6), June 1984.
1957
1958
1959Appendix A., paragraph 1:
1960OLD:
1961
1962    HTTP has been in use since 1990.  The first version, later referred
1963    to as HTTP/0.9, was a simple protocol for hypertext data transfer
1964    across the Internet, using only a single request method (GET) and no
1965    metadata.  HTTP/1.0, as defined by [RFC1945], added a range of
1966    request methods and MIME-like messaging, allowing for metadata to be
1967    transferred and modifiers placed on the request/response semantics.
1968    However, HTTP/1.0 did not sufficiently take into consideration the
1969    effects of hierarchical proxies, caching, the need for persistent
1970    connections, or name-based virtual hosts.  The proliferation of
1971    incompletely-implemented applications calling themselves "HTTP/1.0"
1972    further necessitated a protocol version change in order for two
1973    communicating applications to determine each other's true
1974    capabilities.
1975
1976NEW:
1977
1978    HTTP has been in use since 1990.  The first version, later referred
1979    to as HTTP/0.9, was a simple protocol for hypertext data transfer
1980    across the Internet, using only a single request method (GET) and no
1981    metadata.  HTTP/1.0, as defined by [RFC1945], added a range of
1982    request methods and MIME-like messaging, allowing for metadata to be
1983    transferred and modifiers placed on the request/response semantics.
1984    However, HTTP/1.0 did not sufficiently take into consideration the
1985    effects of hierarchical proxies, caching, the need for persistent
1986    connections, or name-based virtual hosts.  The proliferation of
1987    incompletely implemented applications calling themselves "HTTP/1.0"
1988    further necessitated a protocol version change in order for two
1989    communicating applications to determine each other's true
1990    capabilities.
1991
1992
1993Appendix A., paragraph 2:
1994OLD:
1995
1996    HTTP/1.1 remains compatible with HTTP/1.0 by including more stringent
1997    requirements that enable reliable implementations, adding only those
1998    features that can either be safely ignored by an HTTP/1.0 recipient
1999    or only sent when communicating with a party advertising conformance
2000    with HTTP/1.1.
2001
2002NEW:
2003
2004    HTTP/1.1 remains compatible with HTTP/1.0 by including more stringent
2005    requirements that enable reliable implementations, adding only those
2006    features that can either be safely ignored by an HTTP/1.0 recipient
2007    or only be sent when communicating with a party advertising
2008    conformance with HTTP/1.1.
2009
2010
2011Appendix A., paragraph 7:
2012OLD:
2013
2014 A.1.1.  Multi-homed Web Servers
2015
2016NEW:
2017
2018 A.1.1.  Multihomed Web Servers
2019
2020
2021Section 19.7.1, paragraph 8:
2022OLD:
2023
2024    HTTP's approach to error handling has been explained.  (Section 2.5)
2025
2026NEW:
2027
2028    HTTP's approach to error handling has been explained (Section 2.5).
2029
2030
2031Section 19.7.1, paragraph 9:
2032OLD:
2033
2034    The HTTP-version ABNF production has been clarified to be case-
2035    sensitive.  Additionally, version numbers has been restricted to
2036    single digits, due to the fact that implementations are known to
2037    handle multi-digit version numbers incorrectly.  (Section 2.6)
2038
2039NEW:
2040
2041    The HTTP-version ABNF production has been clarified to be case
2042    sensitive.  Additionally, version numbers have been restricted to
2043    single digits, due to the fact that implementations are known to
2044    handle multi-digit version numbers incorrectly (Section 2.6).
2045
2046
2047Section 19.7.1, paragraph 10:
2048OLD:
2049
2050    Userinfo (i.e., username and password) are now disallowed in HTTP and
2051    HTTPS URIs, because of security issues related to their transmission
2052    on the wire.  (Section 2.7.1)
2053
2054NEW:
2055
2056    Userinfo (i.e., username and password) are now disallowed in HTTP and
2057    HTTPS URIs, because of security issues related to their transmission
2058    on the wire (Section 2.7.1).
