1 | <?xml version="1.0" encoding="US-ASCII"?> |
---|
2 | |
---|
3 | <?xml-stylesheet type='text/xsl' href='../myxml2rfc.xslt'?> |
---|
4 | <?rfc toc="yes" ?> |
---|
5 | <?rfc symrefs="yes" ?> |
---|
6 | <?rfc sortrefs="yes" ?> |
---|
7 | <?rfc compact="yes"?> |
---|
8 | <?rfc subcompact="no" ?> |
---|
9 | <?rfc linkmailto="no" ?> |
---|
10 | <?rfc editing="no" ?> |
---|
11 | <?rfc comments="yes"?> |
---|
12 | <?rfc inline="yes"?> |
---|
13 | <?rfc rfcedstyle="yes"?> |
---|
14 | <!DOCTYPE rfc |
---|
15 | PUBLIC "" "rfc2629.dtd"> |
---|
16 | |
---|
17 | <rfc submissionType="IETF" obsoletes="2145, 2616" updates="2817, 2818" category="std" consensus="yes" ipr="pre5378Trust200902" number="7230"> |
---|
18 | |
---|
19 | <!-- [rfced] Please note that xml2rfc v2 is not producing the Index correctly |
---|
20 | at this time. We have filed a ticket to get this fixed (see |
---|
21 | http://trac.tools.ietf.org/tools/xml2rfc/trac/ticket/249). If it is not fixed |
---|
22 | by the time this cluster is ready to be published, we will use v1 to produce |
---|
23 | the final text. |
---|
24 | --> |
---|
25 | |
---|
26 | <front> |
---|
27 | |
---|
28 | <title abbrev="HTTP/1.1 Message Syntax and Routing">Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing</title> |
---|
29 | |
---|
30 | <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor"> |
---|
31 | <organization abbrev="Adobe">Adobe Systems Incorporated</organization> |
---|
32 | <address> |
---|
33 | <postal> |
---|
34 | <street>345 Park Ave</street> |
---|
35 | <city>San Jose</city> |
---|
36 | <region>CA</region> |
---|
37 | <code>95110</code> |
---|
38 | <country>USA</country> |
---|
39 | </postal> |
---|
40 | <email>fielding@gbiv.com</email> |
---|
41 | <uri>http://roy.gbiv.com/</uri> |
---|
42 | </address> |
---|
43 | </author> |
---|
44 | |
---|
45 | <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor"> |
---|
46 | <organization abbrev="greenbytes">greenbytes GmbH</organization> |
---|
47 | <address> |
---|
48 | <postal> |
---|
49 | <street>Hafenweg 16</street> |
---|
50 | <city>Muenster</city><region>NW</region><code>48155</code> |
---|
51 | <country>Germany</country> |
---|
52 | </postal> |
---|
53 | <email>julian.reschke@greenbytes.de</email> |
---|
54 | <uri>http://greenbytes.de/tech/webdav/</uri> |
---|
55 | </address> |
---|
56 | </author> |
---|
57 | |
---|
58 | <date month="May" year="2014"/> |
---|
59 | |
---|
60 | <area>Applications</area> |
---|
61 | <workgroup>HTTPbis Working Group</workgroup> |
---|
62 | |
---|
63 | <!-- [rfced] Please insert any keywords (beyond those that appear in |
---|
64 | the title) for use on http://www.rfc-editor.org/search. |
---|
65 | --> |
---|
66 | |
---|
67 | <keyword>example</keyword> |
---|
68 | |
---|
69 | |
---|
70 | <!-- [rfced] Throughout the text, the following terminology appears in |
---|
71 | two or more forms. |
---|
72 | |
---|
73 | a.) Please review these occurrences and let us know if/how they may be made |
---|
74 | consistent. |
---|
75 | |
---|
76 | Hyphenation: |
---|
77 | |
---|
78 | field-name vs. field name |
---|
79 | field-value vs. field value |
---|
80 | |
---|
81 | |
---|
82 | b.) We believe the forms on the right are the intended forms and will |
---|
83 | update (globally) as such unless we hear objection: |
---|
84 | |
---|
85 | Hyphenation: |
---|
86 | |
---|
87 | absolute form vs. absolute-form |
---|
88 | absolute URI vs. absolute-URI |
---|
89 | |
---|
90 | Quotation: |
---|
91 | |
---|
92 | header field name quotation |
---|
93 | e.g., "Expect" header field vs. Expect header field. |
---|
94 | |
---|
95 | Note: We believe the intention was to introduce the field names in double |
---|
96 | quotes. However, this isn't used consistently and subsequent uses are |
---|
97 | sometimes quoted as well. We will remove all quotation unless we hear |
---|
98 | otherwise. |
---|
99 | |
---|
100 | --> |
---|
101 | |
---|
102 | |
---|
103 | <abstract> |
---|
104 | <t> |
---|
105 | The Hypertext Transfer Protocol (HTTP) is a stateless application-level |
---|
106 | protocol for distributed, collaborative, hypertext information systems. |
---|
107 | This document provides an overview of HTTP architecture and its associated |
---|
108 | terminology, defines the "http" and "https" Uniform Resource Identifier |
---|
109 | (URI) schemes, defines the HTTP/1.1 message syntax and parsing |
---|
110 | requirements, and describes related security concerns for implementations. |
---|
111 | </t> |
---|
112 | </abstract> |
---|
113 | |
---|
114 | |
---|
115 | </front> |
---|
116 | <middle> |
---|
117 | <section title="Introduction" anchor="introduction"> |
---|
118 | <t> |
---|
119 | The Hypertext Transfer Protocol (HTTP) is a stateless application-level |
---|
120 | request/response protocol that uses extensible semantics and |
---|
121 | self-descriptive message payloads for flexible interaction with |
---|
122 | network-based hypertext information systems. This document is the first in |
---|
123 | a series of documents that collectively form the HTTP/1.1 specification: |
---|
124 | <list style="empty"> |
---|
125 | <t>RFC 7230: Message Syntax and Routing</t> |
---|
126 | <t>RFC 7231: Semantics and Content</t> |
---|
127 | <t>RFC 7232: Conditional Requests</t> |
---|
128 | <t>RFC 7233: Range Requests</t> |
---|
129 | <t>RFC 7234: Caching</t> |
---|
130 | <t>RFC 7235: Authentication</t> |
---|
131 | </list> |
---|
132 | </t> |
---|
133 | <t> |
---|
134 | This HTTP/1.1 specification obsoletes |
---|
135 | <xref target="RFC2616"/> and |
---|
136 | <xref target="RFC2145"/> (on HTTP versioning). |
---|
137 | This specification also updates the use of CONNECT, previously defined in RFC 2817, to establish a tunnel, and defines the "https" URI scheme that was described informally in |
---|
138 | RFC 2818. |
---|
139 | </t> |
---|
140 | <t> |
---|
141 | HTTP is a generic interface protocol for information systems. It is |
---|
142 | designed to hide the details of how a service is implemented by presenting |
---|
143 | a uniform interface to clients that is independent of the types of |
---|
144 | resources provided. Likewise, servers do not need to be aware of each |
---|
145 | client's purpose: an HTTP request can be considered in isolation rather |
---|
146 | than being associated with a specific type of client or a predetermined |
---|
147 | sequence of application steps. The result is a protocol that can be used |
---|
148 | effectively in many different contexts and for which implementations can |
---|
149 | evolve independently over time. |
---|
150 | </t> |
---|
151 | <t> |
---|
152 | HTTP is also designed for use as an intermediation protocol for translating |
---|
153 | communication to and from non-HTTP information systems. |
---|
154 | HTTP proxies and gateways can provide access to alternative information |
---|
155 | services by translating their diverse protocols into a hypertext |
---|
156 | format that can be viewed and manipulated by clients in the same way |
---|
157 | as HTTP services. |
---|
158 | </t> |
---|
159 | <t> |
---|
160 | One consequence of this flexibility is that the protocol cannot be |
---|
161 | defined in terms of what occurs behind the interface. Instead, we |
---|
162 | are limited to defining the syntax of communication, the intent |
---|
163 | of received communication, and the expected behavior of recipients. |
---|
164 | If the communication is considered in isolation, then successful |
---|
165 | actions ought to be reflected in corresponding changes to the |
---|
166 | observable interface provided by servers. However, since multiple |
---|
167 | clients might act in parallel and perhaps at cross-purposes, we |
---|
168 | cannot require that such changes be observable beyond the scope |
---|
169 | of a single response. |
---|
170 | </t> |
---|
171 | <t> |
---|
172 | This document describes the architectural elements that are used or |
---|
173 | referred to in HTTP, defines the "http" and "https" URI schemes, |
---|
174 | describes overall network operation and connection management, |
---|
175 | and defines HTTP message framing and forwarding requirements. |
---|
176 | Our goal is to define all of the mechanisms necessary for HTTP message |
---|
177 | handling that are independent of message semantics, thereby defining the |
---|
178 | complete set of requirements for message parsers and |
---|
179 | message-forwarding intermediaries. |
---|
180 | </t> |
---|
181 | |
---|
182 | |
---|
183 | <section title="Requirements Notation" anchor="intro.requirements"> |
---|
184 | <t> |
---|
185 | The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", |
---|
186 | "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this |
---|
187 | document are to be interpreted as described in <xref target="RFC2119"/>. |
---|
188 | </t> |
---|
189 | <t> |
---|
190 | Conformance criteria and considerations regarding error handling |
---|
191 | are defined in <xref target="conformance"/>. |
---|
192 | </t> |
---|
193 | </section> |
---|
194 | |
---|
195 | <section title="Syntax Notation" anchor="notation"> |
---|
196 | <iref primary="true" item="Grammar" subitem="ALPHA"/> |
---|
197 | <iref primary="true" item="Grammar" subitem="CR"/> |
---|
198 | <iref primary="true" item="Grammar" subitem="CRLF"/> |
---|
199 | <iref primary="true" item="Grammar" subitem="CTL"/> |
---|
200 | <iref primary="true" item="Grammar" subitem="DIGIT"/> |
---|
201 | <iref primary="true" item="Grammar" subitem="DQUOTE"/> |
---|
202 | <iref primary="true" item="Grammar" subitem="HEXDIG"/> |
---|
203 | <iref primary="true" item="Grammar" subitem="HTAB"/> |
---|
204 | <iref primary="true" item="Grammar" subitem="LF"/> |
---|
205 | <iref primary="true" item="Grammar" subitem="OCTET"/> |
---|
206 | <iref primary="true" item="Grammar" subitem="SP"/> |
---|
207 | <iref primary="true" item="Grammar" subitem="VCHAR"/> |
---|
208 | <t> |
---|
209 | This specification uses the Augmented Backus-Naur Form (ABNF) notation of |
---|
210 | <xref target="RFC5234"/> with a list extension, defined in |
---|
211 | <xref target="abnf.extension"/>, that allows for compact definition of |
---|
212 | comma-separated lists using a '#' operator (similar to how the '*' operator |
---|
213 | indicates repetition). |
---|
214 | <xref target="collected.abnf"/> shows the collected grammar with all list |
---|
215 | operators expanded to standard ABNF notation. |
---|
216 | </t> |
---|
217 | <t anchor="core.rules"> |
---|
218 | |
---|
219 | |
---|
220 | |
---|
221 | |
---|
222 | |
---|
223 | |
---|
224 | |
---|
225 | |
---|
226 | |
---|
227 | |
---|
228 | |
---|
229 | |
---|
230 | The following core rules are included by |
---|
231 | reference, as defined in <xref target="RFC5234"/>, Appendix B.1: |
---|
232 | ALPHA (letters), CR (carriage return), CRLF (CR LF), CTL (controls), |
---|
233 | DIGIT (decimal 0-9), DQUOTE (double quote), |
---|
234 | HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF (line feed), |
---|
235 | OCTET (any 8-bit sequence of data), SP (space), and |
---|
236 | VCHAR (any visible <xref target="USASCII"/> character). |
---|
237 | </t> |
---|
238 | <t> |
---|
239 | As a convention, ABNF rule names prefixed with "obs-" denote |
---|
240 | "obsolete" grammar rules that appear for historical reasons. |
---|
241 | </t> |
---|
242 | </section> |
---|
243 | </section> |
---|
244 | |
---|
245 | <section title="Architecture" anchor="architecture"> |
---|
246 | <t> |
---|
247 | HTTP was created for the World Wide Web (WWW) architecture |
---|
248 | and has evolved over time to support the scalability needs of a worldwide |
---|
249 | hypertext system. Much of that architecture is reflected in the terminology |
---|
250 | and syntax productions used to define HTTP. |
---|
251 | </t> |
---|
252 | |
---|
253 | <section title="Client/Server Messaging" anchor="operation"> |
---|
254 | <iref primary="true" item="client"/> |
---|
255 | <iref primary="true" item="server"/> |
---|
256 | <iref primary="true" item="connection"/> |
---|
257 | <t> |
---|
258 | |
---|
259 | <!--[rfced] Please note that we have made occurrences of "transport |
---|
260 | and session-layer" appear as "transport- and session-layer" (meaning |
---|
261 | transport-layer and session-layer). If this is in error, please let |
---|
262 | us know. |
---|
263 | |
---|
264 | --> |
---|
265 | HTTP is a stateless request/response protocol that operates by exchanging |
---|
266 | messages (<xref target="http.message"/>) across a reliable |
---|
267 | transport- or session-layer |
---|
268 | "connection" (<xref target="connection.management"/>). |
---|
269 | An HTTP "client" is a program that establishes a connection |
---|
270 | to a server for the purpose of sending one or more HTTP requests. |
---|
271 | An HTTP "server" is a program that accepts connections |
---|
272 | in order to service HTTP requests by sending HTTP responses. |
---|
273 | </t> |
---|
274 | <iref primary="true" item="user agent"/> |
---|
275 | <iref primary="true" item="origin server"/> |
---|
276 | <iref primary="true" item="browser"/> |
---|
277 | <iref primary="true" item="spider"/> |
---|
278 | <iref primary="true" item="sender"/> |
---|
279 | <iref primary="true" item="recipient"/> |
---|
280 | <t> |
---|
281 | The terms "client" and "server" refer only to the roles that |
---|
282 | these programs perform for a particular connection. The same program |
---|
283 | might act as a client on some connections and a server on others. |
---|
284 | The term "user agent" refers to any of the various |
---|
285 | client programs that initiate a request, including (but not limited to) |
---|
286 | browsers, spiders (web-based robots), command-line tools, custom |
---|
287 | applications, and mobile apps. |
---|
288 | The term "origin server" refers to the program that can |
---|
289 | originate authoritative responses for a given target resource. |
---|
290 | The terms "sender" and "recipient" refer to |
---|
291 | any implementation that sends or receives a given message, respectively. |
---|
292 | </t> |
---|
293 | <t> |
---|
294 | HTTP relies upon the Uniform Resource Identifier (URI) |
---|
295 | standard <xref target="RFC3986"/> to indicate the target resource |
---|
296 | (<xref target="target-resource"/>) and relationships between resources. |
---|
297 | Messages are passed in a format similar to that used by Internet mail |
---|
298 | <xref target="RFC5322"/> and the Multipurpose Internet Mail Extensions |
---|
299 | (MIME) <xref target="RFC2045"/> (see Appendix A of <xref target="RFC7231"/> for the differences |
---|
300 | between HTTP and MIME messages). |
---|
301 | </t> |
---|
302 | <t> |
---|
303 | Most HTTP communication consists of a retrieval request (GET) for |
---|
304 | a representation of some resource identified by a URI. In the |
---|
305 | simplest case, this might be accomplished via a single bidirectional |
---|
306 | connection (===) between the user agent (UA) and the origin server (O). |
---|
307 | </t> |
---|
308 | <figure><artwork type="drawing"><![CDATA[ |
---|
309 | request > |
---|
310 | UA ======================================= O |
---|
311 | < response |
---|
312 | ]]></artwork></figure> |
---|
313 | <iref primary="true" item="message"/> |
---|
314 | <iref primary="true" item="request"/> |
---|
315 | <iref primary="true" item="response"/> |
---|
316 | <t> |
---|
317 | A client sends an HTTP request to a server in the form of a request |
---|
318 | message, beginning with a request-line that includes a method, URI, and |
---|
319 | protocol version (<xref target="request.line"/>), |
---|
320 | followed by header fields containing |
---|
321 | request modifiers, client information, and representation metadata |
---|
322 | (<xref target="header.fields"/>), |
---|
323 | an empty line to indicate the end of the header section, and finally |
---|
324 | a message body containing the payload body (if any, |
---|
325 | <xref target="message.body"/>). |
---|
326 | </t> |
---|
327 | <t> |
---|
328 | A server responds to a client's request by sending one or more HTTP |
---|
329 | response |
---|
330 | messages, each beginning with a status line that |
---|
331 | includes the protocol version, a success or error code, and textual |
---|
332 | reason phrase (<xref target="status.line"/>), |
---|
333 | possibly followed by header fields containing server |
---|
334 | information, resource metadata, and representation metadata |
---|
335 | (<xref target="header.fields"/>), |
---|
336 | an empty line to indicate the end of the header section, and finally |
---|
337 | a message body containing the payload body (if any, |
---|
338 | <xref target="message.body"/>). |
---|
339 | </t> |
---|
340 | <t> |
---|
341 | A connection might be used for multiple request/response exchanges, |
---|
342 | as defined in <xref target="persistent.connections"/>. |
---|
343 | </t> |
---|
344 | <t> |
---|
345 | The following example illustrates a typical message exchange for a |
---|
346 | GET request (Section 4.3.1 of <xref target="RFC7231"/>) on the URI "http://www.example.com/hello.txt": |
---|
347 | </t> |
---|
348 | <figure><preamble> |
---|
349 | Client request: |
---|
350 | </preamble><artwork type="message/http; msgtype="request""><![CDATA[ |
---|
351 | GET /hello.txt HTTP/1.1 |
---|
352 | User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3 |
---|
353 | Host: www.example.com |
---|
354 | Accept-Language: en, mi |
---|
355 | |
---|
356 | ]]></artwork></figure> |
---|
357 | <figure><preamble> |
---|
358 | Server response: |
---|
359 | </preamble><artwork type="message/http; msgtype="response""><![CDATA[ |
---|
360 | HTTP/1.1 200 OK |
---|
361 | Date: Mon, 27 Jul 2009 12:28:53 GMT |
---|
362 | Server: Apache |
---|
363 | Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT |
---|
364 | ETag: "34aa387-d-1568eb00" |
---|
365 | Accept-Ranges: bytes |
---|
366 | Content-Length: 51 |
---|
367 | Vary: Accept-Encoding |
---|
368 | Content-Type: text/plain |
---|
369 | |
---|
370 | Hello World! My payload includes a trailing CRLF. |
---|
371 | ]]></artwork> |
---|
372 | </figure> |
---|
373 | </section> |
---|
374 | |
---|
375 | <section title="Implementation Diversity" anchor="implementation-diversity"> |
---|
376 | <t> |
---|
377 | When considering the design of HTTP, it is easy to fall into a trap of |
---|
378 | thinking that all user agents are general-purpose browsers and all origin |
---|
379 | servers are large public websites. That is not the case in practice. |
---|
380 | Common HTTP user agents include household appliances, stereos, scales, |
---|
381 | firmware update scripts, command-line programs, mobile apps, |
---|
382 | and communication devices in a multitude of shapes and sizes. Likewise, |
---|
383 | common HTTP origin servers include home automation units, configurable |
---|
384 | networking components, office machines, autonomous robots, news feeds, |
---|
385 | traffic cameras, ad selectors, and video-delivery platforms. |
---|
386 | </t> |
---|
387 | <t> |
---|
388 | The term "user agent" does not imply that there is a human user directly |
---|
389 | interacting with the software agent at the time of a request. In many |
---|
390 | cases, a user agent is installed or configured to run in the background |
---|
391 | and save its results for later inspection (or save only a subset of those |
---|
392 | results that might be interesting or erroneous). Spiders, for example, are |
---|
393 | typically given a start URI and configured to follow certain behavior while |
---|
394 | crawling the Web as a hypertext graph. |
---|
395 | </t> |
---|
396 | <t> |
---|
397 | The implementation diversity of HTTP means that not all user agents can |
---|
398 | make interactive suggestions to their user or provide adequate warning for |
---|
399 | security or privacy concerns. In the few cases where this |
---|
400 | specification requires reporting of errors to the user, it is acceptable |
---|
401 | for such reporting to only be observable in an error console or log file. |
---|
402 | Likewise, requirements that an automated action be confirmed by the user |
---|
403 | before proceeding might be met via advance configuration choices, |
---|
404 | run-time options, or simple avoidance of the unsafe action; confirmation |
---|
405 | does not imply any specific user interface or interruption of normal |
---|
406 | processing if the user has already made that choice. |
---|
407 | </t> |
---|
408 | </section> |
---|
409 | |
---|
410 | <section title="Intermediaries" anchor="intermediaries"> |
---|
411 | <iref primary="true" item="intermediary"/> |
---|
412 | <t> |
---|
413 | HTTP enables the use of intermediaries to satisfy requests through |
---|
414 | a chain of connections. There are three common forms of HTTP |
---|
415 | intermediary: proxy, gateway, and tunnel. In some cases, |
---|
416 | a single intermediary might act as an origin server, proxy, gateway, |
---|
417 | or tunnel, switching behavior based on the nature of each request. |
---|
418 | </t> |
---|
419 | <figure><artwork type="drawing"><![CDATA[ |
---|
420 | > > > > |
---|
421 | UA =========== A =========== B =========== C =========== O |
---|
422 | < < < < |
---|
423 | ]]></artwork></figure> |
---|
424 | <t> |
---|
425 | The figure above shows three intermediaries (A, B, and C) between the |
---|
426 | user agent and origin server. A request or response message that |
---|
427 | travels the whole chain will pass through four separate connections. |
---|
428 | Some HTTP communication options |
---|