2059
2060
2061Section 19.7.1, paragraph 11:
2062OLD:
2063
2064    The HTTPS URI scheme is now defined by this specification;
2065    previously, it was done in Section 2.4 of [RFC2818].  Furthermore, it
2066    implies end-to-end security.  (Section 2.7.2)
2067
2068NEW:
2069
2070    The HTTPS URI scheme is now defined by this specification;
2071    previously, it was defined in Section 2.4 of [RFC2818].  Furthermore,
2072    it implies end-to-end security (Section 2.7.2).
2073
2074
2075Section 19.7.1, paragraph 12:
2076OLD:
2077
2078    HTTP messages can be (and often are) buffered by implementations;
2079    despite it sometimes being available as a stream, HTTP is
2080    fundamentally a message-oriented protocol.  Minimum supported sizes
2081    for various protocol elements have been suggested, to improve
2082    interoperability.  (Section 3)
2083
2084NEW:
2085
2086    HTTP messages can be (and often are) buffered by implementations;
2087    despite it sometimes being available as a stream, HTTP is
2088    fundamentally a message-oriented protocol.  Minimum supported sizes
2089    for various protocol elements have been suggested, to improve
2090    interoperability (Section 3).
2091
2092
2093Section 19.7.1, paragraph 13:
2094OLD:
2095
2096    Invalid whitespace around field-names is now required to be rejected,
2097    because accepting it represents a security vulnerability.  The ABNF
2098    productions defining header fields now only list the field value.
2099    (Section 3.2)
2100
2101NEW:
2102
2103    Invalid whitespace around field-names is now required to be rejected,
2104    because accepting it represents a security vulnerability.  The ABNF
2105    productions defining header fields now only list the field value
2106    (Section 3.2).
2107
2108
2109Section 19.7.1, paragraph 14:
2110OLD:
2111
2112    Rules about implicit linear whitespace between certain grammar
2113    productions have been removed; now whitespace is only allowed where
2114    specifically defined in the ABNF.  (Section 3.2.3)
2115
2116NEW:
2117
2118    Rules about implicit linear whitespace between certain grammar
2119    productions have been removed; now whitespace is only allowed where
2120    specifically defined in the ABNF (Section 3.2.3).
2121
2122
2123Section 19.7.1, paragraph 15:
2124OLD:
2125
2126    Header fields that span multiple lines ("line folding") are
2127    deprecated.  (Section 3.2.4)
2128    The NUL octet is no longer allowed in comment and quoted-string text,
2129    and handling of backslash-escaping in them has been clarified.  The
2130    quoted-pair rule no longer allows escaping control characters other
2131    than HTAB.  Non-ASCII content in header fields and the reason phrase
2132    has been obsoleted and made opaque (the TEXT rule was removed).
2133    (Section 3.2.6)
2134
2135NEW:
2136
2137    Header fields that span multiple lines ("line folding") are
2138    deprecated (Section 3.2.4).
2139 
2140    The NUL octet is no longer allowed in comment and quoted-string text,
2141    and handling of backslash-escaping in them has been clarified.  The
2142    quoted-pair rule no longer allows escaping control characters other
2143    than HTAB.  Non-US-ASCII content in header fields and the reason
2144    phrase has been obsoleted and made opaque (the TEXT rule was removed)
2145    (Section 3.2.6).
2146
2147
2148Section 19.7.1, paragraph 16:
2149OLD:
2150
2151    Bogus "Content-Length" header fields are now required to be handled
2152    as errors by recipients.  (Section 3.3.2)
2153
2154NEW:
2155
2156    Bogus "Content-Length" header fields are now required to be handled
2157    as errors by recipients (Section 3.3.2).
2158
2159
2160Section 19.7.1, paragraph 17:
2161OLD:
2162
2163    The algorithm for determining the message body length has been
2164    clarified to indicate all of the special cases (e.g., driven by
2165    methods or status codes) that affect it, and that new protocol
2166    elements cannot define such special cases.  CONNECT is a new, special
2167    case in determining message body length. "multipart/byteranges" is no
2168    longer a way of determining message body length detection.