429 | might apply only to the connection with the nearest, non-tunnel |
---|
430 | neighbor, only to the endpoints of the chain, or to all connections |
---|
431 | along the chain. Although the diagram is linear, each participant might |
---|
432 | be engaged in multiple, simultaneous communications. For example, B |
---|
433 | might be receiving requests from many clients other than A, and/or |
---|
434 | forwarding requests to servers other than C, at the same time that it |
---|
435 | is handling A's request. Likewise, later requests might be sent through a |
---|
436 | different path of connections, often based on dynamic configuration for |
---|
437 | load balancing. |
---|
438 | </t> |
---|
439 | <t> |
---|
440 | <iref primary="true" item="upstream"/><iref primary="true" item="downstream"/> |
---|
441 | <iref primary="true" item="inbound"/><iref primary="true" item="outbound"/> |
---|
442 | The terms "upstream" and "downstream" are |
---|
443 | used to describe directional requirements in relation to the message flow: |
---|
444 | all messages flow from upstream to downstream. |
---|
445 | The terms "inbound" and "outbound" are used to describe directional |
---|
446 | requirements in relation to the request route: |
---|
447 | "inbound" means toward the origin server and |
---|
448 | "outbound" means toward the user agent. |
---|
449 | </t> |
---|
450 | <t><iref primary="true" item="proxy"/> |
---|
451 | A "proxy" is a message-forwarding agent that is selected by the |
---|
452 | client, usually via local configuration rules, to receive requests |
---|
453 | for some type(s) of absolute URI and attempt to satisfy those |
---|
454 | requests via translation through the HTTP interface. Some translations |
---|
455 | are minimal, such as for proxy requests for "http" URIs, whereas |
---|
456 | other requests might require translation to and from entirely different |
---|
457 | application-level protocols. Proxies are often used to group an |
---|
458 | organization's HTTP requests through a common intermediary for the |
---|
459 | sake of security, annotation services, or shared caching. Some proxies |
---|
460 | are designed to apply transformations to selected messages or payloads |
---|
461 | while they are being forwarded, as described in |
---|
462 | <xref target="message.transformations"/>. |
---|
463 | </t> |
---|
464 | <t><iref primary="true" item="gateway"/><iref primary="true" item="reverse proxy"/> |
---|
465 | <iref primary="true" item="accelerator"/> |
---|
466 | A "gateway" (a.k.a. "reverse proxy") is an |
---|
467 | intermediary that acts as an origin server for the outbound connection but |
---|
468 | translates received requests and forwards them inbound to another server or |
---|
469 | servers. Gateways are often used to encapsulate legacy or untrusted |
---|
470 | information services, to improve server performance through |
---|
471 | "accelerator" caching, and to enable partitioning or load |
---|
472 | balancing of HTTP services across multiple machines. |
---|
473 | </t> |
---|
474 | <t> |
---|
475 | All HTTP requirements applicable to an origin server |
---|
476 | also apply to the outbound communication of a gateway. |
---|
477 | A gateway communicates with inbound servers using any protocol that |
---|
478 | it desires, including private extensions to HTTP that are outside |
---|
479 | the scope of this specification. However, an HTTP-to-HTTP gateway |
---|
480 | that wishes to interoperate with third-party HTTP servers ought to conform |
---|
481 | to user-agent requirements on the gateway's inbound connection. |
---|
482 | </t> |
---|
483 | <t><iref primary="true" item="tunnel"/> |
---|
484 | A "tunnel" acts as a blind relay between two connections |
---|
485 | without changing the messages. Once active, a tunnel is not |
---|
486 | considered a party to the HTTP communication, though the tunnel might |
---|
487 | have been initiated by an HTTP request. A tunnel ceases to exist when |
---|
488 | both ends of the relayed connection are closed. Tunnels are used to |
---|
489 | extend a virtual connection through an intermediary, such as when |
---|
490 | Transport Layer Security (TLS, <xref target="RFC5246"/>) is used to |
---|
491 | establish confidential communication through a shared firewall proxy. |
---|
492 | </t> |
---|
493 | <t> |
---|
494 | The above categories for intermediary only consider those acting as |
---|
495 | participants in the HTTP communication. There are also intermediaries |
---|
496 | that can act on lower layers of the network protocol stack, filtering or |
---|
497 | redirecting HTTP traffic without the knowledge or permission of message |
---|
498 | senders. Network intermediaries are indistinguishable (at a protocol level) |
---|
499 | from a man-in-the-middle attack, often introducing security flaws or |
---|
500 | interoperability problems due to mistakenly violating HTTP semantics. |
---|
501 | </t> |
---|
502 | <t><iref primary="true" item="interception proxy"/> |
---|
503 | <iref primary="true" item="transparent proxy"/> |
---|
504 | <iref primary="true" item="captive portal"/> |
---|
505 | For example, an |
---|
506 | "interception proxy" <xref target="RFC3040"/> (also commonly |
---|
507 | known as a "transparent proxy" <xref target="RFC1919"/> or |
---|
508 | "captive portal") |
---|
509 | differs from an HTTP proxy because it is not selected by the client. |
---|
510 | Instead, an interception proxy filters or redirects outgoing TCP port 80 |
---|
511 | packets (and occasionally other common port traffic). |
---|
512 | Interception proxies are commonly found on public network access points, |
---|
513 | as a means of enforcing account subscription prior to allowing use of |
---|
514 | non-local Internet services, and within corporate firewalls to enforce |
---|
515 | network usage policies. |
---|
516 | </t> |
---|
517 | <t> |
---|
518 | HTTP is defined as a stateless protocol, meaning that each request message |
---|
519 | can be understood in isolation. Many implementations depend on HTTP's |
---|
520 | stateless design in order to reuse proxied connections or dynamically |
---|
521 | load balance requests across multiple servers. Hence, a server MUST NOT |
---|
522 | assume that two requests on the same connection are from the same user |
---|
523 | agent unless the connection is secured and specific to that agent. |
---|
524 | Some non-standard HTTP extensions (e.g., <xref target="RFC4559"/>) have |
---|
525 | been known to violate this requirement, resulting in security and |
---|
526 | interoperability problems. |
---|
527 | </t> |
---|
528 | </section> |
---|
529 | |
---|
530 | <section title="Caches" anchor="caches"> |
---|
531 | <iref primary="true" item="cache"/> |
---|
532 | <t> |
---|
533 | A "cache" is a local store of previous response messages and the |
---|
534 | subsystem that controls its message storage, retrieval, and deletion. |
---|
535 | A cache stores cacheable responses in order to reduce the response |
---|
536 | time and network bandwidth consumption on future, equivalent |
---|
537 | requests. Any client or server MAY employ a cache, though a cache |
---|
538 | cannot be used by a server while it is acting as a tunnel. |
---|
539 | </t> |
---|
540 | <t> |
---|
541 | The effect of a cache is that the request/response chain is shortened |
---|
542 | if one of the participants along the chain has a cached response |
---|
543 | applicable to that request. The following illustrates the resulting |
---|
544 | chain if B has a cached copy of an earlier response from O (via C) |
---|
545 | for a request that has not been cached by UA or A. |
---|
546 | </t> |
---|
547 | <figure><artwork type="drawing"><![CDATA[ |
---|
548 | > > |
---|
549 | UA =========== A =========== B - - - - - - C - - - - - - O |
---|
550 | < < |
---|
551 | ]]></artwork></figure> |
---|
552 | <t><iref primary="true" item="cacheable"/> |
---|
553 | A response is "cacheable" if a cache is allowed to store a copy of |
---|
554 | the response message for use in answering subsequent requests. |
---|
555 | Even when a response is cacheable, there might be additional |
---|
556 | constraints placed by the client or by the origin server on when |
---|
557 | that cached response can be used for a particular request. HTTP |
---|
558 | requirements for cache behavior and cacheable responses are |
---|
559 | defined in Section 2 of <xref target="RFC7234"/>. |
---|
560 | </t> |
---|
561 | <t> |
---|
562 | There is a wide variety of architectures and configurations |
---|
563 | of caches deployed across the World Wide Web and |
---|
564 | inside large organizations. These include national hierarchies |
---|
565 | of proxy caches to save transoceanic bandwidth, collaborative systems that |
---|
566 | broadcast or multicast cache entries, archives of pre-fetched cache |
---|
567 | entries for use in off-line or high-latency environments, and so on. |
---|
568 | </t> |
---|
569 | </section> |
---|
570 | |
---|
571 | <section title="Conformance and Error Handling" anchor="conformance"> |
---|
572 | <t> |
---|
573 | This specification targets conformance criteria according to the role of |
---|
574 | a participant in HTTP communication. Hence, HTTP requirements are placed |
---|
575 | on senders, recipients, clients, servers, user agents, intermediaries, |
---|
576 | origin servers, proxies, gateways, or caches, depending on what behavior |
---|
577 | is being constrained by the requirement. Additional (social) requirements |
---|
578 | are placed on implementations, resource owners, and protocol element |
---|
579 | registrations when they apply beyond the scope of a single communication. |
---|
580 | </t> |
---|
581 | <t> |
---|
582 | The verb "generate" is used instead of "send" where a requirement |
---|
583 | differentiates between creating a protocol element and merely forwarding a |
---|
584 | received element downstream. |
---|
585 | </t> |
---|
586 | <t> |
---|
587 | An implementation is considered conformant if it complies with all of the |
---|
588 | requirements associated with the roles it partakes in HTTP. |
---|
589 | </t> |
---|
590 | <t> |
---|
591 | Conformance includes both the syntax and semantics of protocol |
---|
592 | elements. A sender MUST NOT generate protocol elements that convey a |
---|
593 | meaning that is known by that sender to be false. A sender MUST NOT |
---|
594 | generate protocol elements that do not match the grammar defined by the |
---|
595 | corresponding ABNF rules. Within a given message, a sender MUST NOT |
---|
596 | generate protocol elements or syntax alternatives that are only allowed to |
---|
597 | be generated by participants in other roles (i.e., a role that the sender |
---|
598 | does not have for that message). |
---|
599 | </t> |
---|
600 | <t> |
---|
601 | When a received protocol element is parsed, the recipient MUST be able to |
---|
602 | parse any value of reasonable length that is applicable to the recipient's |
---|
603 | role and that matches the grammar defined by the corresponding ABNF rules. |
---|
604 | Note, however, that some received protocol elements might not be parsed. |
---|
605 | For example, an intermediary forwarding a message might parse a |
---|
606 | header-field into generic field-name and field-value components, but then |
---|
607 | forward the header field without further parsing inside the field-value. |
---|
608 | </t> |
---|
609 | <t> |
---|
610 | HTTP does not have specific length limitations for many of its protocol |
---|
611 | elements because the lengths that might be appropriate will vary widely, |
---|
612 | depending on the deployment context and purpose of the implementation. |
---|
613 | Hence, interoperability between senders and recipients depends on shared |
---|
614 | expectations regarding what is a reasonable length for each protocol |
---|
615 | element. Furthermore, what is commonly understood to be a reasonable length |
---|
616 | for some protocol elements has changed over the course of the past two |
---|
617 | decades of HTTP use and is expected to continue changing in the future. |
---|
618 | </t> |
---|
619 | <t> |
---|
620 | At a minimum, a recipient MUST be able to parse and process protocol |
---|
621 | element lengths that are at least as long as the values that it generates |
---|
622 | for those same protocol elements in other messages. For example, an origin |
---|
623 | server that publishes very long URI references to its own resources needs |
---|
624 | to be able to parse and process those same references when received as a |
---|
625 | request target. |
---|
626 | </t> |
---|
627 | <t> |
---|
628 | A recipient MUST interpret a received protocol element according to the |
---|
629 | semantics defined for it by this specification, including extensions to |
---|
630 | this specification, unless the recipient has determined (through experience |
---|
631 | or configuration) that the sender incorrectly implements what is implied by |
---|
632 | those semantics. |
---|
633 | For example, an origin server might disregard the contents of a received |
---|
634 | Accept-Encoding header field if inspection of the |
---|
635 | User-Agent header field indicates a specific implementation |
---|
636 | version that is known to fail on receipt of certain content codings. |
---|
637 | </t> |
---|
638 | <t> |
---|
639 | Unless noted otherwise, a recipient MAY attempt to recover a usable |
---|
640 | protocol element from an invalid construct. HTTP does not define |
---|
641 | specific error handling mechanisms except when they have a direct impact |
---|
642 | on security, since different applications of the protocol require |
---|
643 | different error handling strategies. For example, a Web browser might |
---|
644 | wish to transparently recover from a response where the |
---|
645 | Location header field doesn't parse according to the ABNF, |
---|
646 | whereas a systems control client might consider any form of error recovery |
---|
647 | to be dangerous. |
---|
648 | </t> |
---|
649 | </section> |
---|
650 | |
---|
651 | <section title="Protocol Versioning" anchor="http.version"> |
---|
652 | |
---|
653 | |
---|
654 | <t> |
---|
655 | HTTP uses a "<major>.<minor>" numbering scheme to indicate |
---|
656 | versions of the protocol. This specification defines version "1.1". |
---|
657 | The protocol version as a whole indicates the sender's conformance |
---|
658 | with the set of requirements laid out in that version's corresponding |
---|
659 | specification of HTTP. |
---|
660 | </t> |
---|
661 | <t> |
---|
662 | The version of an HTTP message is indicated by an HTTP-version field |
---|
663 | in the first line of the message. HTTP-version is case sensitive. |
---|
664 | </t> |
---|
665 | <figure><iref primary="true" item="Grammar" subitem="HTTP-version"/><iref primary="true" item="Grammar" subitem="HTTP-name"/><artwork type="abnf2616"><![CDATA[ |
---|
666 | HTTP-version = HTTP-name "/" DIGIT "." DIGIT |
---|
667 | HTTP-name = %x48.54.54.50 ; "HTTP", case sensitive |
---|
668 | ]]></artwork></figure> |
---|
669 | <t> |
---|
670 | The HTTP version number consists of two decimal digits separated by a "." |
---|
671 | (period or decimal point). The first digit ("major version") indicates the |
---|
672 | HTTP messaging syntax, whereas the second digit ("minor version") indicates |
---|
673 | the highest minor version within that major version to which the sender is |
---|
674 | conformant and able to understand for future communication. The minor |
---|
675 | version advertises the sender's communication capabilities even when the |
---|
676 | sender is only using a backwards-compatible subset of the protocol, |
---|
677 | thereby letting the recipient know that more advanced features can |
---|
678 | be used in response (by servers) or in future requests (by clients). |
---|
679 | </t> |
---|
680 | <t> |
---|
681 | When an HTTP/1.1 message is sent to an HTTP/1.0 recipient |
---|
682 | <xref target="RFC1945"/> or a recipient whose version is unknown, |
---|
683 | the HTTP/1.1 message is constructed such that it can be interpreted |
---|
684 | as a valid HTTP/1.0 message if all of the newer features are ignored. |
---|
685 | This specification places recipient-version requirements on some |
---|
686 | new features so that a conformant sender will only use compatible |
---|
687 | features until it has determined, through configuration or the |
---|
688 | receipt of a message, that the recipient supports HTTP/1.1. |
---|
689 | </t> |
---|
690 | <t> |
---|
691 | The interpretation of a header field does not change between minor |
---|
692 | versions of the same major HTTP version, though the default |
---|
693 | behavior of a recipient in the absence of such a field can change. |
---|
694 | Unless specified otherwise, header fields defined in HTTP/1.1 are |
---|
695 | defined for all versions of HTTP/1.x. In particular, the <xref target="header.host" format="none">Host</xref> |
---|
696 | and <xref target="header.connection" format="none">Connection</xref> header fields ought to be implemented by all |
---|
697 | HTTP/1.x implementations whether or not they advertise conformance with |
---|
698 | HTTP/1.1. |
---|
699 | </t> |
---|
700 | <t> |
---|
701 | New header fields can be introduced without changing the protocol version |
---|
702 | if their defined semantics allow them to be safely ignored by recipients |
---|
703 | that do not recognize them. Header-field extensibility is discussed in |
---|
704 | <xref target="field.extensibility"/>. |
---|
705 | </t> |
---|
706 | <t> |
---|
707 | Intermediaries that process HTTP messages (i.e., all intermediaries |
---|
708 | other than those acting as tunnels) MUST send their own HTTP-version |
---|
709 | in forwarded messages. In other words, they are not allowed to blindly |
---|
710 | forward the first line of an HTTP message without ensuring that the |
---|
711 | protocol version in that message matches a version to which that |
---|
712 | intermediary is conformant for both the receiving and |
---|
713 | sending of messages. Forwarding an HTTP message without rewriting |
---|
714 | the HTTP-version might result in communication errors when downstream |
---|
715 | recipients use the message sender's version to determine what features |
---|
716 | are safe to use for later communication with that sender. |
---|
717 | </t> |
---|
718 | <t> |
---|
719 | A client SHOULD send a request version equal to the highest |
---|
720 | version to which the client is conformant and |
---|
721 | whose major version is no higher than the highest version supported |
---|
722 | by the server, if this is known. A client MUST NOT send a |
---|
723 | version to which it is not conformant. |
---|
724 | </t> |
---|
725 | <t> |
---|
726 | A client MAY send a lower request version if it is known that |
---|
727 | the server incorrectly implements the HTTP specification, but only |
---|
728 | after the client has attempted at least one normal request and determined |
---|
729 | from the response status code or header fields (e.g., Server) that |
---|
730 | the server improperly handles higher request versions. |
---|
731 | </t> |
---|
732 | <t> |
---|
733 | A server SHOULD send a response version equal to the highest version to |
---|
734 | which the server is conformant that has a major version less than or equal |
---|
735 | to the one received in the request. |
---|
736 | A server MUST NOT send a version to which it is not conformant. |
---|
737 | A server can send a 505 (HTTP Version Not Supported) |
---|
738 | response if it wishes, for any reason, to refuse service of the client's |
---|
739 | major protocol version. |
---|
740 | </t> |
---|
741 | <t> |
---|
742 | A server MAY send an HTTP/1.0 response to a request |
---|
743 | if it is known or suspected that the client incorrectly implements the |
---|
744 | HTTP specification and is incapable of correctly processing later |
---|
745 | version responses, such as when a client fails to parse the version |
---|
746 | number correctly or when an intermediary is known to blindly forward |
---|
747 | the HTTP-version even when it doesn't conform to the given minor |
---|
748 | version of the protocol. Such protocol downgrades SHOULD NOT be |
---|
749 | performed unless triggered by specific client attributes, such as when |
---|
750 | one or more of the request header fields (e.g., User-Agent) |
---|
751 | uniquely match the values sent by a client known to be in error. |
---|
752 | </t> |
---|
753 | <t> |
---|
754 | The intention of HTTP's versioning design is that the major number |
---|
755 | will only be incremented if an incompatible message syntax is |
---|
756 | introduced, and that the minor number will only be incremented when |
---|
757 | changes made to the protocol have the effect of adding to the message |
---|
758 | semantics or implying additional capabilities of the sender. However, |
---|
759 | the minor version was not incremented for the changes introduced between |
---|
760 | <xref target="RFC2068"/> and <xref target="RFC2616"/>, and this revision |
---|
761 | has specifically avoided any such changes to the protocol. |
---|
762 | </t> |
---|
763 | <t> |
---|
764 | When an HTTP message is received with a major version number that the |
---|
765 | recipient implements, but a higher minor version number than what the |
---|
766 | recipient implements, the recipient SHOULD process the message as if it |
---|
767 | were in the highest minor version within that major version to which the |