2169    (Section 3.3.3)
2170
2171NEW:
2172
2173    The algorithm for determining the message body length has been
2174    clarified to indicate all of the special cases (e.g., driven by
2175    methods or status codes) that affect it, and that new protocol
2176    elements cannot define such special cases.  CONNECT is a new, special
2177    case in determining message body length. "multipart/byteranges" is no
2178    longer a way of determining message body length detection
2179    (Section 3.3.3).
2180
2181
2182Section 19.7.1, paragraph 18:
2183OLD:
2184
2185    The "identity" transfer coding token has been removed.  (Sections 3.3
2186    and 4)
2187
2188NEW:
2189
2190    The "identity" transfer coding token has been removed (Sections 3.3
2191    and 4).
2192
2193
2194Section 19.7.1, paragraph 19:
2195OLD:
2196
2197    Chunk length does not include the count of the octets in the chunk
2198    header and trailer.  Line folding in chunk extensions is disallowed.
2199    (Section 4.1)
2200
2201NEW:
2202
2203    Chunk length does not include the count of the octets in the chunk
2204    header and trailer.  Line folding in chunk extensions is disallowed
2205    (Section 4.1).
2206
2207
2208Section 19.7.1, paragraph 20:
2209OLD:
2210
2211    The meaning of the "deflate" content coding has been clarified.
2212    (Section 4.2.2)
2213
2214NEW:
2215
2216    The meaning of the "deflate" content coding has been clarified
2217    (Section 4.2.2).
2218
2219
2220Section 19.7.1, paragraph 21:
2221OLD:
2222
2223    The segment + query components of RFC 3986 have been used to define
2224    the request-target, instead of abs_path from RFC 1808.  The asterisk-
2225    form of the request-target is only allowed with the OPTIONS method.
2226    (Section 5.3)
2227
2228NEW:
2229
2230    The segment + query components of RFC 3986 have been used to define
2231    the request-target, instead of abs_path from RFC 1808.  The asterisk-
2232    form of the request-target is only allowed with the OPTIONS method
2233    (Section 5.3).
2234
2235
2236Section 19.7.1, paragraph 22:
2237OLD:
2238
2239    The term "Effective Request URI" has been introduced.  (Section 5.5)
2240
2241NEW:
2242
2243    The term "Effective Request URI" has been introduced (Section 5.5).
2244
2245
2246Section 19.7.1, paragraph 23:
2247OLD:
2248
2249    Gateways do not need to generate Via header fields anymore.
2250    (Section 5.7.1)
2251
2252NEW:
2253
2254    Gateways do not need to generate Via header fields anymore
2255    (Section 5.7.1).
2256
2257
2258Section 19.7.1, paragraph 24:
2259OLD:
2260
2261    Exactly when "close" connection options have to be sent has been
2262    clarified.  Also, "hop-by-hop" header fields are required to appear
2263    in the Connection header field; just because they're defined as hop-
2264    by-hop in this specification doesn't exempt them.  (Section 6.1)
2265
2266NEW:
2267
2268    Exactly when "close" connection options have to be sent has been
2269    clarified.  Also, "hop-by-hop" header fields are required to appear
2270    in the Connection header field; just because they're defined as hop-
2271    by-hop in this specification doesn't exempt them (Section 6.1).
2272
2273
2274Section 19.7.1, paragraph 25:
2275OLD:
2276
2277    The limit of two connections per server has been removed.  An
2278    idempotent sequence of requests is no longer required to be retried.
2279    The requirement to retry requests under certain circumstances when
2280    the server prematurely closes the connection has been removed.  Also,
2281    some extraneous requirements about when servers are allowed to close
2282    connections prematurely have been removed.  (Section 6.3)
2283
2284NEW:
2285
2286    The limit of two connections per server has been removed.  An
2287    idempotent sequence of requests is no longer required to be retried.