---|
768 | recipient is conformant. A recipient can assume that a message with a |
---|
769 | higher minor version, when sent to a recipient that has not yet indicated |
---|
770 | support for that higher version, is sufficiently backwards compatible to be |
---|
771 | safely processed by any implementation of the same major version. |
---|
772 | </t> |
---|
773 | </section> |
---|
774 | |
---|
775 | <section title="Uniform Resource Identifiers" anchor="uri"> |
---|
776 | <iref primary="true" item="resource"/> |
---|
777 | <t> |
---|
778 | Uniform Resource Identifiers (URIs) <xref target="RFC3986"/> are used |
---|
779 | throughout HTTP as the means for identifying resources (Section 2 of <xref target="RFC7231"/>). |
---|
780 | URI references are used to target requests, indicate redirects, and define |
---|
781 | relationships. |
---|
782 | </t> |
---|
783 | |
---|
784 | |
---|
785 | |
---|
786 | |
---|
787 | |
---|
788 | |
---|
789 | |
---|
790 | |
---|
791 | |
---|
792 | |
---|
793 | |
---|
794 | |
---|
795 | |
---|
796 | |
---|
797 | <t> |
---|
798 | The definitions of "URI-reference", |
---|
799 | "absolute-URI", "relative-part", "scheme", "authority", "port", "host", |
---|
800 | "path-abempty", "segment", "query", and "fragment" are adopted from the |
---|
801 | URI generic syntax. |
---|
802 | An "absolute-path" rule is defined for protocol elements that can contain a |
---|
803 | non-empty path component. (This rule differs slightly from the |
---|
804 | path-abempty rule of RFC 3986, which allows for an empty path to be used in references, |
---|
805 | and path-absolute rule, which does not allow paths that begin with "//".) |
---|
806 | A "partial-URI" rule is defined for protocol elements |
---|
807 | that can contain a relative URI but not a fragment component. |
---|
808 | </t> |
---|
809 | <figure><iref primary="true" item="Grammar" subitem="URI-reference"><!--exported production--></iref><iref primary="true" item="Grammar" subitem="absolute-URI"/><iref primary="true" item="Grammar" subitem="scheme"/><iref primary="true" item="Grammar" subitem="authority"/><iref primary="true" item="Grammar" subitem="absolute-path"/><iref primary="true" item="Grammar" subitem="port"/><iref primary="true" item="Grammar" subitem="query"/><iref primary="true" item="Grammar" subitem="fragment"/><iref primary="true" item="Grammar" subitem="segment"/><iref primary="true" item="Grammar" subitem="uri-host"/><iref primary="true" item="Grammar" subitem="partial-URI"><!--exported production--></iref><artwork type="abnf2616"><![CDATA[ |
---|
810 | URI-reference = <URI-reference, defined in [RFC3986], Section 4.1> |
---|
811 | absolute-URI = <absolute-URI, defined in [RFC3986], Section 4.3> |
---|
812 | relative-part = <relative-part, defined in [RFC3986], Section 4.2> |
---|
813 | scheme = <scheme, defined in [RFC3986], Section 3.1> |
---|
814 | authority = <authority, defined in [RFC3986], Section 3.2> |
---|
815 | uri-host = <host, defined in [RFC3986], Section 3.2.2> |
---|
816 | port = <port, defined in [RFC3986], Section 3.2.3> |
---|
817 | path-abempty = <path-abempty, defined in [RFC3986], Section 3.3> |
---|
818 | segment = <segment, defined in [RFC3986], Section 3.3> |
---|
819 | query = <query, defined in [RFC3986], Section 3.4> |
---|
820 | fragment = <fragment, defined in [RFC3986], Section 3.5> |
---|
821 | |
---|
822 | absolute-path = 1*( "/" segment ) |
---|
823 | partial-URI = relative-part [ "?" query ] |
---|
824 | ]]></artwork></figure> |
---|
825 | <t> |
---|
826 | Each protocol element in HTTP that allows a URI reference will indicate |
---|
827 | in its ABNF production whether the element allows any form of reference |
---|
828 | (URI-reference), only a URI in absolute form (absolute-URI), only the |
---|
829 | path and optional query components, or some combination of the above. |
---|
830 | Unless otherwise indicated, URI references are parsed |
---|
831 | relative to the effective request URI |
---|
832 | (<xref target="effective.request.uri"/>). |
---|
833 | </t> |
---|
834 | |
---|
835 | <section title="http URI Scheme" anchor="http.uri"> |
---|
836 | |
---|
837 | <iref item="http URI scheme" primary="true"/> |
---|
838 | <iref item="URI scheme" subitem="http" primary="true"/> |
---|
839 | <t> |
---|
840 | The "http" URI scheme is hereby defined for the purpose of minting |
---|
841 | identifiers according to their association with the hierarchical |
---|
842 | namespace governed by a potential HTTP origin server listening for |
---|
843 | TCP (<xref target="RFC793"/>) connections on a given port. |
---|
844 | </t> |
---|
845 | <figure><iref primary="true" item="Grammar" subitem="http-URI"><!--terminal production--></iref><artwork type="abnf2616"><![CDATA[ |
---|
846 | http-URI = "http:" "//" authority path-abempty [ "?" query ] |
---|
847 | [ "#" fragment ] |
---|
848 | ]]></artwork></figure> |
---|
849 | <t> |
---|
850 | The origin server for an "http" URI is identified by the |
---|
851 | <xref target="uri" format="none">authority</xref> component, which includes a host identifier |
---|
852 | and optional TCP port (<xref target="RFC3986"/>, Section 3.2.2). |
---|
853 | The hierarchical path component and optional query component serve as an |
---|
854 | identifier for a potential target resource within that origin server's name |
---|
855 | space. The optional fragment component allows for indirect identification |
---|
856 | of a secondary resource, independent of the URI scheme, as defined in |
---|
857 | Section 3.5 of <xref target="RFC3986"/>. |
---|
858 | </t> |
---|
859 | <t> |
---|
860 | A sender MUST NOT generate an "http" URI with an empty host identifier. |
---|
861 | A recipient that processes such a URI reference MUST reject it as invalid. |
---|
862 | </t> |
---|
863 | <t> |
---|
864 | If the host identifier is provided as an IP address, the origin server is |
---|
865 | the listener (if any) on the indicated TCP port at that IP address. |
---|
866 | If host is a registered name, the registered name is an indirect identifier |
---|
867 | for use with a name resolution service, such as DNS, to find an address for |
---|
868 | that origin server. |
---|
869 | If the port subcomponent is empty or not given, TCP port 80 (the |
---|
870 | reserved port for WWW services) is the default. |
---|
871 | </t> |
---|
872 | <t> |
---|
873 | Note that the presence of a URI with a given authority component does not |
---|
874 | imply that there is always an HTTP server listening for connections on |
---|
875 | that host and port. Anyone can mint a URI. What the authority component |
---|
876 | determines is who has the right to respond authoritatively to requests that |
---|
877 | target the identified resource. The delegated nature of registered names |
---|
878 | and IP addresses creates a federated namespace, based on control over the |
---|
879 | indicated host and port, whether or not an HTTP server is present. |
---|
880 | See <xref target="establishing.authority"/> for security considerations |
---|
881 | related to establishing authority. |
---|
882 | </t> |
---|
883 | <t> |
---|
884 | When an "http" URI is used within a context that calls for access to the |
---|
885 | indicated resource, a client MAY attempt access by resolving |
---|
886 | the host to an IP address, establishing a TCP connection to that address |
---|
887 | on the indicated port, and sending an HTTP request message |
---|
888 | (<xref target="http.message"/>) containing the URI's identifying data |
---|
889 | (<xref target="message.routing"/>) to the server. |
---|
890 | If the server responds to that request with a non-interim HTTP response |
---|
891 | message, as described in Section 6 of <xref target="RFC7231"/>, then that response |
---|
892 | is considered an authoritative answer to the client's request. |
---|
893 | </t> |
---|
894 | <t> |
---|
895 | Although HTTP is independent of the transport protocol, the "http" |
---|
896 | scheme is specific to TCP-based services because the name delegation |
---|
897 | process depends on TCP for establishing authority. |
---|
898 | An HTTP service based on some other underlying connection protocol |
---|
899 | would presumably be identified using a different URI scheme, just as |
---|
900 | the "https" scheme (below) is used for resources that require an |
---|
901 | end-to-end secured connection. Other protocols might also be used to |
---|
902 | provide access to "http" identified resources -- it is only the |
---|
903 | authoritative interface that is specific to TCP. |
---|
904 | </t> |
---|
905 | <t> |
---|
906 | The URI generic syntax for authority also includes a deprecated |
---|
907 | userinfo subcomponent (<xref target="RFC3986"/>, Section 3.2.1) |
---|
908 | for including user authentication information in the URI. Some |
---|
909 | implementations make use of the userinfo component for internal |
---|
910 | configuration of authentication information, such as within command |
---|
911 | invocation options, configuration files, or bookmark lists, even |
---|
912 | though such usage might expose a user identifier or password. |
---|
913 | A sender MUST NOT generate the userinfo subcomponent (and its "@" |
---|
914 | delimiter) when an "http" URI reference is generated within a message as a |
---|
915 | request target or header field value. |
---|
916 | Before making use of an "http" URI reference received from an untrusted |
---|
917 | source, a recipient SHOULD parse for userinfo and treat its presence as |
---|
918 | an error; it is likely being used to obscure the authority for the sake of |
---|
919 | phishing attacks. |
---|
920 | </t> |
---|
921 | </section> |
---|
922 | |
---|
923 | <section title="https URI Scheme" anchor="https.uri"> |
---|
924 | |
---|
925 | <iref item="https URI scheme"/> |
---|
926 | <iref item="URI scheme" subitem="https"/> |
---|
927 | <t> |
---|
928 | The "https" URI scheme is hereby defined for the purpose of minting |
---|
929 | identifiers according to their association with the hierarchical |
---|
930 | namespace governed by a potential HTTP origin server listening to a |
---|
931 | given TCP port for TLS-secured connections (<xref target="RFC5246"/>). |
---|
932 | </t> |
---|
933 | <t> |
---|
934 | All of the requirements listed above for the "http" scheme are also |
---|
935 | requirements for the "https" scheme, except that TCP port 443 is the |
---|
936 | default if the port subcomponent is empty or not given, |
---|
937 | and the user agent MUST ensure that its connection to the origin |
---|
938 | server is secured through the use of strong encryption, end-to-end, |
---|
939 | prior to sending the first HTTP request. |
---|
940 | </t> |
---|
941 | <figure><iref primary="true" item="Grammar" subitem="https-URI"><!--terminal production--></iref><artwork type="abnf2616"><![CDATA[ |
---|
942 | https-URI = "https:" "//" authority path-abempty [ "?" query ] |
---|
943 | [ "#" fragment ] |
---|
944 | ]]></artwork></figure> |
---|
945 | <t> |
---|
946 | Note that the "https" URI scheme depends on both TLS and TCP for |
---|
947 | establishing authority. |
---|
948 | Resources made available via the "https" scheme have no shared |
---|
949 | identity with the "http" scheme even if their resource identifiers |
---|
950 | indicate the same authority (the same host listening to the same |
---|
951 | TCP port). They are distinct namespaces and are considered to be |
---|
952 | distinct origin servers. However, an extension to HTTP that is |
---|
953 | defined to apply to entire host domains, such as the Cookie protocol |
---|
954 | <xref target="RFC6265"/>, can allow information |
---|
955 | set by one service to impact communication with other services |
---|
956 | within a matching group of host domains. |
---|
957 | </t> |
---|
958 | <t> |
---|
959 | The process for authoritative access to an "https" identified |
---|
960 | resource is defined in <xref target="RFC2818"/>. |
---|
961 | </t> |
---|
962 | </section> |
---|
963 | |
---|
964 | <section title="http and https URI Normalization and Comparison" anchor="uri.comparison"> |
---|
965 | <t> |
---|
966 | Since the "http" and "https" schemes conform to the URI generic syntax, |
---|
967 | such URIs are normalized and compared according to the algorithm defined |
---|
968 | in Section 6 of <xref target="RFC3986"/>, using the defaults |
---|
969 | described above for each scheme. |
---|
970 | </t> |
---|
971 | <t> |
---|
972 | If the port is equal to the default port for a scheme, the normal form is |
---|
973 | to omit the port subcomponent. When not being used in absolute form as the |
---|
974 | request target of an OPTIONS request, an empty path component is equivalent |
---|
975 | to an absolute path of "/", so the normal form is to provide a path of "/" |
---|
976 | instead. The scheme and host are case insensitive and normally provided in |
---|
977 | lowercase; all other components are compared in a case-sensitive manner. |
---|
978 | Characters other than those in the "reserved" set are equivalent to their |
---|
979 | percent-encoded octets: the normal form is to not encode them |
---|
980 | (see Sections 2.1 and |
---|
981 | 2.2 of |
---|
982 | <xref target="RFC3986"/>). |
---|
983 | </t> |
---|
984 | <t> |
---|
985 | For example, the following three URIs are equivalent: |
---|
986 | </t> |
---|
987 | <figure><artwork type="example"><![CDATA[ |
---|
988 | http://example.com:80/~smith/home.html |
---|
989 | http://EXAMPLE.com/%7Esmith/home.html |
---|
990 | http://EXAMPLE.com:/%7esmith/home.html |
---|
991 | ]]></artwork></figure> |
---|
992 | </section> |
---|
993 | </section> |
---|
994 | </section> |
---|
995 | |
---|
996 | <section title="Message Format" anchor="http.message"> |
---|
997 | |
---|
998 | |
---|
999 | |
---|
1000 | |
---|
1001 | <iref item="header section"/> |
---|
1002 | <iref item="headers"/> |
---|
1003 | <iref item="header field"/> |
---|
1004 | <t> |
---|
1005 | All HTTP/1.1 messages consist of a start-line followed by a sequence of |
---|
1006 | octets in a format similar to the Internet Message Format |
---|
1007 | <xref target="RFC5322"/>: zero or more header fields (collectively |
---|
1008 | referred to as the "headers" or the "header section"), an empty line |
---|
1009 | indicating the end of the header section, and an optional message body. |
---|
1010 | </t> |
---|
1011 | <figure><iref primary="true" item="Grammar" subitem="HTTP-message"><!--terminal production--></iref><artwork type="abnf2616"><![CDATA[ |
---|
1012 | HTTP-message = start-line |
---|
1013 | *( header-field CRLF ) |
---|
1014 | CRLF |
---|
1015 | [ message-body ] |
---|
1016 | ]]></artwork></figure> |
---|
1017 | <t> |
---|
1018 | The normal procedure for parsing an HTTP message is to read the |
---|
1019 | start-line into a structure, read each header field into a hash |
---|
1020 | table by field name until the empty line, and then use the parsed |
---|
1021 | data to determine if a message body is expected. If a message body |
---|
1022 | has been indicated, then it is read as a stream until an amount |
---|
1023 | of octets equal to the message body length is read or the connection |
---|
1024 | is closed. |
---|
1025 | </t> |
---|
1026 | <t> |
---|
1027 | A recipient MUST parse an HTTP message as a sequence of octets in an |
---|
1028 | encoding that is a superset of US-ASCII <xref target="USASCII"/>. |
---|
1029 | Parsing an HTTP message as a stream of Unicode characters, without regard |
---|
1030 | for the specific encoding, creates security vulnerabilities due to the |
---|
1031 | varying ways that string processing libraries handle invalid multibyte |
---|
1032 | character sequences that contain the octet LF (%x0A). String-based |
---|
1033 | parsers can only be safely used within protocol elements after the element |
---|
1034 | has been extracted from the message, such as within a header field-value |
---|
1035 | after message parsing has delineated the individual fields. |
---|
1036 | </t> |
---|
1037 | <t> |
---|
1038 | An HTTP message can be parsed as a stream for incremental processing or |
---|
1039 | forwarding downstream. However, recipients cannot rely on incremental |
---|
1040 | delivery of partial messages, since some implementations will buffer or |
---|
1041 | delay message forwarding for the sake of network efficiency, security |
---|
1042 | checks, or payload transformations. |
---|
1043 | </t> |
---|
1044 | <t> |
---|
1045 | A sender MUST NOT send whitespace between the start-line and |
---|
1046 | the first header field. |
---|
1047 | A recipient that receives whitespace between the start-line and |
---|
1048 | the first header field MUST either reject the message as invalid or |
---|
1049 | consume each whitespace-preceded line without further processing of it |
---|
1050 | (i.e., ignore the entire line, along with any subsequent lines preceded |
---|
1051 | by whitespace, until a properly formed header field is received or the |
---|
1052 | header section is terminated). |
---|
1053 | </t> |
---|
1054 | <t> |
---|
1055 | The presence of such whitespace in a request |
---|
1056 | might be an attempt to trick a server into ignoring that field or |
---|
1057 | processing the line after it as a new request, either of which might |
---|
1058 | result in a security vulnerability if other implementations within |
---|
1059 | the request chain interpret the same message differently. |
---|
1060 | Likewise, the presence of such whitespace in a response might be |
---|
1061 | ignored by some clients or cause others to cease parsing. |
---|
1062 | </t> |
---|
1063 | |
---|
1064 | |
---|
1065 | <!--[rfced] In the text, we note the use of "start-line" and |
---|
1066 | "status-line"; however, the section titles "Start Line" and "Status |
---|
1067 | Line" (without hyphens) are used. Please review this possible |
---|
1068 | inconsistency and let us know if/how we should update. |
---|
1069 | |
---|
1070 | --> |
---|
1071 | <section title="Start Line" anchor="start.line"> |
---|
1072 | |
---|
1073 | <t> |
---|
1074 | An HTTP message can be either a request from client to server or a |
---|
1075 | response from server to client. Syntactically, the two types of message |
---|
1076 | differ only in the start-line, which is either a request-line (for requests) |
---|
1077 | or a status-line (for responses), and in the algorithm for determining |
---|
1078 | the length of the message body (<xref target="message.body"/>). |
---|
1079 | </t> |
---|
1080 | <t> |
---|
1081 | In theory, a client could receive requests and a server could receive |
---|
1082 | responses, distinguishing them by their different start-line formats, |
---|
1083 | but, in practice, servers are implemented only to expect a request |
---|
1084 | (a response is interpreted as an unknown or invalid request method) |
---|
1085 | and clients are implemented to only expect a response. |
---|
1086 | </t> |
---|
1087 | <figure><iref primary="true" item="Grammar" subitem="start-line"/><artwork type="abnf2616"><![CDATA[ |
---|
1088 | start-line = request-line / status-line |
---|
1089 | ]]></artwork></figure> |
---|
1090 | |
---|
1091 | <section title="Request Line" anchor="request.line"> |
---|
1092 | |
---|
1093 | |
---|
1094 | <t> |
---|
1095 | A request-line begins with a method token and is followed by a single |
---|
1096 | space (SP), the request-target, another single space (SP), the |
---|
1097 | protocol version, and ends with CRLF. |
---|
1098 | </t> |
---|
1099 | <figure><iref primary="true" item="Grammar" subitem="request-line"/><artwork type="abnf2616"><![CDATA[ |
---|
1100 | request-line = method SP request-target SP HTTP-version CRLF |
---|
1101 | ]]></artwork></figure> |
---|
1102 | <iref primary="true" item="method"/> |
---|
1103 | <t anchor="method"> |
---|
1104 | The method token indicates the request method to be performed on the |
---|
1105 | target resource. The request method is case sensitive. |
---|
1106 | </t> |
---|
1107 | <figure><iref primary="true" item="Grammar" subitem="method"/><artwork type="abnf2616"><![CDATA[ |
---|
1108 | method = token |
---|
1109 | ]]></artwork></figure> |
---|
1110 | <t> |
---|
1111 | The request methods defined by this specification can be found in |
---|
1112 | Section 4 of <xref target="RFC7231"/>, along with information regarding the HTTP method registry |
---|
1113 | and considerations for defining new methods. |
---|
1114 | </t> |
---|
1115 | <iref item="request-target"/> |
---|
1116 | <t> |
---|
1117 | The request-target identifies the target resource upon which to apply |
---|
1118 | the request, as defined in <xref target="request-target"/>. |
---|
1119 | </t> |
---|
1120 | <t> |
---|
1121 | Recipients typically parse the request-line into its component parts by |
---|
1122 | splitting on whitespace (see <xref target="message.robustness"/>), since |
---|
1123 | no whitespace is allowed in the three components. |
---|
1124 | Unfortunately, some user agents fail to properly encode or exclude |
---|
1125 | whitespace found in hypertext references, resulting in those disallowed |
---|
1126 | characters being sent in a request-target. |
---|
1127 | </t> |
---|
1128 | <t> |
---|
1129 | Recipients of an invalid request-line SHOULD respond with either a |
---|
1130 | 400 (Bad Request) error or a 301 (Moved Permanently) |
---|
1131 | redirect with the request-target properly encoded. A recipient SHOULD NOT |
---|
1132 | attempt to autocorrect and then process the request without a redirect, |
---|