2288    The requirement to retry requests under certain circumstances when
2289    the server prematurely closes the connection has been removed.  Also,
2290    some extraneous requirements about when servers are allowed to close
2291    connections prematurely have been removed (Section 6.3).
2292
2293
2294Section 19.7.1, paragraph 26:
2295OLD:
2296
2297    The semantics of the Upgrade header field is now defined in responses
2298    other than 101 (this was incorporated from [RFC2817]).  Furthermore,
2299    the ordering in the field value is now significant.  (Section 6.7)
2300
2301NEW:
2302
2303    The semantics of the Upgrade header field is now defined in responses
2304    other than 101 (this was incorporated from [RFC2817]).  Furthermore,
2305    the ordering in the field value is now significant (Section 6.7).
2306
2307
2308Section 19.7.1, paragraph 27:
2309OLD:
2310
2311    Empty list elements in list productions (e.g., a list header field
2312    containing ", ,") have been deprecated.  (Section 7)
2313
2314NEW:
2315
2316    Empty list elements in list productions (e.g., a list header field
2317    containing ", ,") have been deprecated (Section 7).
2318
2319
2320Section 19.7.1, paragraph 28:
2321OLD:
2322
2323    Registration of Transfer Codings now requires IETF Review
2324    (Section 8.4)
2325
2326NEW:
2327
2328    Registration of Transfer Codings now requires IETF Review
2329    (Section 8.4).
2330
2331
2332Section 19.7.1, paragraph 29:
2333OLD:
2334
2335    This specification now defines the Upgrade Token Registry, previously
2336    defined in Section 7.2 of [RFC2817].  (Section 8.6)
2337
2338NEW:
2339
2340    This specification now defines the "HTTP Upgrade Tokens" registry,
2341    previously defined in Section 7.2 of [RFC2817] (Section 8.6).
2342
2343
2344Section 19.7.1, paragraph 30:
2345OLD:
2346
2347    The expectation to support HTTP/0.9 requests has been removed.
2348    (Appendix A)
2349
2350NEW:
2351
2352    The expectation to support HTTP/0.9 requests has been removed
2353    (Appendix A).
2354
2355
2356Section 19.7.1, paragraph 31:
2357OLD:
2358
2359    Issues with the Keep-Alive and Proxy-Connection header fields in
2360    requests are pointed out, with use of the latter being discouraged
2361    altogether.  (Appendix A.1.2)
2362
2363NEW:
2364
2365    Issues with the Keep-Alive and Proxy-Connection header fields in
2366    requests are pointed out, with use of the latter being discouraged
2367    altogether (Appendix A.1.2).
2368
2369
2370Appendix B., paragraph 7:
2371OLD:
2372
2373    URI-reference = <URI-reference, defined in [RFC3986], Section 4.1>
2374    Upgrade = *( "," OWS ) protocol *( OWS "," [ OWS protocol ] )
2375    Via = *( "," OWS ) ( received-protocol RWS received-by [ RWS comment
2376     ] ) *( OWS "," [ OWS ( received-protocol RWS received-by [ RWS
2377     comment ] ) ] )
2378
2379NEW:
2380
2381    URI-reference = <URI-reference, defined in [RFC3986], Section 4.1>
2382    Upgrade = *( "," OWS ) protocol *( OWS "," [ OWS protocol ] )
2383 
2384    Via = *( "," OWS ) ( received-protocol RWS received-by [ RWS comment
2385     ] ) *( OWS "," [ OWS ( received-protocol RWS received-by [ RWS
2386     comment ] ) ] )
2387
2388
2389Appendix B., paragraph 15:
2390OLD:
2391
2392    partial-URI = relative-part [ "?" query ]
2393    path-abempty = <path-abempty, defined in [RFC3986], Section 3.3>
2394    port = <port, defined in [RFC3986], Section 3.2.3>
2395    protocol = protocol-name [ "/" protocol-version ]
2396    protocol-name = token
2397    protocol-version = token
2398    pseudonym = token
2399 
2400    qdtext = HTAB / SP / "!" / %x23-5B ; '#'-'['
2401     / %x5D-7E ; ']'-'~'
2402     / obs-text
2403    query = <query, defined in [RFC3986], Section 3.4>