1133 | since the invalid request-line might be deliberately crafted to bypass |
---|
1134 | security filters along the request chain. |
---|
1135 | </t> |
---|
1136 | <t> |
---|
1137 | HTTP does not place a predefined limit on the length of a request-line, |
---|
1138 | as described in <xref target="conformance"/>. |
---|
1139 | A server that receives a method longer than any that it implements |
---|
1140 | SHOULD respond with a 501 (Not Implemented) status code. |
---|
1141 | A server that receives a request-target longer than any URI it wishes to |
---|
1142 | parse MUST respond with a |
---|
1143 | 414 (URI Too Long) status code (see Section 6.5.12 of <xref target="RFC7231"/>). |
---|
1144 | </t> |
---|
1145 | <t> |
---|
1146 | Various ad hoc limitations on request-line length are found in practice. |
---|
1147 | It is RECOMMENDED that all HTTP senders and recipients support, at a |
---|
1148 | minimum, request-line lengths of 8000 octets. |
---|
1149 | </t> |
---|
1150 | </section> |
---|
1151 | |
---|
1152 | <section title="Status Line" anchor="status.line"> |
---|
1153 | |
---|
1154 | |
---|
1155 | |
---|
1156 | |
---|
1157 | <t> |
---|
1158 | The first line of a response message is the status-line, consisting |
---|
1159 | of the protocol version, a space (SP), the status code, another space (SP), |
---|
1160 | a possibly empty textual phrase describing the status code, and, finally, CRLF. |
---|
1161 | </t> |
---|
1162 | <figure><iref primary="true" item="Grammar" subitem="status-line"/><artwork type="abnf2616"><![CDATA[ |
---|
1163 | status-line = HTTP-version SP status-code SP reason-phrase CRLF |
---|
1164 | ]]></artwork></figure> |
---|
1165 | <t> |
---|
1166 | The status-code element is a 3-digit integer code describing the |
---|
1167 | result of the server's attempt to understand and satisfy the client's |
---|
1168 | corresponding request. The rest of the response message is to be |
---|
1169 | interpreted in light of the semantics defined for that status code. |
---|
1170 | See Section 6 of <xref target="RFC7231"/> for information about the semantics of status codes, |
---|
1171 | including the classes of status code (indicated by the first digit), |
---|
1172 | the status codes defined by this specification, considerations for the |
---|
1173 | definition of new status codes, and the IANA registry. |
---|
1174 | </t> |
---|
1175 | <figure><iref primary="true" item="Grammar" subitem="status-code"/><artwork type="abnf2616"><![CDATA[ |
---|
1176 | status-code = 3DIGIT |
---|
1177 | ]]></artwork></figure> |
---|
1178 | <t> |
---|
1179 | The reason-phrase element exists for the sole purpose of providing a |
---|
1180 | textual description associated with the numeric status code, mostly |
---|
1181 | out of deference to earlier Internet application protocols that were more |
---|
1182 | frequently used with interactive text clients. A client SHOULD ignore |
---|
1183 | the reason-phrase content. |
---|
1184 | </t> |
---|
1185 | <figure><iref primary="true" item="Grammar" subitem="reason-phrase"/><artwork type="abnf2616"><![CDATA[ |
---|
1186 | reason-phrase = *( HTAB / SP / VCHAR / obs-text ) |
---|
1187 | ]]></artwork></figure> |
---|
1188 | </section> |
---|
1189 | </section> |
---|
1190 | |
---|
1191 | <section title="Header Fields" anchor="header.fields"> |
---|
1192 | |
---|
1193 | |
---|
1194 | |
---|
1195 | |
---|
1196 | |
---|
1197 | |
---|
1198 | <t> |
---|
1199 | Each header field consists of a case-insensitive field name |
---|
1200 | followed by a colon (":"), optional leading whitespace, the field value, |
---|
1201 | and optional trailing whitespace. |
---|
1202 | </t> |
---|
1203 | <figure><iref primary="true" item="Grammar" subitem="header-field"/><iref primary="true" item="Grammar" subitem="field-name"/><iref primary="true" item="Grammar" subitem="field-value"/><iref primary="true" item="Grammar" subitem="field-vchar"/><iref primary="true" item="Grammar" subitem="field-content"/><iref primary="true" item="Grammar" subitem="obs-fold"/><artwork type="abnf2616"><![CDATA[ |
---|
1204 | header-field = field-name ":" OWS field-value OWS |
---|
1205 | |
---|
1206 | field-name = token |
---|
1207 | field-value = *( field-content / obs-fold ) |
---|
1208 | field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ] |
---|
1209 | field-vchar = VCHAR / obs-text |
---|
1210 | |
---|
1211 | obs-fold = CRLF 1*( SP / HTAB ) |
---|
1212 | ; obsolete line folding |
---|
1213 | ; see Section 3.2.4 |
---|
1214 | ]]></artwork></figure> |
---|
1215 | <t> |
---|
1216 | The field-name token labels the corresponding field-value as having the |
---|
1217 | semantics defined by that header field. For example, the Date |
---|
1218 | header field is defined in Section 7.1.1.2 of <xref target="RFC7231"/> as containing the origination |
---|
1219 | timestamp for the message in which it appears. |
---|
1220 | </t> |
---|
1221 | |
---|
1222 | <section title="Field Extensibility" anchor="field.extensibility"> |
---|
1223 | <t> |
---|
1224 | Header fields are fully extensible: there is no limit on the |
---|
1225 | introduction of new field names, each presumably defining new semantics, |
---|
1226 | nor on the number of header fields used in a given message. Existing |
---|
1227 | fields are defined in each part of this specification and in many other |
---|
1228 | specifications outside this document set. |
---|
1229 | </t> |
---|
1230 | <t> |
---|
1231 | New header fields can be defined such that, when they are understood by a |
---|
1232 | recipient, they might override or enhance the interpretation of previously |
---|
1233 | defined header fields, define preconditions on request evaluation, or |
---|
1234 | refine the meaning of responses. |
---|
1235 | </t> |
---|
1236 | <t> |
---|
1237 | A proxy MUST forward unrecognized header fields unless the |
---|
1238 | field-name is listed in the <xref target="header.connection" format="none">Connection</xref> header field |
---|
1239 | (<xref target="header.connection"/>) or the proxy is specifically |
---|
1240 | configured to block, or otherwise transform, such fields. |
---|
1241 | Other recipients SHOULD ignore unrecognized header fields. |
---|
1242 | These requirements allow HTTP's functionality to be enhanced without |
---|
1243 | requiring prior update of deployed intermediaries. |
---|
1244 | </t> |
---|
1245 | <t> |
---|
1246 | |
---|
1247 | |
---|
1248 | All defined header fields ought to be registered with IANA in the |
---|
1249 | "Message Headers" field registry, as described in Section 8.3 of <xref target="RFC7231"/>. |
---|
1250 | </t> |
---|
1251 | </section> |
---|
1252 | |
---|
1253 | <section title="Field Order" anchor="field.order"> |
---|
1254 | <t> |
---|
1255 | The order in which header fields with differing field names are |
---|
1256 | received is not significant. However, it is good practice to send |
---|
1257 | header fields that contain control data first, such as <xref target="header.host" format="none">Host</xref> |
---|
1258 | on requests and Date on responses, so that implementations |
---|
1259 | can decide when not to handle a message as early as possible. |
---|
1260 | A server MUST NOT apply a request to the target resource until the entire |
---|
1261 | request header section is received, since later header fields might include |
---|
1262 | conditionals, authentication credentials, or deliberately misleading |
---|
1263 | duplicate header fields that would impact request processing. |
---|
1264 | </t> |
---|
1265 | <t> |
---|
1266 | A sender MUST NOT generate multiple header fields with the same field |
---|
1267 | name in a message unless either the entire field value for that |
---|
1268 | header field is defined as a comma-separated list [i.e., #(values)] |
---|
1269 | or the header field is a well-known exception (as noted below). |
---|
1270 | </t> |
---|
1271 | <t> |
---|
1272 | A recipient MAY combine multiple header fields with the same field name |
---|
1273 | into one "field-name: field-value" pair, without changing the semantics of |
---|
1274 | the message, by appending each subsequent field value to the combined |
---|
1275 | field value in order, separated by a comma. The order in which |
---|
1276 | header fields with the same field name are received is therefore |
---|
1277 | significant to the interpretation of the combined field value; |
---|
1278 | a proxy MUST NOT change the order of these field values when |
---|
1279 | forwarding a message. |
---|
1280 | </t> |
---|
1281 | <t><list> |
---|
1282 | <t> |
---|
1283 | Note: In practice, the "Set-Cookie" header field (<xref target="RFC6265"/>) |
---|
1284 | often appears multiple times in a response message and does not use the |
---|
1285 | list syntax, violating the above requirements on multiple header fields |
---|
1286 | with the same name. Since it cannot be combined into a single field-value, |
---|
1287 | recipients ought to handle Set-Cookie as a special case while processing |
---|
1288 | header fields. (See Appendix A.2.3 of <xref target="Kri2001"/> for details.) |
---|
1289 | </t> |
---|
1290 | </list></t> |
---|
1291 | </section> |
---|
1292 | |
---|
1293 | <section title="Whitespace" anchor="whitespace"> |
---|
1294 | <t anchor="rule.LWS"> |
---|
1295 | This specification uses three rules to denote the use of linear |
---|
1296 | whitespace: OWS (optional whitespace), RWS (required whitespace), and |
---|
1297 | BWS ("bad" whitespace). |
---|
1298 | </t> |
---|
1299 | <t anchor="rule.OWS"> |
---|
1300 | The OWS rule is used where zero or more linear whitespace octets might |
---|
1301 | appear. For protocol elements where optional whitespace is preferred to |
---|
1302 | improve readability, a sender SHOULD generate the optional whitespace |
---|
1303 | as a single SP; otherwise, a sender SHOULD NOT generate optional |
---|
1304 | whitespace except as needed to white out invalid or unwanted protocol |
---|
1305 | elements during in-place message filtering. |
---|
1306 | </t> |
---|
1307 | <t anchor="rule.RWS"> |
---|
1308 | The RWS rule is used when at least one linear whitespace octet is required |
---|
1309 | to separate field tokens. A sender SHOULD generate RWS as a single SP. |
---|
1310 | </t> |
---|
1311 | <t anchor="rule.BWS"> |
---|
1312 | The BWS rule is used where the grammar allows optional whitespace only for |
---|
1313 | historical reasons. A sender MUST NOT generate BWS in messages. |
---|
1314 | A recipient MUST parse for such bad whitespace and remove it before |
---|
1315 | interpreting the protocol element. |
---|
1316 | </t> |
---|
1317 | <t anchor="rule.whitespace"> |
---|
1318 | |
---|
1319 | |
---|
1320 | |
---|
1321 | </t> |
---|
1322 | <figure><iref primary="true" item="Grammar" subitem="OWS"/><iref primary="true" item="Grammar" subitem="RWS"/><iref primary="true" item="Grammar" subitem="BWS"/><artwork type="abnf2616"><![CDATA[ |
---|
1323 | OWS = *( SP / HTAB ) |
---|
1324 | ; optional whitespace |
---|
1325 | RWS = 1*( SP / HTAB ) |
---|
1326 | ; required whitespace |
---|
1327 | BWS = OWS |
---|
1328 | ; "bad" whitespace |
---|
1329 | ]]></artwork></figure> |
---|
1330 | </section> |
---|
1331 | |
---|
1332 | <section title="Field Parsing" anchor="field.parsing"> |
---|
1333 | <t> |
---|
1334 | Messages are parsed using a generic algorithm, independent of the |
---|
1335 | individual header field names. The contents within a given field value are |
---|
1336 | not parsed until a later stage of message interpretation (usually after the |
---|
1337 | message's entire header section has been processed). |
---|
1338 | Consequently, this specification does not use ABNF rules to define each |
---|
1339 | "field-name: field-value" pair, as was done in previous editions. |
---|
1340 | Instead, this specification uses ABNF rules that are named according to |
---|
1341 | each registered field name, wherein the rule defines the valid grammar for |
---|
1342 | that field's corresponding field values (i.e., after the field-value |
---|
1343 | has been extracted from the header section by a generic field parser). |
---|
1344 | </t> |
---|
1345 | <t> |
---|
1346 | No whitespace is allowed between the header field-name and colon. |
---|
1347 | In the past, differences in the handling of such whitespace have led to |
---|
1348 | security vulnerabilities in request routing and response handling. |
---|
1349 | A server MUST reject any received request message that contains |
---|
1350 | whitespace between a header field-name and colon with a response code of |
---|
1351 | 400 (Bad Request). A proxy MUST remove any such whitespace |
---|
1352 | from a response message before forwarding the message downstream. |
---|
1353 | </t> |
---|
1354 | <t> |
---|
1355 | A field value might be preceded and/or followed by optional whitespace |
---|
1356 | (OWS); a single SP preceding the field-value is preferred for consistent |
---|
1357 | readability by humans. |
---|
1358 | The field value does not include any leading or trailing whitespace: OWS |
---|
1359 | occurring before the first non-whitespace octet of the field value or after |
---|
1360 | the last non-whitespace octet of the field value ought to be excluded by |
---|
1361 | parsers when extracting the field value from a header field. |
---|
1362 | </t> |
---|
1363 | <t> |
---|
1364 | Historically, HTTP header field values could be extended over multiple |
---|
1365 | lines by preceding each extra line with at least one space or horizontal |
---|
1366 | tab (obs-fold). This specification deprecates such line folding except |
---|
1367 | within the message/http media type |
---|
1368 | (<xref target="internet.media.type.message.http"/>). |
---|
1369 | A sender MUST NOT generate a message that includes line folding |
---|
1370 | (i.e., that has any field-value that contains a match to the |
---|
1371 | <xref target="header.fields" format="none">obs-fold</xref> rule) unless the message is intended for packaging |
---|
1372 | within the message/http media type. |
---|
1373 | </t> |
---|
1374 | <t> |
---|
1375 | A server that receives an <xref target="header.fields" format="none">obs-fold</xref> in a request message that |
---|
1376 | is not within a message/http container MUST either reject the message by |
---|
1377 | sending a 400 (Bad Request), preferably with a |
---|
1378 | representation explaining that obsolete line folding is unacceptable, or |
---|
1379 | replace each received <xref target="header.fields" format="none">obs-fold</xref> with one or more |
---|
1380 | <xref target="core.rules" format="none">SP</xref> octets prior to interpreting the field value or |
---|
1381 | forwarding the message downstream. |
---|
1382 | </t> |
---|
1383 | <t> |
---|
1384 | A proxy or gateway that receives an <xref target="header.fields" format="none">obs-fold</xref> in a response |
---|
1385 | message that is not within a message/http container MUST either discard |
---|
1386 | the message and replace it with a 502 (Bad Gateway) |
---|
1387 | response, preferably with a representation explaining that unacceptable |
---|
1388 | line folding was received, or replace each received <xref target="header.fields" format="none">obs-fold</xref> |
---|
1389 | with one or more <xref target="core.rules" format="none">SP</xref> octets prior to interpreting the field |
---|
1390 | value or forwarding the message downstream. |
---|
1391 | </t> |
---|
1392 | <t> |
---|
1393 | A user agent that receives an <xref target="header.fields" format="none">obs-fold</xref> in a response message |
---|
1394 | that is not within a message/http container MUST replace each received |
---|
1395 | <xref target="header.fields" format="none">obs-fold</xref> with one or more <xref target="core.rules" format="none">SP</xref> octets prior to |
---|
1396 | interpreting the field value. |
---|
1397 | </t> |
---|
1398 | <t> |
---|
1399 | Historically, HTTP has allowed field content with text in the ISO&nbhy;8859&nbhy;1 |
---|
1400 | <xref target="ISO-8859-1"/> charset, supporting other charsets only |
---|
1401 | through use of <xref target="RFC2047"/> encoding. |
---|
1402 | In practice, most HTTP header field values use only a subset of the |
---|
1403 | US&nbhy;ASCII charset <xref target="USASCII"/>. Newly defined |
---|
1404 | header fields SHOULD limit their field values to US&nbhy;ASCII octets. |
---|
1405 | A recipient SHOULD treat other octets in field content (obs&nbhy;text) as |
---|
1406 | opaque data. |
---|
1407 | </t> |
---|
1408 | </section> |
---|
1409 | |
---|
1410 | <section title="Field Limits" anchor="field.limits"> |
---|
1411 | <t> |
---|
1412 | HTTP does not place a predefined limit on the length of each header field |
---|
1413 | or on the length of the header section as a whole, as described in |
---|
1414 | <xref target="conformance"/>. Various ad hoc limitations on individual |
---|
1415 | header field length are found in practice, often depending on the specific |
---|
1416 | field semantics. |
---|
1417 | </t> |
---|
1418 | <t> |
---|
1419 | A server that receives a request header field, or set of fields, larger |
---|
1420 | than it wishes to process MUST respond with an appropriate |
---|
1421 | 4xx (Client Error) status code. Ignoring such header fields |
---|
1422 | would increase the server's vulnerability to request smuggling attacks |
---|
1423 | (<xref target="request.smuggling"/>). |
---|
1424 | </t> |
---|
1425 | <t> |
---|
1426 | A client MAY discard or truncate received header fields that are larger |
---|
1427 | than the client wishes to process if the field semantics are such that the |
---|
1428 | dropped value(s) can be safely ignored without changing the |
---|
1429 | message framing or response semantics. |
---|
1430 | </t> |
---|
1431 | </section> |
---|
1432 | |
---|
1433 | <section title="Field Value Components" anchor="field.components"> |
---|
1434 | <t anchor="rule.token.separators"> |
---|
1435 | |
---|
1436 | |
---|
1437 | <iref item="Delimiters"/> |
---|
1438 | Most HTTP header field values are defined using common syntax components |
---|
1439 | (token, quoted-string, and comment) separated by whitespace or specific |
---|
1440 | delimiting characters. Delimiters are chosen from the set of US-ASCII |
---|
1441 | visual characters not allowed in a <xref target="rule.token.separators" format="none">token</xref> |
---|
1442 | (DQUOTE and "(),/:;<=>?@[\]{}"). |
---|
1443 | </t> |
---|
1444 | <figure><iref primary="true" item="Grammar" subitem="token"/><iref primary="true" item="Grammar" subitem="tchar"/><artwork type="abnf2616"><![CDATA[ |
---|
1445 | token = 1*tchar |
---|
1446 | |
---|
1447 | tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" |
---|
1448 | / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~" |
---|
1449 | / DIGIT / ALPHA |
---|
1450 | ; any VCHAR, except delimiters |
---|
1451 | ]]></artwork></figure> |
---|
1452 | <t anchor="rule.quoted-string"> |
---|
1453 | |
---|
1454 | |
---|
1455 | |
---|
1456 | A string of text is parsed as a single value if it is quoted using |
---|
1457 | double-quote marks. |
---|
1458 | </t> |
---|
1459 | <figure><iref primary="true" item="Grammar" subitem="quoted-string"/><iref primary="true" item="Grammar" subitem="qdtext"/><iref primary="true" item="Grammar" subitem="obs-text"/><artwork type="abnf2616"><![CDATA[ |
---|
1460 | quoted-string = DQUOTE *( qdtext / quoted-pair ) DQUOTE |
---|
1461 | qdtext = HTAB / SP /%x21 / %x23-5B / %x5D-7E / obs-text |
---|
1462 | obs-text = %x80-FF |
---|
1463 | ]]></artwork></figure> |
---|
1464 | <t anchor="rule.comment"> |
---|
1465 | |
---|
1466 | |
---|
1467 | Comments can be included in some HTTP header fields by surrounding |
---|
1468 | the comment text with parentheses. Comments are only allowed in |
---|
1469 | fields containing "comment" as part of their field value definition. |
---|
1470 | </t> |
---|
1471 | <figure><iref primary="true" item="Grammar" subitem="comment"/><iref primary="true" item="Grammar" subitem="ctext"/><artwork type="abnf2616"><![CDATA[ |
---|
1472 | comment = "(" *( ctext / quoted-pair / comment ) ")" |
---|
1473 | ctext = HTAB / SP / %x21-27 / %x2A-5B / %x5D-7E / obs-text |
---|
1474 | ]]></artwork></figure> |
---|
1475 | <t anchor="rule.quoted-pair"> |
---|
1476 | |
---|
1477 | The backslash octet ("\") can be used as a single-octet |
---|
1478 | quoting mechanism within quoted-string and comment constructs. |
---|
1479 | Recipients that process the value of a quoted-string MUST handle a |
---|
1480 | quoted-pair as if it were replaced by the octet following the backslash. |
---|
1481 | </t> |
---|
1482 | <figure><iref primary="true" item="Grammar" subitem="quoted-pair"/><artwork type="abnf2616"><![CDATA[ |
---|
1483 | quoted-pair = "\" ( HTAB / SP / VCHAR / obs-text ) |
---|
1484 | ]]></artwork></figure> |
---|
1485 | <t> |
---|
1486 | A sender SHOULD NOT generate a quoted-pair in a quoted-string except |
---|
1487 | where necessary to quote DQUOTE and backslash octets occurring within that |
---|
1488 | string. |
---|
1489 | A sender SHOULD NOT generate a quoted-pair in a comment except |
---|
1490 | where necessary to quote parentheses ["(" and ")"] and backslash octets |
---|
1491 | occurring within that comment. |
---|
1492 | </t> |
---|
1493 | </section> |
---|
1494 | |
---|
1495 | </section> |
---|
1496 | |
---|
1497 | <section title="Message Body" anchor="message.body"> |
---|
1498 | |
---|
1499 | <t> |
---|
1500 | The message body (if any) of an HTTP message is used to carry the |
---|
1501 | payload body of that request or response. The message body is |