2404    quoted-pair = "\" ( HTAB / SP / VCHAR / obs-text )
2405    quoted-string = DQUOTE *( qdtext / quoted-pair ) DQUOTE
2406
2407NEW:
2408
2409    partial-URI = relative-part [ "?" query ]
2410    path-abempty = <path-abempty, defined in [RFC3986], Section 3.3>
2411    port = <port, defined in [RFC3986], Section 3.2.3>
2412    protocol = protocol-name [ "/" protocol-version ]
2413    protocol-name = token
2414    protocol-version = token
2415    pseudonym = token
2416    qdtext = HTAB / SP / "!" / %x23-5B ; '#'-'['
2417     / %x5D-7E ; ']'-'~'
2418     / obs-text
2419    query = <query, defined in [RFC3986], Section 3.4>
2420    quoted-pair = "\" ( HTAB / SP / VCHAR / obs-text )
2421    quoted-string = DQUOTE *( qdtext / quoted-pair ) DQUOTE
2422
2423
2424Appendix B., paragraph 24:
2425OLD:
2426
2427    D
2428       deflate (Coding Format)  38
2429       Delimiters  26
2430       downstream  9
2431
2432NEW:
2433
2434    D
2435       deflate (Coding Format)  38
2436       Delimiters  26
2437       downstream  10
2438
2439
2440Appendix B., paragraph 26:
2441OLD:
2442
2443    G
2444       gateway  10
2445       Grammar
2446          absolute-form  41-42
2447          absolute-path  16
2448          absolute-URI  16
2449          ALPHA  6
2450          asterisk-form  41-42
2451          authority  16
2452          authority-form  41-42
2453          BWS  24
2454          chunk  35
2455          chunk-data  35
2456          chunk-ext  35-36
2457          chunk-ext-name  36
2458          chunk-ext-val  36
2459          chunk-size  35
2460          chunked-body  35-36
2461          comment  27
2462          Connection  51
2463          connection-option  51
2464          Content-Length  30
2465          CR  6
2466          CRLF  6
2467          ctext  27
2468          CTL  6
2469          DIGIT  6
2470          DQUOTE  6
2471          field-content  22
2472          field-name  22, 39
2473          field-value  22
2474          field-vchar  22
2475          fragment  16
2476          header-field  22, 36
2477          HEXDIG  6
2478          Host  43
2479          HTAB  6
2480          HTTP-message  19
2481          HTTP-name  13
2482          http-URI  16
2483          HTTP-version  13
2484          https-URI  18
2485          last-chunk  35
2486          LF  6
2487          message-body  27
2488          method  21
2489          obs-fold  22
2490          obs-text  27
2491          OCTET  6
2492          origin-form  41
2493          OWS  24
2494          partial-URI  16
2495          port  16
2496          protocol-name  47
2497          protocol-version  47
2498          pseudonym  47
2499          qdtext  27
2500          query  16
2501          quoted-pair  27
2502          quoted-string  27
2503          rank  38
2504          reason-phrase  22
2505          received-by  47
2506          received-protocol  47
2507          request-line  21
2508          request-target  41
2509          RWS  24
2510          scheme  16
2511          segment  16
2512          SP  6
2513          start-line  20
2514          status-code  22
2515          status-line  22
2516          t-codings  38
2517          t-ranking  38
2518          tchar  27
2519          TE  38
2520          token  27
2521          Trailer  39
2522          trailer-part  35-36
2523          transfer-coding  35
2524          Transfer-Encoding  28
2525          transfer-extension  35
2526          transfer-parameter  35
2527          Upgrade  56
2528          uri-host  16
2529          URI-reference  16
2530          VCHAR  6
2531          Via  47
2532       gzip (Coding Format)  38
2533
2534NEW:
2535
2536    G
2537       gateway  10
2538       Grammar
2539          absolute-form  41-42
2540          absolute-path  16
2541          absolute-URI  16
2542          ALPHA  6
2543          asterisk-form  41-42