---|
1502 | identical to the payload body unless a transfer coding has been |
---|
1503 | applied, as described in <xref target="header.transfer-encoding"/>. |
---|
1504 | </t> |
---|
1505 | <figure><iref primary="true" item="Grammar" subitem="message-body"/><artwork type="abnf2616"><![CDATA[ |
---|
1506 | message-body = *OCTET |
---|
1507 | ]]></artwork></figure> |
---|
1508 | <t> |
---|
1509 | The rules for when a message body is allowed in a message differ for |
---|
1510 | requests and responses. |
---|
1511 | </t> |
---|
1512 | <t> |
---|
1513 | The presence of a message body in a request is signaled by a |
---|
1514 | <xref target="header.content-length" format="none">Content-Length</xref> or <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> header |
---|
1515 | field. Request message framing is independent of method semantics, |
---|
1516 | even if the method does not define any use for a message body. |
---|
1517 | </t> |
---|
1518 | <t> |
---|
1519 | The presence of a message body in a response depends on both |
---|
1520 | the request method to which it is responding and the response |
---|
1521 | status code (<xref target="status.line"/>). |
---|
1522 | Responses to the HEAD request method (Section 4.3.2 of <xref target="RFC7231"/>) never include a message body |
---|
1523 | because the associated response header fields (e.g., |
---|
1524 | <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref>, <xref target="header.content-length" format="none">Content-Length</xref>, etc.), |
---|
1525 | if present, indicate only what their values would have been if the request |
---|
1526 | method had been GET (Section 4.3.1 of <xref target="RFC7231"/>). |
---|
1527 | 2xx (Successful) responses to a CONNECT request method |
---|
1528 | (Section 4.3.6 of <xref target="RFC7231"/>) switch to tunnel mode instead of having a message body. |
---|
1529 | All 1xx (Informational), 204 (No Content), and |
---|
1530 | 304 (Not Modified) responses do not include a message body. |
---|
1531 | All other responses do include a message body, although the body |
---|
1532 | might be of zero length. |
---|
1533 | </t> |
---|
1534 | |
---|
1535 | <section title="Transfer-Encoding" anchor="header.transfer-encoding"> |
---|
1536 | <iref primary="true" item="Transfer-Encoding header field"/> |
---|
1537 | <iref item="chunked (Coding Format)"/> |
---|
1538 | |
---|
1539 | <t> |
---|
1540 | The Transfer-Encoding header field lists the transfer coding names |
---|
1541 | corresponding to the sequence of transfer codings that have been |
---|
1542 | (or will be) applied to the payload body in order to form the message body. |
---|
1543 | Transfer codings are defined in <xref target="transfer.codings"/>. |
---|
1544 | </t> |
---|
1545 | |
---|
1546 | <!-- [rfced] We note that RFC 2616 allows the use of "#"; however, please note |
---|
1547 | that Bill Fenner's ABNF checker yields the following: |
---|
1548 | |
---|
1549 | Errors are noted by line number and column, e.g. line:column: Something bad. |
---|
1550 | |
---|
1551 | stdin(0:22): error: Illegal character '#' - skipping to end of line |
---|
1552 | stdin(1:0): error: syntax error |
---|
1553 | |
---|
1554 | parsing failed: 2 errors encountered |
---|
1555 | |
---|
1556 | Transfer-Encoding = 1#transfer-coding |
---|
1557 | |
---|
1558 | There are a handful of similar cases throughout the document. Please confirm |
---|
1559 | that this grammar is correct. |
---|
1560 | --> |
---|
1561 | |
---|
1562 | <figure><iref primary="true" item="Grammar" subitem="Transfer-Encoding"/><artwork type="abnf2616"><![CDATA[ |
---|
1563 | Transfer-Encoding = 1#transfer-coding |
---|
1564 | ]]></artwork></figure> |
---|
1565 | <t> |
---|
1566 | Transfer-Encoding is analogous to the Content-Transfer-Encoding field of |
---|
1567 | MIME, which was designed to enable safe transport of binary data over a |
---|
1568 | 7-bit transport service (<xref target="RFC2045"/>, Section 6). |
---|
1569 | However, safe transport has a different focus for an 8bit-clean transfer |
---|
1570 | protocol. In HTTP's case, Transfer-Encoding is primarily intended to |
---|
1571 | accurately delimit a dynamically generated payload and to distinguish |
---|
1572 | payload encodings that are only applied for transport efficiency or |
---|
1573 | security from those that are characteristics of the selected resource. |
---|
1574 | </t> |
---|
1575 | <t> |
---|
1576 | A recipient MUST be able to parse the chunked transfer coding |
---|
1577 | (<xref target="chunked.encoding"/>) because it plays a crucial role in |
---|
1578 | framing messages when the payload body size is not known in advance. |
---|
1579 | A sender MUST NOT apply chunked more than once to a message body |
---|
1580 | (i.e., chunking an already chunked message is not allowed). |
---|
1581 | If any transfer coding other than chunked is applied to a request payload |
---|
1582 | body, the sender MUST apply chunked as the final transfer coding to |
---|
1583 | ensure that the message is properly framed. |
---|
1584 | If any transfer coding other than chunked is applied to a response payload |
---|
1585 | body, the sender MUST either apply chunked as the final transfer coding |
---|
1586 | or terminate the message by closing the connection. |
---|
1587 | </t> |
---|
1588 | <figure><preamble> |
---|
1589 | For example, |
---|
1590 | </preamble><artwork type="example"><![CDATA[ |
---|
1591 | Transfer-Encoding: gzip, chunked |
---|
1592 | ]]></artwork><postamble> |
---|
1593 | indicates that the payload body has been compressed using the gzip |
---|
1594 | coding and then chunked using the chunked coding while forming the |
---|
1595 | message body. |
---|
1596 | </postamble></figure> |
---|
1597 | <t> |
---|
1598 | Unlike Content-Encoding (Section 3.1.2.1 of <xref target="RFC7231"/>), |
---|
1599 | Transfer-Encoding is a property of the message, not of the representation, and |
---|
1600 | any recipient along the request/response chain MAY decode the received |
---|
1601 | transfer coding(s) or apply additional transfer coding(s) to the message |
---|
1602 | body, assuming that corresponding changes are made to the Transfer-Encoding |
---|
1603 | field-value. Additional information about the encoding parameters can be |
---|
1604 | provided by other header fields not defined by this specification. |
---|
1605 | </t> |
---|
1606 | <t> |
---|
1607 | Transfer-Encoding MAY be sent in a response to a HEAD request or in a |
---|
1608 | 304 (Not Modified) response (Section 4.1 of <xref target="RFC7232"/>) to a GET request, |
---|
1609 | neither of which includes a message body, |
---|
1610 | to indicate that the origin server would have applied a transfer coding |
---|
1611 | to the message body if the request had been an unconditional GET. |
---|
1612 | This indication is not required, however, because any recipient on |
---|
1613 | the response chain (including the origin server) can remove transfer |
---|
1614 | codings when they are not needed. |
---|
1615 | </t> |
---|
1616 | <t> |
---|
1617 | A server MUST NOT send a Transfer-Encoding header field in any response |
---|
1618 | with a status code of |
---|
1619 | 1xx (Informational) or 204 (No Content). |
---|
1620 | A server MUST NOT send a Transfer-Encoding header field in any |
---|
1621 | 2xx (Successful) response to a CONNECT request (Section 4.3.6 of <xref target="RFC7231"/>). |
---|
1622 | </t> |
---|
1623 | <t> |
---|
1624 | Transfer-Encoding was added in HTTP/1.1. It is generally assumed that |
---|
1625 | implementations advertising only HTTP/1.0 support will not understand |
---|
1626 | how to process a transfer-encoded payload. |
---|
1627 | A client MUST NOT send a request containing Transfer-Encoding unless it |
---|
1628 | knows the server will handle HTTP/1.1 (or later) requests; such knowledge |
---|
1629 | might be in the form of specific user configuration or by remembering the |
---|
1630 | version of a prior received response. |
---|
1631 | A server MUST NOT send a response containing Transfer-Encoding unless |
---|
1632 | the corresponding request indicates HTTP/1.1 (or later). |
---|
1633 | </t> |
---|
1634 | <t> |
---|
1635 | A server that receives a request message with a transfer coding it does |
---|
1636 | not understand SHOULD respond with 501 (Not Implemented). |
---|
1637 | </t> |
---|
1638 | </section> |
---|
1639 | |
---|
1640 | <section title="Content-Length" anchor="header.content-length"> |
---|
1641 | <iref primary="true" item="Content-Length header field"/> |
---|
1642 | |
---|
1643 | <t> |
---|
1644 | When a message does not have a <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> header |
---|
1645 | field, a Content-Length header field can provide the anticipated size, |
---|
1646 | as a decimal number of octets, for a potential payload body. |
---|
1647 | For messages that do include a payload body, the Content-Length field-value |
---|
1648 | provides the framing information necessary for determining where the body |
---|
1649 | (and message) ends. For messages that do not include a payload body, the |
---|
1650 | Content-Length indicates the size of the selected representation |
---|
1651 | (Section 3 of <xref target="RFC7231"/>). |
---|
1652 | </t> |
---|
1653 | <figure><iref primary="true" item="Grammar" subitem="Content-Length"/><artwork type="abnf2616"><![CDATA[ |
---|
1654 | Content-Length = 1*DIGIT |
---|
1655 | ]]></artwork></figure> |
---|
1656 | <t> |
---|
1657 | An example is |
---|
1658 | </t> |
---|
1659 | <figure><artwork type="example"><![CDATA[ |
---|
1660 | Content-Length: 3495 |
---|
1661 | ]]></artwork></figure> |
---|
1662 | <t> |
---|
1663 | A sender MUST NOT send a Content-Length header field in any message that |
---|
1664 | contains a <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> header field. |
---|
1665 | </t> |
---|
1666 | <t> |
---|
1667 | A user agent SHOULD send a Content-Length in a request message when no |
---|
1668 | <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> is sent and the request method defines |
---|
1669 | a meaning for an enclosed payload body. For example, a Content-Length |
---|
1670 | header field is normally sent in a POST request even when the value is |
---|
1671 | 0 (indicating an empty payload body). A user agent SHOULD NOT send a |
---|
1672 | Content-Length header field when the request message does not contain a |
---|
1673 | payload body and the method semantics do not anticipate such a body. |
---|
1674 | </t> |
---|
1675 | <t> |
---|
1676 | A server MAY send a Content-Length header field in a response to a HEAD |
---|
1677 | request (Section 4.3.2 of <xref target="RFC7231"/>); a server MUST NOT send Content-Length in such a |
---|
1678 | response unless its field-value equals the decimal number of octets that |
---|
1679 | would have been sent in the payload body of a response if the same |
---|
1680 | request had used the GET method. |
---|
1681 | </t> |
---|
1682 | <t> |
---|
1683 | A server MAY send a Content-Length header field in a |
---|
1684 | 304 (Not Modified) response to a conditional GET request |
---|
1685 | (Section 4.1 of <xref target="RFC7232"/>); a server MUST NOT send Content-Length in such a |
---|
1686 | response unless its field-value equals the decimal number of octets that |
---|
1687 | would have been sent in the payload body of a 200 (OK) |
---|
1688 | response to the same request. |
---|
1689 | </t> |
---|
1690 | <t> |
---|
1691 | A server MUST NOT send a Content-Length header field in any response |
---|
1692 | with a status code of |
---|
1693 | 1xx (Informational) or 204 (No Content). |
---|
1694 | A server MUST NOT send a Content-Length header field in any |
---|
1695 | 2xx (Successful) response to a CONNECT request (Section 4.3.6 of <xref target="RFC7231"/>). |
---|
1696 | </t> |
---|
1697 | <t> |
---|
1698 | Aside from the cases defined above, in the absence of Transfer-Encoding, |
---|
1699 | an origin server SHOULD send a Content-Length header field when the |
---|
1700 | payload body size is known prior to sending the complete header section. |
---|
1701 | This will allow downstream recipients to measure transfer progress, |
---|
1702 | know when a received message is complete, and potentially reuse the |
---|
1703 | connection for additional requests. |
---|
1704 | </t> |
---|
1705 | <t> |
---|
1706 | Any Content-Length field value greater than or equal to zero is valid. |
---|
1707 | Since there is no predefined limit to the length of a payload, a |
---|
1708 | recipient MUST anticipate potentially large decimal numerals and |
---|
1709 | prevent parsing errors due to integer conversion overflows |
---|
1710 | (<xref target="attack.protocol.element.length"/>). |
---|
1711 | </t> |
---|
1712 | <t> |
---|
1713 | If a message is received that has multiple Content-Length header fields |
---|
1714 | with field-values consisting of the same decimal value, or a single |
---|
1715 | Content-Length header field with a field value containing a list of |
---|
1716 | identical decimal values (e.g., "Content-Length: 42, 42"), indicating that |
---|
1717 | duplicate Content-Length header fields have been generated or combined by an |
---|
1718 | upstream message processor, then the recipient MUST either reject the |
---|
1719 | message as invalid or replace the duplicated field-values with a single |
---|
1720 | valid Content-Length field containing that decimal value prior to |
---|
1721 | determining the message body length or forwarding the message. |
---|
1722 | </t> |
---|
1723 | <t><list> |
---|
1724 | <t> |
---|
1725 | Note: HTTP's use of Content-Length for message framing differs |
---|
1726 | significantly from the same field's use in MIME, where it is an optional |
---|
1727 | field used only within the "message/external-body" media-type. |
---|
1728 | </t> |
---|
1729 | </list></t> |
---|
1730 | </section> |
---|
1731 | |
---|
1732 | <section title="Message Body Length" anchor="message.body.length"> |
---|
1733 | <iref item="chunked (Coding Format)"/> |
---|
1734 | <t> |
---|
1735 | The length of a message body is determined by one of the following |
---|
1736 | (in order of precedence): |
---|
1737 | </t> |
---|
1738 | <t> |
---|
1739 | <list style="numbers"> |
---|
1740 | <t> |
---|
1741 | Any response to a HEAD request and any response with a |
---|
1742 | 1xx (Informational), 204 (No Content), or |
---|
1743 | 304 (Not Modified) status code is always |
---|
1744 | terminated by the first empty line after the header fields, regardless of |
---|
1745 | the header fields present in the message, and thus cannot contain a |
---|
1746 | message body. |
---|
1747 | </t> |
---|
1748 | <t> |
---|
1749 | Any 2xx (Successful) response to a CONNECT request implies that the |
---|
1750 | connection will become a tunnel immediately after the empty line that |
---|
1751 | concludes the header fields. A client MUST ignore any |
---|
1752 | <xref target="header.content-length" format="none">Content-Length</xref> or <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> header |
---|
1753 | fields received in such a message. |
---|
1754 | </t> |
---|
1755 | <t> |
---|
1756 | If a <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> header field is present |
---|
1757 | and the chunked transfer coding (<xref target="chunked.encoding"/>) |
---|
1758 | is the final encoding, the message body length is determined by reading |
---|
1759 | and decoding the chunked data until the transfer coding indicates the |
---|
1760 | data is complete. |
---|
1761 | <vspace blankLines="1"/> |
---|
1762 | If a <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> header field is present in a |
---|
1763 | response and the chunked transfer coding is not the final encoding, the |
---|
1764 | message body length is determined by reading the connection until it is |
---|
1765 | closed by the server. |
---|
1766 | If a <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> header field is present in a request and the |
---|
1767 | chunked transfer coding is not the final encoding, the message body |
---|
1768 | length cannot be determined reliably; the server MUST respond with |
---|
1769 | the 400 (Bad Request) status code and then close the connection. |
---|
1770 | <vspace blankLines="1"/> |
---|
1771 | If a message is received with both a <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> |
---|
1772 | and a <xref target="header.content-length" format="none">Content-Length</xref> header field, the Transfer-Encoding |
---|
1773 | overrides the Content-Length. Such a message might indicate an attempt to |
---|
1774 | perform request smuggling (<xref target="request.smuggling"/>) or |
---|
1775 | response splitting (<xref target="response.splitting"/>) and ought to be |
---|
1776 | handled as an error. A sender MUST remove the received Content-Length |
---|
1777 | field prior to forwarding such a message downstream. |
---|
1778 | </t> |
---|
1779 | <t> |
---|
1780 | If a message is received without <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> and with |
---|
1781 | either multiple <xref target="header.content-length" format="none">Content-Length</xref> header fields having |
---|
1782 | differing field-values or a single Content-Length header field having an |
---|
1783 | invalid value, then the message framing is invalid and |
---|
1784 | the recipient MUST treat it as an unrecoverable error. |
---|
1785 | If this is a request message, the server MUST respond with |
---|
1786 | a 400 (Bad Request) status code and then close the connection. |
---|
1787 | If this is a response message received by a proxy, |
---|
1788 | the proxy MUST close the connection to the server, discard the received |
---|
1789 | response, and send a 502 (Bad Gateway) response to the |
---|
1790 | client. |
---|
1791 | If this is a response message received by a user agent, |
---|
1792 | the user agent MUST close the connection to the server and discard the |
---|
1793 | received response. |
---|
1794 | </t> |
---|
1795 | <t> |
---|
1796 | If a valid <xref target="header.content-length" format="none">Content-Length</xref> header field is present without |
---|
1797 | <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref>, its decimal value defines the |
---|
1798 | expected message body length in octets. |
---|
1799 | If the sender closes the connection or the recipient times out before the |
---|
1800 | indicated number of octets are received, the recipient MUST consider |
---|
1801 | the message to be incomplete and close the connection. |
---|
1802 | </t> |
---|
1803 | <t> |
---|
1804 | If this is a request message and none of the above are true, then the |
---|
1805 | message body length is zero (no message body is present). |
---|
1806 | </t> |
---|
1807 | <t> |
---|
1808 | Otherwise, this is a response message without a declared message body |
---|
1809 | length, so the message body length is determined by the number of octets |
---|
1810 | received prior to the server closing the connection. |
---|
1811 | </t> |
---|
1812 | </list> |
---|
1813 | </t> |
---|
1814 | <t> |
---|
1815 | Since there is no way to distinguish a successfully completed, |
---|
1816 | close-delimited message from a partially received message interrupted |
---|
1817 | by network failure, a server SHOULD generate encoding or |
---|
1818 | length-delimited messages whenever possible. The close-delimiting |
---|
1819 | feature exists primarily for backwards compatibility with HTTP/1.0. |
---|
1820 | </t> |
---|
1821 | <t> |
---|
1822 | A server MAY reject a request that contains a message body but |
---|
1823 | not a <xref target="header.content-length" format="none">Content-Length</xref> by responding with |
---|
1824 | 411 (Length Required). |
---|
1825 | </t> |
---|
1826 | <t> |
---|
1827 | Unless a transfer coding other than chunked has been applied, |
---|
1828 | a client that sends a request containing a message body SHOULD |
---|
1829 | use a valid <xref target="header.content-length" format="none">Content-Length</xref> header field if the message body |
---|
1830 | length is known in advance, rather than the chunked transfer coding, since some |
---|
1831 | existing services respond to chunked with a 411 (Length Required) |
---|
1832 | status code even though they understand the chunked transfer coding. This |
---|
1833 | is typically because such services are implemented via a gateway that |
---|
1834 | requires a content-length in advance of being called and the server |
---|
1835 | is unable or unwilling to buffer the entire request before processing. |
---|
1836 | </t> |
---|
1837 | <t> |
---|
1838 | A user agent that sends a request containing a message body MUST send a |
---|
1839 | valid <xref target="header.content-length" format="none">Content-Length</xref> header field if it does not know the |
---|
1840 | server will handle HTTP/1.1 (or later) requests; such knowledge can be in |
---|
1841 | the form of specific user configuration or by remembering the version of a |
---|
1842 | prior received response. |
---|
1843 | </t> |
---|
1844 | <t> |
---|
1845 | If the final response to the last request on a connection has been |
---|
1846 | completely received and there remains additional data to read, a user agent |
---|
1847 | MAY discard the remaining data or attempt to determine if that data |
---|
1848 | belongs as part of the prior response body, which might be the case if the |
---|
1849 | prior message's Content-Length value is incorrect. A client MUST NOT |
---|
1850 | process, cache, or forward such extra data as a separate response, since |
---|
1851 | such behavior would be vulnerable to cache poisoning. |
---|
1852 | </t> |
---|
1853 | </section> |
---|
1854 | </section> |
---|
1855 | |
---|
1856 | <section anchor="incomplete.messages" title="Handling Incomplete Messages"> |
---|
1857 | <t> |
---|
1858 | A server that receives an incomplete request message, usually due to a |
---|
1859 | canceled request or a triggered timeout exception, MAY send an error |
---|
1860 | response prior to closing the connection. |
---|
1861 | </t> |
---|
1862 | <t> |
---|
1863 | A client that receives an incomplete response message, which can occur |
---|
1864 | when a connection is closed prematurely or when decoding a supposedly |
---|
1865 | chunked transfer coding fails, MUST record the message as incomplete. |
---|
1866 | Cache requirements for incomplete responses are defined in |
---|
1867 | Section 3 of <xref target="RFC7234"/>. |
---|
1868 | </t> |
---|
1869 | <t> |
---|
1870 | If a response terminates in the middle of the header section (before the |
---|
1871 | empty line is received) and the status code might rely on header fields to |
---|
1872 | convey the full meaning of the response, then the client cannot assume |
---|
1873 | that meaning has been conveyed; the client might need to repeat the |
---|
1874 | request in order to determine what action to take next. |
---|
1875 | </t> |
---|
1876 | <t> |
---|
1877 | A message body that uses the chunked transfer coding is |
---|
1878 | incomplete if the zero-sized chunk that terminates the encoding has not |
---|
1879 | been received. A message that uses a valid <xref target="header.content-length" format="none">Content-Length</xref> is |
---|
1880 | incomplete if the size of the message body received (in octets) is less than |
---|
1881 | the value given by Content-Length. A response that has neither chunked |
---|
1882 | transfer coding nor Content-Length is terminated by closure of the |
---|
1883 | connection and, thus, is considered complete regardless of the number of |
---|
1884 | message body octets received, provided that the header section was received |
---|
1885 | intact. |
---|
1886 | </t> |
---|
1887 | </section> |
---|
1888 | |
---|
1889 | <section title="Message Parsing Robustness" anchor="message.robustness"> |
---|
1890 | <t> |
---|
1891 | Older HTTP/1.0 user agent implementations might send an extra CRLF |
---|
1892 | after a POST request as a workaround for some early server |
---|
1893 | applications that failed to read message body content that was |
---|
1894 | not terminated by a line-ending. An HTTP/1.1 user agent MUST NOT |
---|
1895 | preface or follow a request with an extra CRLF. If terminating |
---|
1896 | the request message body with a line-ending is desired, then the |
---|
1897 | user agent MUST count the terminating CRLF octets as part of the |
---|
1898 | message body length. |
---|
1899 | </t> |
---|
1900 | <t> |
---|
1901 | In the interest of robustness, a server that is expecting to receive and |
---|
1902 | parse a request-line SHOULD ignore at least one empty line (CRLF) |
---|
1903 | received prior to the request-line. |
---|
1904 | </t> |
---|
1905 | <t> |
---|
1906 | Although the line terminator for the start-line and header |
---|
1907 | fields is the sequence CRLF, a recipient MAY recognize a |
---|
1908 | single LF as a line terminator and ignore any preceding CR. |
---|
1909 | </t> |
---|
1910 | <t> |
---|
1911 | Although the request-line and status-line grammar rules require that each |
---|
1912 | of the component elements be separated by a single SP octet, recipients |
---|
1913 | MAY instead parse on whitespace-delimited word boundaries and, aside |
---|
1914 | from the CRLF terminator, treat any form of whitespace as the SP separator |
---|
1915 | while ignoring preceding or trailing whitespace; |
---|
1916 | such whitespace includes one or more of the following octets: |
---|
1917 | SP, HTAB, VT (%x0B), FF (%x0C), or bare CR. |
---|
1918 | However, lenient parsing can result in security vulnerabilities if there |
---|
1919 | are multiple recipients of the message and each has its own unique |
---|
1920 | interpretation of robustness (see <xref target="request.smuggling"/>). |
---|
1921 | </t> |
---|
1922 | <t> |
---|
1923 | When a server listening only for HTTP request messages, or processing |
---|
1924 | what appears from the start-line to be an HTTP request message, |
---|
1925 | receives a sequence of octets that does not match the HTTP-message |
---|
1926 | grammar aside from the robustness exceptions listed above, the |
---|
1927 | server SHOULD respond with a 400 (Bad Request) response. |
---|
1928 | </t> |
---|
1929 | </section> |
---|
1930 | </section> |
---|
1931 | |
---|
1932 | <section title="Transfer Codings" anchor="transfer.codings"> |
---|
1933 | |
---|
1934 | |
---|
1935 | <t> |
---|
1936 | Transfer coding names are used to indicate an encoding |
---|
1937 | transformation that has been, can be, or might need to be applied to a |
---|
1938 | payload body in order to ensure "safe transport" through the network. |
---|
1939 | This differs from a content coding in that the transfer coding is a |
---|
1940 | property of the message rather than a property of the representation |
---|
1941 | that is being transferred. |
---|
1942 | </t> |
---|
1943 | <figure><iref primary="true" item="Grammar" subitem="transfer-coding"/><iref primary="true" item="Grammar" subitem="transfer-extension"/><artwork type="abnf2616"><![CDATA[ |
---|
1944 | transfer-coding = "chunked" ; Section 4.1 |
---|
1945 | / "compress" ; Section 4.2.1 |
---|
1946 | / "deflate" ; Section 4.2.2 |
---|
1947 | / "gzip" ; Section 4.2.3 |
---|
1948 | / transfer-extension |
---|
1949 | transfer-extension = token *( OWS ";" OWS transfer-parameter ) |
---|
1950 | ]]></artwork></figure> |
---|
1951 | <t anchor="rule.parameter"> |
---|
1952 | |
---|
1953 | Parameters are in the form of a name or name=value pair. |
---|
1954 | </t> |
---|
1955 | <figure><iref primary="true" item="Grammar" subitem="transfer-parameter"/><artwork type="abnf2616"><![CDATA[ |
---|
1956 | transfer-parameter = token BWS "=" BWS ( token / quoted-string ) |
---|
1957 | ]]></artwork></figure> |
---|
1958 | <t> |
---|
1959 | |
---|
1960 | All transfer-coding names are case insensitive and ought to be registered |
---|
1961 | within the "HTTP Transfer Coding" registry, as defined in |
---|
1962 | <xref target="transfer.coding.registry"/>. |
---|
1963 | They are used in the <xref target="header.te" format="none">TE</xref> (<xref target="header.te"/>) and |
---|
1964 | <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> (<xref target="header.transfer-encoding"/>) |
---|
1965 | header fields. |
---|
1966 | </t> |
---|
1967 | |
---|
1968 | <section title="Chunked Transfer Coding" anchor="chunked.encoding"> |
---|
1969 | <iref primary="true" item="chunked (Coding Format)"/> |
---|
1970 | |
---|
1971 | |
---|
1972 | |
---|
1973 | |
---|
1974 | |
---|
1975 | <t> |
---|
1976 | The chunked transfer coding wraps the payload body in order to transfer it |
---|
1977 | as a series of chunks, each with its own size indicator, followed by an |
---|
1978 | OPTIONAL trailer containing header fields. Chunked enables content |
---|
1979 | streams of unknown size to be transferred as a sequence of length-delimited |
---|
1980 | buffers, which enables the sender to retain connection persistence and the |
---|
1981 | recipient to know when it has received the entire message. |
---|
1982 | </t> |
---|
1983 | <figure><iref primary="true" item="Grammar" subitem="chunked-body"><!--terminal production--></iref><iref primary="true" item="Grammar" subitem="chunk"/><iref primary="true" item="Grammar" subitem="chunk-size"/><iref primary="true" item="Grammar" subitem="last-chunk"/><iref primary="false" item="Grammar" subitem="trailer-part"/><iref primary="false" item="Grammar" subitem="chunk-ext"/><iref primary="true" item="Grammar" subitem="chunk-data"/><artwork type="abnf2616"><![CDATA[ |
---|
1984 | chunked-body = *chunk |
---|
1985 | last-chunk |
---|
1986 | trailer-part |
---|
1987 | CRLF |
---|
1988 | |
---|
1989 | chunk = chunk-size [ chunk-ext ] CRLF |
---|
1990 | chunk-data CRLF |
---|
1991 | chunk-size = 1*HEXDIG |
---|
1992 | last-chunk = 1*("0") [ chunk-ext ] CRLF |
---|
1993 | |
---|
1994 | chunk-data = 1*OCTET ; a sequence of chunk-size octets |
---|
1995 | ]]></artwork></figure> |
---|
1996 | <t> |
---|
1997 | The chunk-size field is a string of hex digits indicating the size of |
---|
1998 | the chunk-data in octets. The chunked transfer coding is complete when a |
---|
1999 | chunk with a chunk-size of zero is received, possibly followed by a |
---|
2000 | trailer, and finally terminated by an empty line. |
---|
2001 | </t> |
---|
2002 | <t> |
---|
2003 | A recipient MUST be able to parse and decode the chunked transfer coding. |
---|
2004 | </t> |
---|
2005 | |
---|
2006 | <section title="Chunk Extensions" anchor="chunked.extension"> |
---|
2007 | |
---|
2008 | |
---|
2009 | |
---|
2010 | <t> |
---|
2011 | The chunked encoding allows each chunk to include zero or more chunk |
---|
2012 | extensions, immediately following the <xref target="chunked.encoding" format="none">chunk-size</xref>, for the |
---|
2013 | sake of supplying per-chunk metadata (such as a signature or hash), |
---|
2014 | mid-message control information, or randomization of message body size. |
---|
2015 | </t> |
---|
2016 | <figure><iref primary="true" item="Grammar" subitem="chunked-body"><!--terminal production--></iref><iref primary="true" item="Grammar" subitem="chunk-ext"/><iref primary="true" item="Grammar" subitem="chunk-ext-name"/><iref primary="true" item="Grammar" subitem="chunk-ext-val"/><artwork type="abnf2616"><![CDATA[ |
---|
2017 | chunk-ext = *( ";" chunk-ext-name [ "=" chunk-ext-val ] ) |
---|
2018 | |
---|
2019 | chunk-ext-name = token |
---|
2020 | chunk-ext-val = token / quoted-string |
---|
2021 | ]]></artwork></figure> |
---|
2022 | <t> |
---|
2023 | The chunked encoding is specific to each connection and is likely to be |
---|
2024 | removed or recoded by each recipient (including intermediaries) before any |
---|
2025 | higher-level application would have a chance to inspect the extensions. |
---|
2026 | Hence, use of chunk extensions is generally limited to specialized HTTP |
---|
2027 | services such as "long polling" (where client and server can have shared |
---|
2028 | expectations regarding the use of chunk extensions) or for padding within |
---|
2029 | an end-to-end secured connection. |
---|
2030 | </t> |
---|
2031 | <t> |
---|
2032 | A recipient MUST ignore unrecognized chunk extensions. |
---|
2033 | A server ought to limit the total length of chunk extensions received in a |
---|
2034 | request to an amount reasonable for the services provided, in the same way |
---|
2035 | that it applies length limitations and timeouts for other parts of a |
---|
2036 | message, and generate an appropriate 4xx (Client Error) |
---|
2037 | response if that amount is exceeded. |
---|
2038 | </t> |
---|
2039 | </section> |
---|
2040 | |
---|
2041 | <section title="Chunked Trailer Part" anchor="chunked.trailer.part"> |
---|
2042 | |
---|
2043 | <t> |
---|
2044 | A trailer allows the sender to include additional fields at the end of a |
---|
2045 | chunked message in order to supply metadata that might be dynamically |
---|
2046 | generated while the message body is sent, such as a message integrity |
---|
2047 | check, digital signature, or post-processing status. The trailer fields are |
---|
2048 | identical to header fields, except they are sent in a chunked trailer |
---|
2049 | instead of the message's header section. |
---|
2050 | </t> |
---|
2051 | <figure><iref primary="true" item="Grammar" subitem="trailer-part"/><iref primary="false" item="Grammar" subitem="header-field"/><artwork type="abnf2616"><![CDATA[ |
---|
2052 | trailer-part = *( header-field CRLF ) |
---|
2053 | ]]></artwork></figure> |
---|
2054 | <t> |
---|
2055 | A sender MUST NOT generate a trailer that contains a field necessary for |
---|
2056 | message framing (e.g., <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> and |
---|
2057 | <xref target="header.content-length" format="none">Content-Length</xref>), routing (e.g., <xref target="header.host" format="none">Host</xref>), |
---|
2058 | request modifiers (e.g., controls and conditionals in |
---|
2059 | Section 5 of <xref target="RFC7231"/>), authentication (e.g., see <xref target="RFC7235"/> |
---|
2060 | and <xref target="RFC6265"/>), response control data (e.g., see |
---|
2061 | Section 7.1 of <xref target="RFC7231"/>), or determining how to process the payload |
---|
2062 | (e.g., Content-Encoding, Content-Type, |
---|
2063 | Content-Range, and <xref target="header.trailer" format="none">Trailer</xref>). |
---|
2064 | </t> |
---|
2065 | <t> |
---|
2066 | When a chunked message containing a non-empty trailer is received, the |
---|
2067 | recipient MAY process the fields (aside from those forbidden above) |
---|
2068 | as if they were appended to the message's header section. |
---|
2069 | A recipient MUST ignore (or consider as an error) any fields that are |
---|
2070 | forbidden to be sent in a trailer, since processing them as if they were |
---|
2071 | present in the header section might bypass external security filters. |
---|
2072 | </t> |
---|
2073 | <t> |
---|
2074 | Unless the request includes a <xref target="header.te" format="none">TE</xref> header field indicating |
---|
2075 | "trailers" is acceptable, as described in <xref target="header.te"/>, a |
---|
2076 | server SHOULD NOT generate trailer fields that it believes are necessary |
---|
2077 | for the user agent to receive. Without a TE containing "trailers", the |
---|
2078 | server ought to assume that the trailer fields might be silently discarded |
---|
2079 | along the path to the user agent. This requirement allows intermediaries to |
---|
2080 | forward a de-chunked message to an HTTP/1.0 recipient without buffering the |
---|
2081 | entire response. |
---|
2082 | </t> |
---|
2083 | </section> |
---|
2084 | |
---|
2085 | <section title="Decoding Chunked" anchor="decoding.chunked"> |
---|
2086 | <t> |
---|
2087 | A process for decoding the chunked transfer coding |
---|
2088 | can be represented in pseudo-code as: |
---|
2089 | </t> |
---|
2090 | <figure><artwork type="code"><![CDATA[ |
---|
2091 | length := 0 |
---|
2092 | read chunk-size, chunk-ext (if any), and CRLF |
---|
2093 | while (chunk-size > 0) { |
---|
2094 | read chunk-data and CRLF |
---|
2095 | append chunk-data to decoded-body |
---|
2096 | length := length + chunk-size |
---|
2097 | read chunk-size, chunk-ext (if any), and CRLF |
---|
2098 | } |
---|
2099 | read trailer field |
---|
2100 | while (trailer field is not empty) { |
---|
2101 | if (trailer field is allowed to be sent in a trailer) { |
---|
2102 | append trailer field to existing header fields |
---|
2103 | } |
---|
2104 | read trailer-field |
---|
2105 | } |
---|
2106 | Content-Length := length |
---|
2107 | Remove "chunked" from Transfer-Encoding |
---|
2108 | Remove Trailer from existing header fields |
---|
2109 | ]]></artwork></figure> |
---|
2110 | </section> |
---|
2111 | </section> |
---|
2112 | |
---|
2113 | <section title="Compression Codings" anchor="compression.codings"> |
---|
2114 | <t> |
---|
2115 | The codings defined below can be used to compress the payload of a |
---|
2116 | message. |
---|
2117 | </t> |
---|
2118 | |
---|
2119 | <section title="Compress Coding" anchor="compress.coding"> |
---|
2120 | <iref item="compress (Coding Format)"/> |
---|
2121 | <t> |
---|
2122 | The "compress" coding is an adaptive Lempel-Ziv-Welch (LZW) coding |
---|
2123 | <xref target="Welch"/> that is commonly produced by the UNIX file |
---|
2124 | compression program "compress". |
---|
2125 | A recipient SHOULD consider "x-compress" to be equivalent to "compress". |
---|
2126 | </t> |
---|
2127 | </section> |
---|
2128 | |
---|
2129 | <section title="Deflate Coding" anchor="deflate.coding"> |
---|
2130 | <iref item="deflate (Coding Format)"/> |
---|
2131 | <t> |
---|
2132 | The "deflate" coding is a "zlib" data format <xref target="RFC1950"/> |
---|
2133 | containing a "deflate" compressed data stream <xref target="RFC1951"/> |
---|
2134 | that uses a combination of the Lempel-Ziv (LZ77) compression algorithm and |
---|
2135 | Huffman coding. |
---|
2136 | </t> |
---|
2137 | <t><list> |
---|
2138 | <t> |
---|
2139 | Note: Some non-conformant implementations send the "deflate" |
---|
2140 | compressed data without the zlib wrapper. |
---|
2141 | </t> |
---|
2142 | </list></t> |
---|
2143 | </section> |
---|
2144 | |
---|
2145 | <section title="Gzip Coding" anchor="gzip.coding"> |
---|
2146 | <iref item="gzip (Coding Format)"/> |
---|
2147 | <t> |
---|
2148 | The "gzip" coding is an LZ77 coding with a 32-bit Cyclic Redundancy Check (CRC) that is commonly |
---|
2149 | produced by the gzip file compression program <xref target="RFC1952"/>. |
---|
2150 | A recipient SHOULD consider "x-gzip" to be equivalent to "gzip". |
---|
2151 | </t> |
---|
2152 | </section> |
---|
2153 | |
---|
2154 | </section> |
---|
2155 | |
---|
2156 | <section title="TE" anchor="header.te"> |
---|
2157 | <iref primary="true" item="TE header field"/> |
---|
2158 | |
---|
2159 | |
---|
2160 | |
---|
2161 | |
---|
2162 | <t> |
---|
2163 | The "TE" header field in a request indicates what transfer codings, |
---|
2164 | besides chunked, the client is willing to accept in response, and |
---|
2165 | whether or not the client is willing to accept trailer fields in a |
---|
2166 | chunked transfer coding. |
---|
2167 | </t> |
---|
2168 | <t> |
---|
2169 | The TE field-value consists of a comma-separated list of transfer coding |
---|
2170 | names, each allowing for optional parameters (as described in |
---|
2171 | <xref target="transfer.codings"/>), and/or the keyword "trailers". |
---|
2172 | A client MUST NOT send the chunked transfer coding name in TE; |
---|
2173 | chunked is always acceptable for HTTP/1.1 recipients. |
---|
2174 | </t> |
---|
2175 | |
---|
2176 | <figure><iref primary="true" item="Grammar" subitem="TE"/><iref primary="true" item="Grammar" subitem="t-codings"/><iref primary="true" item="Grammar" subitem="t-ranking"/><iref primary="true" item="Grammar" subitem="rank"/><artwork type="abnf2616"><![CDATA[ |
---|
2177 | TE = #t-codings |
---|
2178 | t-codings = "trailers" / ( transfer-coding [ t-ranking ] ) |
---|
2179 | t-ranking = OWS ";" OWS "q=" rank |
---|
2180 | rank = ( "0" [ "." 0*3DIGIT ] ) |
---|
2181 | / ( "1" [ "." 0*3("0") ] ) |
---|
2182 | ]]></artwork></figure> |
---|
2183 | <t> |
---|
2184 | Three examples of TE use are below. |
---|
2185 | </t> |
---|
2186 | <figure><artwork type="example"><![CDATA[ |
---|
2187 | TE: deflate |
---|
2188 | TE: |
---|
2189 | TE: trailers, deflate;q=0.5 |
---|
2190 | ]]></artwork></figure> |
---|
2191 | <t> |
---|
2192 | The presence of the keyword "trailers" indicates that the client is willing |
---|
2193 | to accept trailer fields in a chunked transfer coding, as defined in |
---|
2194 | <xref target="chunked.trailer.part"/>, on behalf of itself and any downstream |
---|
2195 | clients. For requests from an intermediary, this implies that either: |
---|
2196 | (a) all downstream clients are willing to accept trailer fields in the |
---|
2197 | forwarded response; or, |
---|
2198 | (b) the intermediary will attempt to buffer the response on behalf of |
---|
2199 | downstream recipients. |
---|
2200 | Note that HTTP/1.1 does not define any means to limit the size of a |
---|
2201 | chunked response such that an intermediary can be assured of buffering the |
---|
2202 | entire response. |
---|
2203 | </t> |
---|
2204 | <t> |
---|
2205 | When multiple transfer codings are acceptable, the client MAY rank the |
---|
2206 | codings by preference using a case-insensitive "q" parameter (similar to |
---|
2207 | the qvalues used in content negotiation fields, Section 5.3.1 of <xref target="RFC7231"/>). The rank value |
---|
2208 | is a real number in the range 0 through 1, where 0.001 is the least |
---|
2209 | preferred and 1 is the most preferred; a value of 0 means "not acceptable". |
---|
2210 | </t> |
---|
2211 | <t> |
---|
2212 | If the TE field-value is empty or if no TE field is present, the only |
---|
2213 | acceptable transfer coding is chunked. A message with no transfer coding |
---|
2214 | is always acceptable. |
---|
2215 | </t> |
---|
2216 | <t> |
---|
2217 | Since the TE header field only applies to the immediate connection, |
---|
2218 | a sender of TE MUST also send a "TE" connection option within the |
---|
2219 | <xref target="header.connection" format="none">Connection</xref> header field (<xref target="header.connection"/>) |
---|
2220 | in order to prevent the TE field from being forwarded by intermediaries |
---|
2221 | that do not support its semantics. |
---|
2222 | </t> |
---|
2223 | </section> |
---|
2224 | |
---|
2225 | <section title="Trailer" anchor="header.trailer"> |
---|
2226 | <iref primary="true" item="Trailer header field"/> |
---|
2227 | |
---|
2228 | <t> |
---|
2229 | When a message includes a message body encoded with the chunked |
---|
2230 | transfer coding and the sender desires to send metadata in the form of |
---|
2231 | trailer fields at the end of the message, the sender SHOULD generate a |
---|