2544          authority  16
2545          authority-form  41-42
2546          BWS  24
2547          chunk  35
2548          chunk-data  35
2549          chunk-ext  35-36
2550          chunk-ext-name  36
2551          chunk-ext-val  36
2552          chunk-size  35
2553          chunked-body  35-36
2554          comment  27
2555          Connection  51
2556          connection-option  51
2557          Content-Length  30
2558          CR  6
2559          CRLF  6
2560          ctext  27
2561          CTL  6
2562          DIGIT  6
2563          DQUOTE  6
2564          field-content  22
2565          field-name  22, 39
2566          field-value  22
2567          field-vchar  22
2568          fragment  16
2569          header-field  22, 36
2570          HEXDIG  6
2571          Host  43
2572          HTAB  6
2573          HTTP-message  19
2574          HTTP-name  14
2575          http-URI  16
2576          HTTP-version  14
2577          https-URI  18
2578          last-chunk  35
2579          LF  6
2580          message-body  27
2581          method  21
2582          obs-fold  22
2583          obs-text  27
2584          OCTET  6
2585          origin-form  41
2586          OWS  24
2587          partial-URI  16
2588          port  16
2589          protocol-name  47
2590          protocol-version  47
2591          pseudonym  47
2592          qdtext  27
2593          query  16
2594          quoted-pair  27
2595          quoted-string  27
2596          rank  38
2597          reason-phrase  22
2598          received-by  47
2599          received-protocol  47
2600          request-line  21
2601          request-target  41
2602          RWS  24
2603          scheme  16
2604          segment  16
2605          SP  6
2606          start-line  20
2607          status-code  22
2608          status-line  22
2609          t-codings  38
2610          t-ranking  38
2611          tchar  27
2612          TE  38
2613          token  27
2614          Trailer  39
2615          trailer-part  35-36
2616          transfer-coding  35
2617          Transfer-Encoding  28
2618          transfer-extension  35
2619          transfer-parameter  35
2620          Upgrade  56
2621          uri-host  16
2622          URI-reference  16
2623          VCHAR  6
2624          Via  47
2625       gzip (Coding Format)  38
2626
2627
2628Appendix B., paragraph 28:
2629OLD:
2630
2631    I
2632       inbound  9
2633       interception proxy  11
2634       intermediary  9
2635
2636NEW:
2637
2638    I
2639       inbound  10
2640       interception proxy  11
2641       intermediary  9
2642
2643
2644Appendix B., paragraph 31:
2645OLD:
2646
2647    O
2648       origin server  7
2649       origin-form (of request-target)  41
2650       outbound  9
2651
2652NEW:
2653
2654    O
2655       origin server  7
2656       origin-form (of request-target)  41
2657       outbound  10
2658
2659
2660Appendix B., paragraph 36:
2661OLD:
2662
2663    U
2664       Upgrade header field  56
2665       upstream  9
2666       URI scheme
2667          http  16
2668          https  18
2669       user agent  7
2670
2671NEW:
2672
2673    U
2674       Upgrade header field  56
2675       upstream  10
2676       URI scheme
2677          http  16
2678          https  18
2679       user agent  7
2680
2681
2682Section 345, paragraph 1:
2683OLD:
2684
2685    EMail: fielding@gbiv.com
2686    URI:   http://roy.gbiv.com/
2687 
2688    Julian F. Reschke (editor)
2689    greenbytes GmbH
2690    Hafenweg 16
2691    Muenster, NW  48155
2692    Germany
2693
2694NEW:
2695
2696    EMail: fielding@gbiv.com
2697    URI:   http://roy.gbiv.com/
2698    Julian F. Reschke (editor)
2699    greenbytes GmbH
2700    Hafenweg 16
2701    Muenster, NW  48155
2702    Germany
2703
Note: See TracBrowser for help on using the repository browser.