2232 | <xref target="header.trailer" format="none">Trailer</xref> header field before the message body to indicate |
---|
2233 | which fields will be present in the trailers. This allows the recipient |
---|
2234 | to prepare for receipt of that metadata before it starts processing the body, |
---|
2235 | which is useful if the message is being streamed and the recipient wishes |
---|
2236 | to confirm an integrity check on the fly. |
---|
2237 | </t> |
---|
2238 | <figure><iref primary="true" item="Grammar" subitem="Trailer"/><iref primary="false" item="Grammar" subitem="field-name"/><artwork type="abnf2616"><![CDATA[ |
---|
2239 | Trailer = 1#field-name |
---|
2240 | ]]></artwork></figure> |
---|
2241 | </section> |
---|
2242 | </section> |
---|
2243 | |
---|
2244 | <section title="Message Routing" anchor="message.routing"> |
---|
2245 | <t> |
---|
2246 | HTTP request message routing is determined by each client based on the |
---|
2247 | target resource, the client's proxy configuration, and |
---|
2248 | establishment or reuse of an inbound connection. The corresponding |
---|
2249 | response routing follows the same connection chain back to the client. |
---|
2250 | </t> |
---|
2251 | |
---|
2252 | <section title="Identifying a Target Resource" anchor="target-resource"> |
---|
2253 | <iref primary="true" item="target resource"/> |
---|
2254 | <iref primary="true" item="target URI"/> |
---|
2255 | |
---|
2256 | |
---|
2257 | <t> |
---|
2258 | HTTP is used in a wide variety of applications, ranging from |
---|
2259 | general-purpose computers to home appliances. In some cases, |
---|
2260 | communication options are hard-coded in a client's configuration. |
---|
2261 | However, most HTTP clients rely on the same resource identification |
---|
2262 | mechanism and configuration techniques as general-purpose Web browsers. |
---|
2263 | </t> |
---|
2264 | <t> |
---|
2265 | HTTP communication is initiated by a user agent for some purpose. |
---|
2266 | The purpose is a combination of request semantics, which are defined in |
---|
2267 | <xref target="RFC7231"/>, and a target resource upon which to apply those |
---|
2268 | semantics. A URI reference (<xref target="uri"/>) is typically used as |
---|
2269 | an identifier for the "target resource", which a user agent |
---|
2270 | would resolve to its absolute form in order to obtain the |
---|
2271 | "target URI". The target URI |
---|
2272 | excludes the reference's fragment component, if any, |
---|
2273 | since fragment identifiers are reserved for client-side processing |
---|
2274 | (<xref target="RFC3986"/>, Section 3.5). |
---|
2275 | </t> |
---|
2276 | </section> |
---|
2277 | |
---|
2278 | <section title="Connecting Inbound" anchor="connecting.inbound"> |
---|
2279 | <t> |
---|
2280 | Once the target URI is determined, a client needs to decide whether |
---|
2281 | a network request is necessary to accomplish the desired semantics and, |
---|
2282 | if so, where that request is to be directed. |
---|
2283 | </t> |
---|
2284 | <t> |
---|
2285 | If the client has a cache <xref target="RFC7234"/> and the request can be |
---|
2286 | satisfied by it, then the request is |
---|
2287 | usually directed there first. |
---|
2288 | </t> |
---|
2289 | <t> |
---|
2290 | If the request is not satisfied by a cache, then a typical client will |
---|
2291 | check its configuration to determine whether a proxy is to be used to |
---|
2292 | satisfy the request. Proxy configuration is implementation-dependent, |
---|
2293 | but is often based on URI prefix matching, selective authority matching, |
---|
2294 | or both, and the proxy itself is usually identified by an "http" or |
---|
2295 | "https" URI. If a proxy is applicable, the client connects inbound by |
---|
2296 | establishing (or reusing) a connection to that proxy. |
---|
2297 | </t> |
---|
2298 | <t> |
---|
2299 | If no proxy is applicable, a typical client will invoke a handler routine, |
---|
2300 | usually specific to the target URI's scheme, to connect directly |
---|
2301 | to an authority for the target resource. How that is accomplished is |
---|
2302 | dependent on the target URI scheme and defined by its associated |
---|
2303 | specification, similar to how this specification defines origin server |
---|
2304 | access for resolution of the "http" (<xref target="http.uri"/>) and |
---|
2305 | "https" (<xref target="https.uri"/>) schemes. |
---|
2306 | </t> |
---|
2307 | <t> |
---|
2308 | HTTP requirements regarding connection management are defined in |
---|
2309 | <xref target="connection.management"/>. |
---|
2310 | </t> |
---|
2311 | </section> |
---|
2312 | |
---|
2313 | <section title="Request Target" anchor="request-target"> |
---|
2314 | <t> |
---|
2315 | Once an inbound connection is obtained, |
---|
2316 | the client sends an HTTP request message (<xref target="http.message"/>) |
---|
2317 | with a request-target derived from the target URI. |
---|
2318 | There are four distinct formats for the request-target, depending on both |
---|
2319 | the method being requested and whether the request is to a proxy. |
---|
2320 | </t> |
---|
2321 | <figure><iref primary="true" item="Grammar" subitem="request-target"/><iref primary="false" item="Grammar" subitem="origin-form"/><iref primary="false" item="Grammar" subitem="absolute-form"/><iref primary="false" item="Grammar" subitem="authority-form"/><iref primary="false" item="Grammar" subitem="asterisk-form"/><artwork type="abnf2616"><![CDATA[ |
---|
2322 | request-target = origin-form |
---|
2323 | / absolute-form |
---|
2324 | / authority-form |
---|
2325 | / asterisk-form |
---|
2326 | ]]></artwork></figure> |
---|
2327 | |
---|
2328 | <section title="origin-form" anchor="origin-form"> |
---|
2329 | <iref item="origin-form (of request-target)"/> |
---|
2330 | <t> |
---|
2331 | The most common form of request-target is the origin-form. |
---|
2332 | </t> |
---|
2333 | <figure><iref primary="true" item="Grammar" subitem="origin-form"/><artwork type="abnf2616"><![CDATA[ |
---|
2334 | origin-form = absolute-path [ "?" query ] |
---|
2335 | ]]></artwork></figure> |
---|
2336 | <t> |
---|
2337 | When making a request directly to an origin server, other than a CONNECT |
---|
2338 | or server-wide OPTIONS request (as detailed below), |
---|
2339 | a client MUST send only the absolute path and query components of |
---|
2340 | the target URI as the request-target. |
---|
2341 | If the target URI's path component is empty, the client MUST send |
---|
2342 | "/" as the path within the origin-form of request-target. |
---|
2343 | A <xref target="header.host" format="none">Host</xref> header field is also sent, as defined in |
---|
2344 | <xref target="header.host"/>. |
---|
2345 | </t> |
---|
2346 | <t> |
---|
2347 | For example, a client wishing to retrieve a representation of the resource |
---|
2348 | identified as |
---|
2349 | </t> |
---|
2350 | <figure><artwork type="example"><![CDATA[ |
---|
2351 | http://www.example.org/where?q=now |
---|
2352 | ]]></artwork></figure> |
---|
2353 | <t> |
---|
2354 | directly from the origin server would open (or reuse) a TCP connection |
---|
2355 | to port 80 of the host "www.example.org" and send the lines: |
---|
2356 | </t> |
---|
2357 | <figure><artwork type="message/http; msgtype="request""><![CDATA[ |
---|
2358 | GET /where?q=now HTTP/1.1 |
---|
2359 | Host: www.example.org |
---|
2360 | ]]></artwork></figure> |
---|
2361 | <t> |
---|
2362 | followed by the remainder of the request message. |
---|
2363 | </t> |
---|
2364 | </section> |
---|
2365 | |
---|
2366 | <section title="absolute-form" anchor="absolute-form"> |
---|
2367 | <iref item="absolute-form (of request-target)"/> |
---|
2368 | <t> |
---|
2369 | When making a request to a proxy, other than a CONNECT or server-wide |
---|
2370 | OPTIONS request (as detailed below), a client MUST send the target URI |
---|
2371 | in absolute-form as the request-target. |
---|
2372 | </t> |
---|
2373 | <figure><iref primary="true" item="Grammar" subitem="absolute-form"/><artwork type="abnf2616"><![CDATA[ |
---|
2374 | absolute-form = absolute-URI |
---|
2375 | ]]></artwork></figure> |
---|
2376 | <t> |
---|
2377 | The proxy is requested to either service that request from a valid cache, |
---|
2378 | if possible, or make the same request on the client's behalf to either |
---|
2379 | the next inbound proxy server or directly to the origin server indicated |
---|
2380 | by the request-target. Requirements on such "forwarding" of messages are |
---|
2381 | defined in <xref target="message.forwarding"/>. |
---|
2382 | </t> |
---|
2383 | <t> |
---|
2384 | An example absolute-form of request-line would be: |
---|
2385 | </t> |
---|
2386 | <figure><artwork type="message/http; msgtype="request""><![CDATA[ |
---|
2387 | GET http://www.example.org/pub/WWW/TheProject.html HTTP/1.1 |
---|
2388 | ]]></artwork></figure> |
---|
2389 | <t> |
---|
2390 | To allow for transition to the absolute-form for all requests in some |
---|
2391 | future version of HTTP, a server MUST accept the absolute-form |
---|
2392 | in requests, even though HTTP/1.1 clients will only send them in requests |
---|
2393 | to proxies. |
---|
2394 | </t> |
---|
2395 | </section> |
---|
2396 | |
---|
2397 | <section title="authority-form" anchor="authority-form"> |
---|
2398 | <iref item="authority-form (of request-target)"/> |
---|
2399 | <t> |
---|
2400 | The authority-form of request-target is only used for |
---|
2401 | CONNECT requests (Section 4.3.6 of <xref target="RFC7231"/>). |
---|
2402 | </t> |
---|
2403 | <figure><iref primary="true" item="Grammar" subitem="authority-form"/><artwork type="abnf2616"><![CDATA[ |
---|
2404 | authority-form = authority |
---|
2405 | ]]></artwork></figure> |
---|
2406 | <t> |
---|
2407 | When making a CONNECT request to establish a |
---|
2408 | tunnel through one or more proxies, a client MUST send only the target |
---|
2409 | URI's authority component (excluding any userinfo and its "@" delimiter) as |
---|
2410 | the request-target. For example, |
---|
2411 | </t> |
---|
2412 | <figure><artwork type="message/http; msgtype="request""><![CDATA[ |
---|
2413 | CONNECT www.example.com:80 HTTP/1.1 |
---|
2414 | ]]></artwork></figure> |
---|
2415 | </section> |
---|
2416 | |
---|
2417 | <section title="asterisk-form" anchor="asterisk-form"> |
---|
2418 | <iref item="asterisk-form (of request-target)"/> |
---|
2419 | <t> |
---|
2420 | The asterisk-form of request-target is only used for a server-wide |
---|
2421 | OPTIONS request (Section 4.3.7 of <xref target="RFC7231"/>). |
---|
2422 | </t> |
---|
2423 | <figure><iref primary="true" item="Grammar" subitem="asterisk-form"/><artwork type="abnf2616"><![CDATA[ |
---|
2424 | asterisk-form = "*" |
---|
2425 | ]]></artwork></figure> |
---|
2426 | <t> |
---|
2427 | When a client wishes to request OPTIONS |
---|
2428 | for the server as a whole, as opposed to a specific named resource of |
---|
2429 | that server, the client MUST send only "*" (%x2A) as the request-target. |
---|
2430 | For example, |
---|
2431 | </t> |
---|
2432 | <figure><artwork type="message/http; msgtype="request""><![CDATA[ |
---|
2433 | OPTIONS * HTTP/1.1 |
---|
2434 | ]]></artwork></figure> |
---|
2435 | <t> |
---|
2436 | If a proxy receives an OPTIONS request with an absolute-form of |
---|
2437 | request-target in which the URI has an empty path and no query component, |
---|
2438 | then the last proxy on the request chain MUST send a request-target |
---|
2439 | of "*" when it forwards the request to the indicated origin server. |
---|
2440 | </t> |
---|
2441 | <figure><preamble> |
---|
2442 | For example, the request |
---|
2443 | </preamble><artwork type="message/http; msgtype="request""><![CDATA[ |
---|
2444 | OPTIONS http://www.example.org:8001 HTTP/1.1 |
---|
2445 | ]]></artwork></figure> |
---|
2446 | <figure><preamble> |
---|
2447 | would be forwarded by the final proxy as |
---|
2448 | </preamble><artwork type="message/http; msgtype="request""><![CDATA[ |
---|
2449 | OPTIONS * HTTP/1.1 |
---|
2450 | Host: www.example.org:8001 |
---|
2451 | ]]></artwork> |
---|
2452 | <postamble> |
---|
2453 | after connecting to port 8001 of host "www.example.org". |
---|
2454 | </postamble> |
---|
2455 | </figure> |
---|
2456 | </section> |
---|
2457 | </section> |
---|
2458 | |
---|
2459 | <section title="Host" anchor="header.host"> |
---|
2460 | <iref primary="true" item="Host header field"/> |
---|
2461 | |
---|
2462 | <t> |
---|
2463 | The "Host" header field in a request provides the host and port |
---|
2464 | information from the target URI, enabling the origin |
---|
2465 | server to distinguish among resources while servicing requests |
---|
2466 | for multiple host names on a single IP address. |
---|
2467 | </t> |
---|
2468 | <figure><iref primary="true" item="Grammar" subitem="Host"/><artwork type="abnf2616"><![CDATA[ |
---|
2469 | Host = uri-host [ ":" port ] ; Section 2.7.1 |
---|
2470 | ]]></artwork></figure> |
---|
2471 | <t> |
---|
2472 | A client MUST send a Host header field in all HTTP/1.1 request messages. |
---|
2473 | If the target URI includes an authority component, then a client MUST |
---|
2474 | send a field-value for Host that is identical to that authority |
---|
2475 | component, excluding any userinfo subcomponent and its "@" delimiter |
---|
2476 | (<xref target="http.uri"/>). |
---|
2477 | If the authority component is missing or undefined for the target URI, |
---|
2478 | then a client MUST send a Host header field with an empty field-value. |
---|
2479 | </t> |
---|
2480 | <t> |
---|
2481 | Since the Host field-value is critical information for handling a request, |
---|
2482 | a user agent SHOULD generate Host as the first header field following the |
---|
2483 | request-line. |
---|
2484 | </t> |
---|
2485 | <t> |
---|
2486 | For example, a GET request to the origin server for |
---|
2487 | <http://www.example.org/pub/WWW/> would begin with: |
---|
2488 | </t> |
---|
2489 | <figure><artwork type="message/http; msgtype="request""><![CDATA[ |
---|
2490 | GET /pub/WWW/ HTTP/1.1 |
---|
2491 | Host: www.example.org |
---|
2492 | ]]></artwork></figure> |
---|
2493 | <t> |
---|
2494 | A client MUST send a Host header field in an HTTP/1.1 request even |
---|
2495 | if the request-target is in the absolute-form, since this |
---|
2496 | allows the Host information to be forwarded through ancient HTTP/1.0 |
---|
2497 | proxies that might not have implemented Host. |
---|
2498 | </t> |
---|
2499 | <t> |
---|
2500 | When a proxy receives a request with an absolute-form of |
---|
2501 | request-target, the proxy MUST ignore the received |
---|
2502 | Host header field (if any) and instead replace it with the host |
---|
2503 | information of the request-target. A proxy that forwards such a request |
---|
2504 | MUST generate a new Host field-value based on the received |
---|
2505 | request-target rather than forward the received Host field-value. |
---|
2506 | </t> |
---|
2507 | <t> |
---|
2508 | Since the Host header field acts as an application-level routing |
---|
2509 | mechanism, it is a frequent target for malware seeking to poison |
---|
2510 | a shared cache or redirect a request to an unintended server. |
---|
2511 | An interception proxy is particularly vulnerable if it relies on |
---|
2512 | the Host field-value for redirecting requests to internal |
---|
2513 | servers, or for use as a cache key in a shared cache, without |
---|
2514 | first verifying that the intercepted connection is targeting a |
---|
2515 | valid IP address for that host. |
---|
2516 | </t> |
---|
2517 | <t> |
---|
2518 | A server MUST respond with a 400 (Bad Request) status code |
---|
2519 | to any HTTP/1.1 request message that lacks a Host header field and |
---|
2520 | to any request message that contains more than one Host header field |
---|
2521 | or a Host header field with an invalid field-value. |
---|
2522 | </t> |
---|
2523 | </section> |
---|
2524 | |
---|
2525 | <section title="Effective Request URI" anchor="effective.request.uri"> |
---|
2526 | <iref primary="true" item="effective request URI"/> |
---|
2527 | |
---|
2528 | <t> |
---|
2529 | Since the request-target often contains only part of the user agent's |
---|
2530 | target URI, a server reconstructs the intended target as an |
---|
2531 | "effective request URI" to properly service the request. |
---|
2532 | This reconstruction involves both the server's local configuration and |
---|
2533 | information communicated in the <xref target="request-target" format="none">request-target</xref>, |
---|
2534 | <xref target="header.host" format="none">Host</xref> header field, and connection context. |
---|
2535 | </t> |
---|
2536 | <t> |
---|
2537 | For a user agent, the effective request URI is the target URI. |
---|
2538 | </t> |
---|
2539 | <t> |
---|
2540 | If the <xref target="request-target" format="none">request-target</xref> is in <xref target="absolute-form" format="none">absolute-form</xref>, |
---|
2541 | the effective request URI is the same as the request-target. Otherwise, the |
---|
2542 | effective request URI is constructed as follows: |
---|
2543 | <list style="empty"> |
---|
2544 | <t> |
---|
2545 | If the server's configuration (or outbound gateway) provides a fixed URI |
---|
2546 | <xref target="uri" format="none">scheme</xref>, that scheme is used for the effective request URI. |
---|
2547 | Otherwise, if the request is received over a TLS-secured TCP connection, |
---|
2548 | the effective request URI's scheme is "https"; if not, the scheme is "http". |
---|
2549 | </t> |
---|
2550 | <t> |
---|
2551 | If the server's configuration (or outbound gateway) provides a fixed URI |
---|
2552 | <xref target="uri" format="none">authority</xref> component, that authority is used for the |
---|
2553 | effective request URI. If not, then if the request-target is in |
---|
2554 | <xref target="authority-form" format="none">authority-form</xref>, the effective request URI's authority |
---|
2555 | component is the same as the request-target. |
---|
2556 | If not, then if a <xref target="header.host" format="none">Host</xref> header field is supplied with a |
---|
2557 | non-empty field-value, the authority component is the same as the |
---|
2558 | Host field-value. Otherwise, the authority component is assigned |
---|
2559 | the default name configured for the server and, if the connection's |
---|
2560 | incoming TCP port number differs from the default port for the effective |
---|
2561 | request URI's scheme, then a colon (":") and the incoming port number (in |
---|
2562 | decimal form) are appended to the authority component. |
---|
2563 | </t> |
---|
2564 | <t> |
---|
2565 | If the request-target is in <xref target="authority-form" format="none">authority-form</xref> or |
---|
2566 | <xref target="asterisk-form" format="none">asterisk-form</xref>, the effective request URI's combined |
---|
2567 | <xref target="uri" format="none">path</xref> and <xref target="uri" format="none">query</xref> component is empty. Otherwise, |
---|
2568 | the combined <xref target="uri" format="none">path</xref> and <xref target="uri" format="none">query</xref> component is the |
---|
2569 | same as the request-target. |
---|
2570 | </t> |
---|
2571 | <t> |
---|
2572 | The components of the effective request URI, once determined as above, can |
---|
2573 | be combined into <xref target="uri" format="none">absolute-URI</xref> form by concatenating the |
---|
2574 | scheme, "://", authority, and combined path and query component. |
---|
2575 | </t> |
---|
2576 | </list> |
---|
2577 | </t> |
---|
2578 | <figure> |
---|
2579 | <preamble> |
---|
2580 | Example 1: the following message received over an insecure TCP connection |
---|
2581 | </preamble> |
---|
2582 | <artwork type="example"><![CDATA[ |
---|
2583 | GET /pub/WWW/TheProject.html HTTP/1.1 |
---|
2584 | Host: www.example.org:8080 |
---|
2585 | ]]></artwork> |
---|
2586 | </figure> |
---|
2587 | <figure> |
---|
2588 | <preamble> |
---|
2589 | has an effective request URI of |
---|
2590 | </preamble> |
---|
2591 | <artwork type="example"><![CDATA[ |
---|
2592 | http://www.example.org:8080/pub/WWW/TheProject.html |
---|
2593 | ]]></artwork> |
---|
2594 | </figure> |
---|
2595 | <figure> |
---|
2596 | <preamble> |
---|
2597 | Example 2: the following message received over a TLS-secured TCP connection |
---|
2598 | </preamble> |
---|
2599 | <artwork type="example"><![CDATA[ |
---|
2600 | OPTIONS * HTTP/1.1 |
---|
2601 | Host: www.example.org |
---|
2602 | ]]></artwork> |
---|
2603 | </figure> |
---|
2604 | <figure> |
---|
2605 | <preamble> |
---|
2606 | has an effective request URI of |
---|
2607 | </preamble> |
---|
2608 | <artwork type="example"><![CDATA[ |
---|
2609 | https://www.example.org |
---|
2610 | ]]></artwork> |
---|
2611 | </figure> |
---|
2612 | <t> |
---|
2613 | Recipients of an HTTP/1.0 request that lacks a <xref target="header.host" format="none">Host</xref> header |
---|
2614 | field might need to use heuristics (e.g., examination of the URI path for |
---|
2615 | something unique to a particular host) in order to guess the |
---|
2616 | effective request URI's authority component. |
---|
2617 | </t> |
---|
2618 | <t> |
---|
2619 | Once the effective request URI has been constructed, an origin server needs |
---|
2620 | to decide whether or not to provide service for that URI via the connection |
---|
2621 | in which the request was received. For example, the request might have been |
---|
2622 | misdirected, deliberately or accidentally, such that the information within |
---|
2623 | a received <xref target="request-target" format="none">request-target</xref> or <xref target="header.host" format="none">Host</xref> header |
---|
2624 | field differs from the host or port upon which the connection has been |
---|
2625 | made. If the connection is from a trusted gateway, that inconsistency might |
---|
2626 | be expected; otherwise, it might indicate an attempt to bypass security |
---|
2627 | filters, trick the server into delivering non-public content, or poison a |
---|
2628 | cache. See <xref target="security.considerations"/> for security |
---|
2629 | considerations regarding message routing. |
---|
2630 | </t> |
---|
2631 | </section> |
---|
2632 | |
---|
2633 | <section title="Associating a Response to a Request" anchor="associating.response.to.request"> |
---|
2634 | <t> |
---|
2635 | HTTP does not include a request identifier for associating a given |
---|
2636 | request message with its corresponding one or more response messages. |
---|
2637 | Hence, it relies on the order of response arrival to correspond exactly |
---|
2638 | to the order in which requests are made on the same connection. |
---|
2639 | More than one response message per request only occurs when one or more |
---|
2640 | informational responses (1xx, see Section 6.2 of <xref target="RFC7231"/>) precede a |
---|
2641 | final response to the same request. |
---|
2642 | </t> |
---|
2643 | <t> |
---|
2644 | A client that has more than one outstanding request on a connection MUST |
---|
2645 | maintain a list of outstanding requests in the order sent and MUST |
---|
2646 | associate each received response message on that connection to the highest |
---|
2647 | ordered request that has not yet received a final (non-1xx) |
---|
2648 | response. |
---|
2649 | </t> |
---|
2650 | </section> |
---|
2651 | |
---|
2652 | <section title="Message Forwarding" anchor="message.forwarding"> |
---|
2653 | <t> |
---|
2654 | As described in <xref target="intermediaries"/>, intermediaries can serve |
---|
2655 | a variety of roles in the processing of HTTP requests and responses. |
---|
2656 | Some intermediaries are used to improve performance or availability. |
---|
2657 | Others are used for access control or to filter content. |
---|
2658 | Since an HTTP stream has characteristics similar to a pipe-and-filter |
---|
2659 | architecture, there are no inherent limits to the extent an intermediary |
---|
2660 | can enhance (or interfere) with either direction of the stream. |
---|
2661 | </t> |
---|
2662 | <t> |
---|
2663 | An intermediary not acting as a tunnel MUST implement the |
---|
2664 | <xref target="header.connection" format="none">Connection</xref> header field, as specified in |
---|
2665 | <xref target="header.connection"/>, and exclude fields from being forwarded |
---|
2666 | that are only intended for the incoming connection. |
---|
2667 | </t> |
---|
2668 | <t> |
---|
2669 | An intermediary MUST NOT forward a message to itself unless it is |
---|
2670 | protected from an infinite request loop. In general, an intermediary ought |
---|
2671 | to recognize its own server names, including any aliases, local variations, |
---|
2672 | or literal IP addresses, and respond to such requests directly. |
---|
2673 | </t> |
---|
2674 | |
---|
2675 | <section title="Via" anchor="header.via"> |
---|
2676 | <iref primary="true" item="Via header field"/> |
---|
2677 | |
---|
2678 | |
---|
2679 | |
---|
2680 | |
---|
2681 | <t> |
---|
2682 | The "Via" header field indicates the presence of intermediate protocols and |
---|
2683 | recipients between the user agent and the server (on requests) or between |
---|
2684 | the origin server and the client (on responses), similar to the |
---|
2685 | "Received" header field in email |
---|
2686 | (Section 3.6.7 of <xref target="RFC5322"/>). |
---|
2687 | Via can be used for tracking message forwards, |
---|
2688 | avoiding request loops, and identifying the protocol capabilities of |
---|
2689 | senders along the request/response chain. |
---|
2690 | </t> |
---|
2691 | <figure><iref primary="true" item="Grammar" subitem="Via"/><iref primary="true" item="Grammar" subitem="received-protocol"/><iref primary="true" item="Grammar" subitem="protocol-name"/><iref primary="true" item="Grammar" subitem="protocol-version"/><iref primary="true" item="Grammar" subitem="received-by"/><iref primary="true" item="Grammar" subitem="pseudonym"/><artwork type="abnf2616"><![CDATA[ |
---|
2692 | Via = 1#( received-protocol RWS received-by [ RWS comment ] ) |
---|
2693 | |
---|
2694 | received-protocol = [ protocol-name "/" ] protocol-version |
---|
2695 | ; see Section 6.7 |
---|
2696 | received-by = ( uri-host [ ":" port ] ) / pseudonym |
---|
2697 | pseudonym = token |
---|
2698 | ]]></artwork></figure> |
---|
2699 | <t> |
---|
2700 | Multiple Via field values represent each proxy or gateway that has |
---|
2701 | forwarded the message. Each intermediary appends its own information |
---|
2702 | about how the message was received, such that the end result is ordered |
---|
2703 | according to the sequence of forwarding recipients. |
---|
2704 | </t> |
---|
2705 | <t> |
---|
2706 | A proxy MUST send an appropriate Via header field, as described below, in |
---|
2707 | each message that it forwards. |
---|
2708 | An HTTP-to-HTTP gateway MUST send an appropriate Via header field in |
---|
2709 | each inbound request message and MAY send a Via header field in |
---|
2710 | forwarded response messages. |
---|
2711 | </t> |
---|
2712 | <t> |
---|
2713 | For each intermediary, the received-protocol indicates the protocol and |
---|
2714 | protocol version used by the upstream sender of the message. Hence, the |
---|
2715 | Via field value records the advertised protocol capabilities of the |
---|
2716 | request/response chain such that they remain visible to downstream |
---|
2717 | recipients; this can be useful for determining what backwards-incompatible |
---|
2718 | features might be safe to use in response, or within a later request, as |
---|
2719 | described in <xref target="http.version"/>. For brevity, the protocol-name |
---|
2720 | is omitted when the received protocol is HTTP. |
---|
2721 | </t> |
---|
2722 | <t> |
---|
2723 | The received-by portion of the field value is normally the host and optional |
---|
2724 | port number of a recipient server or client that subsequently forwarded the |
---|
2725 | message. |
---|
2726 | However, if the real host is considered to be sensitive information, a |
---|
2727 | sender MAY replace it with a pseudonym. If a port is not provided, |
---|
2728 | a recipient MAY interpret that as meaning it was received on the default |
---|
2729 | TCP port, if any, for the received-protocol. |
---|
2730 | </t> |
---|
2731 | <t> |
---|
2732 | A sender MAY generate comments in the Via header field to identify the |
---|
2733 | software of each recipient, analogous to the User-Agent and |
---|
2734 | Server header fields. However, all comments in the Via field |
---|
2735 | are optional, and a recipient MAY remove them prior to forwarding the |
---|
2736 | message. |
---|
2737 | </t> |
---|
2738 | <t> |
---|
2739 | For example, a request message could be sent from an HTTP/1.0 user |
---|
2740 | agent to an internal proxy code-named "fred", which uses HTTP/1.1 to |
---|
2741 | forward the request to a public proxy at p.example.net, which completes |
---|
2742 | the request by forwarding it to the origin server at www.example.com. |
---|
2743 | The request received by www.example.com would then have the following |
---|
2744 | Via header field: |
---|
2745 | </t> |
---|
2746 | <figure><artwork type="example"><![CDATA[ |
---|
2747 | Via: 1.0 fred, 1.1 p.example.net |
---|
2748 | ]]></artwork></figure> |
---|
2749 | <t> |
---|
2750 | An intermediary used as a portal through a network firewall |
---|
2751 | SHOULD NOT forward the names and ports of hosts within the firewall |
---|
2752 | region unless it is explicitly enabled to do so. If not enabled, such an |
---|
2753 | intermediary SHOULD replace each received-by host of any host behind the |
---|
2754 | firewall by an appropriate pseudonym for that host. |
---|
2755 | </t> |
---|
2756 | <t> |
---|
2757 | An intermediary MAY combine an ordered subsequence of Via header |
---|
2758 | field entries into a single such entry if the entries have identical |
---|
2759 | received-protocol values. For example, |
---|
2760 | </t> |
---|
2761 | <figure><artwork type="example"><![CDATA[ |
---|
2762 | Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy |
---|
2763 | ]]></artwork></figure> |
---|
2764 | <t> |
---|
2765 | could be collapsed to |
---|
2766 | </t> |
---|
2767 | <figure><artwork type="example"><![CDATA[ |
---|
2768 | Via: 1.0 ricky, 1.1 mertz, 1.0 lucy |
---|
2769 | ]]></artwork></figure> |
---|
2770 | <t> |
---|
2771 | A sender SHOULD NOT combine multiple entries unless they are all |
---|
2772 | under the same organizational control and the hosts have already been |
---|
2773 | replaced by pseudonyms. A sender MUST NOT combine entries that |
---|
2774 | have different received-protocol values. |
---|
2775 | </t> |
---|
2776 | </section> |
---|
2777 | |
---|
2778 | <section title="Transformations" anchor="message.transformations"> |
---|
2779 | <iref primary="true" item="transforming proxy"/> |
---|
2780 | <iref primary="true" item="non-transforming proxy"/> |
---|
2781 | <t> |
---|
2782 | Some intermediaries include features for transforming messages and their |
---|
2783 | payloads. A proxy might, for example, convert between image formats in |
---|
2784 | order to save cache space or to reduce the amount of traffic on a slow |
---|
2785 | link. However, operational problems might occur when these transformations |
---|
2786 | are applied to payloads intended for critical applications, such as medical |
---|
2787 | imaging or scientific data analysis, particularly when integrity checks or |
---|
2788 | digital signatures are used to ensure that the payload received is |
---|
2789 | identical to the original. |
---|
2790 | </t> |
---|
2791 | <t> |
---|
2792 | An HTTP-to-HTTP proxy is called a "transforming proxy" |
---|
2793 | if it is designed or configured to modify messages in a semantically |
---|
2794 | meaningful way (i.e., modifications, beyond those required by normal |
---|
2795 | HTTP processing, that change the message in a way that would be |
---|
2796 | significant to the original sender or potentially significant to |
---|
2797 | downstream recipients). For example, a transforming proxy might be |
---|
2798 | acting as a shared annotation server (modifying responses to include |
---|
2799 | references to a local annotation database), a malware filter, a |
---|
2800 | format transcoder, or a privacy filter. Such transformations are presumed |
---|
2801 | to be desired by whichever client (or client organization) selected the |
---|
2802 | proxy. |
---|
2803 | </t> |
---|
2804 | <t> |
---|
2805 | If a proxy receives a request-target with a host name that is not a |
---|
2806 | fully qualified domain name, it MAY add its own domain to the host name |
---|
2807 | it received when forwarding the request. A proxy MUST NOT change the |
---|
2808 | host name if the request-target contains a fully qualified domain name. |
---|
2809 | </t> |
---|
2810 | <t> |
---|
2811 | A proxy MUST NOT modify the "absolute-path" and "query" parts of the |
---|
2812 | received request-target when forwarding it to the next inbound server, |
---|
2813 | except as noted above to replace an empty path with "/" or "*". |
---|
2814 | </t> |
---|
2815 | <t> |
---|
2816 | A proxy MAY modify the message body through application |
---|
2817 | or removal of a transfer coding (<xref target="transfer.codings"/>). |
---|
2818 | </t> |
---|
2819 | <t> |
---|
2820 | A proxy MUST NOT transform the payload (Section 3.3 of <xref target="RFC7231"/>) of a message that |
---|
2821 | contains a no-transform Cache-Control directive (Section 5.2 of <xref target="RFC7234"/>). |
---|
2822 | </t> |
---|
2823 | <t> |
---|
2824 | A proxy MAY transform the payload of a message |
---|
2825 | that does not contain a no-transform Cache-Control directive. |
---|
2826 | A proxy that transforms a payload MUST add a Warning |
---|
2827 | header field with the warn-code of 214 ("Transformation Applied") |
---|
2828 | if one is not already in the message (see Section 5.5 of <xref target="RFC7234"/>). |
---|
2829 | A proxy that transforms the payload of a 200 (OK) response |
---|
2830 | can further inform downstream recipients that a transformation has been |
---|
2831 | applied by changing the response status code to |
---|
2832 | 203 (Non-Authoritative Information) (Section 6.3.4 of <xref target="RFC7231"/>). |
---|
2833 | </t> |
---|
2834 | <t> |
---|
2835 | A proxy SHOULD NOT modify header fields that provide information about |
---|
2836 | the endpoints of the communication chain, the resource state, or the |
---|
2837 | selected representation (other than the payload) unless the field's |
---|
2838 | definition specifically allows such modification or the modification is |
---|
2839 | deemed necessary for privacy or security. |
---|
2840 | </t> |
---|
2841 | </section> |
---|
2842 | </section> |
---|
2843 | </section> |
---|
2844 | |
---|
2845 | <section title="Connection Management" anchor="connection.management"> |
---|
2846 | <t> |
---|
2847 | HTTP messaging is independent of the underlying transport- or |
---|
2848 | session-layer connection protocol(s). HTTP only presumes a reliable |
---|
2849 | transport with in-order delivery of requests and the corresponding |
---|
2850 | in-order delivery of responses. The mapping of HTTP request and |
---|
2851 | response structures onto the data units of an underlying transport |
---|
2852 | protocol is outside the scope of this specification. |
---|
2853 | </t> |
---|
2854 | <t> |
---|
2855 | As described in <xref target="connecting.inbound"/>, the specific |
---|
2856 | connection protocols to be used for an HTTP interaction are determined by |
---|
2857 | client configuration and the <xref target="target-resource" format="none">target URI</xref>. |
---|
2858 | For example, the "http" URI scheme |
---|
2859 | (<xref target="http.uri"/>) indicates a default connection of TCP |
---|
2860 | over IP, with a default TCP port of 80, but the client might be |
---|
2861 | configured to use a proxy via some other connection, port, or protocol. |
---|
2862 | </t> |
---|
2863 | <t> |
---|
2864 | HTTP implementations are expected to engage in connection management, |
---|
2865 | which includes maintaining the state of current connections, |
---|
2866 | establishing a new connection or reusing an existing connection, |
---|
2867 | processing messages received on a connection, detecting connection |
---|
2868 | failures, and closing each connection. |
---|
2869 | Most clients maintain multiple connections in parallel, including |
---|
2870 | more than one connection per server endpoint. |
---|
2871 | Most servers are designed to maintain thousands of concurrent connections, |
---|
2872 | while controlling request queues to enable fair use and detect |
---|
2873 | denial-of-service attacks. |
---|
2874 | </t> |
---|
2875 | |
---|
2876 | <section title="Connection" anchor="header.connection"> |
---|
2877 | <iref primary="true" item="Connection header field"/> |
---|
2878 | <iref primary="true" item="close"/> |
---|
2879 | |
---|
2880 | |
---|
2881 | |
---|
2882 | <t> |
---|
2883 | The "Connection" header field allows the sender to indicate desired |
---|
2884 | control options for the current connection. In order to avoid confusing |
---|
2885 | downstream recipients, a proxy or gateway MUST remove or replace any |
---|
2886 | received connection options before forwarding the message. |
---|
2887 | </t> |
---|
2888 | <t> |
---|
2889 | When a header field aside from Connection is used to supply control |
---|
2890 | information for or about the current connection, the sender MUST list |
---|
2891 | the corresponding field-name within the "Connection" header field. |
---|
2892 | A proxy or gateway MUST parse a received Connection |
---|
2893 | header field before a message is forwarded and, for each |
---|
2894 | connection-option in this field, remove any header field(s) from |
---|
2895 | the message with the same name as the connection-option, and then |
---|
2896 | remove the Connection header field itself (or replace it with the |
---|
2897 | intermediary's own connection options for the forwarded message). |
---|
2898 | </t> |
---|
2899 | <t> |
---|
2900 | Hence, the Connection header field provides a declarative way of |
---|
2901 | distinguishing header fields that are only intended for the |
---|
2902 | immediate recipient ("hop-by-hop") from those fields that are |
---|
2903 | intended for all recipients on the chain ("end-to-end"), enabling the |
---|
2904 | message to be self-descriptive and allowing future connection-specific |
---|
2905 | extensions to be deployed without fear that they will be blindly |
---|
2906 | forwarded by older intermediaries. |
---|
2907 | </t> |
---|
2908 | <t> |
---|
2909 | The Connection header field's value has the following grammar: |
---|
2910 | </t> |
---|
2911 | <figure><iref primary="true" item="Grammar" subitem="Connection"/><iref primary="true" item="Grammar" subitem="connection-option"/><artwork type="abnf2616"><![CDATA[ |
---|
2912 | Connection = 1#connection-option |
---|
2913 | connection-option = token |
---|
2914 | ]]></artwork></figure> |
---|
2915 | <t> |
---|
2916 | Connection options are case insensitive. |
---|
2917 | </t> |
---|
2918 | <t> |
---|
2919 | A sender MUST NOT send a connection option corresponding to a header |
---|
2920 | field that is intended for all recipients of the payload. |
---|
2921 | For example, Cache-Control is never appropriate as a |
---|
2922 | connection option (Section 5.2 of <xref target="RFC7234"/>). |
---|
2923 | </t> |
---|
2924 | <t> |
---|
2925 | The connection options do not always correspond to a header field |
---|
2926 | present in the message, since a connection-specific header field |
---|
2927 | might not be needed if there are no parameters associated with a |
---|
2928 | connection option. In contrast, a connection-specific header field that |
---|
2929 | is received without a corresponding connection option usually indicates |
---|
2930 | that the field has been improperly forwarded by an intermediary and |
---|
2931 | ought to be ignored by the recipient. |
---|
2932 | </t> |
---|
2933 | <t> |
---|
2934 | When defining new connection options, specification authors ought to survey |
---|
2935 | existing header field names and ensure that the new connection option does |
---|
2936 | not share the same name as an already deployed header field. |
---|
2937 | Defining a new connection option essentially reserves that potential |
---|
2938 | field-name for carrying additional information related to the |
---|
2939 | connection option, since it would be unwise for senders to use |
---|
2940 | that field-name for anything else. |
---|
2941 | </t> |
---|
2942 | <t> |
---|
2943 | The "close" connection option is defined for a |
---|
2944 | sender to signal that this connection will be closed after completion of |
---|
2945 | the response. For example, |
---|
2946 | </t> |
---|
2947 | <figure><artwork type="example"><![CDATA[ |
---|
2948 | Connection: close |
---|
2949 | ]]></artwork></figure> |
---|
2950 | <t> |
---|
2951 | in either the request or the response header fields indicates that the |
---|
2952 | sender is going to close the connection after the current request/response |
---|
2953 | is complete (<xref target="persistent.tear-down"/>). |
---|
2954 | </t> |
---|
2955 | <t> |
---|
2956 | A client that does not support <xref target="persistent.connections" format="none">persistent connections</xref> MUST |
---|
2957 | send the "close" connection option in every request message. |
---|
2958 | </t> |
---|
2959 | <t> |
---|
2960 | A server that does not support <xref target="persistent.connections" format="none">persistent connections</xref> MUST |
---|
2961 | send the "close" connection option in every response message that |
---|
2962 | does not have a 1xx (Informational) status code. |
---|
2963 | </t> |
---|
2964 | </section> |
---|
2965 | |
---|
2966 | <section title="Establishment" anchor="persistent.establishment"> |
---|
2967 | <t> |
---|
2968 | It is beyond the scope of this specification to describe how connections |
---|
2969 | are established via various transport- or session-layer protocols. |
---|
2970 | Each connection applies to only one transport link. |
---|
2971 | </t> |
---|
2972 | </section> |
---|
2973 | |
---|
2974 | <section title="Persistence" anchor="persistent.connections"> |
---|
2975 | |
---|
2976 | <t> |
---|
2977 | HTTP/1.1 defaults to the use of "persistent connections", |
---|
2978 | allowing multiple requests and responses to be carried over a single |
---|
2979 | connection. The "<xref target="header.connection" format="none">close</xref>" connection option is used to signal |
---|
2980 | that a connection will not persist after the current request/response. |
---|
2981 | HTTP implementations SHOULD support persistent connections. |
---|
2982 | </t> |
---|
2983 | <t> |
---|
2984 | A recipient determines whether a connection is persistent or not based on |
---|
2985 | the most recently received message's protocol version and |
---|
2986 | <xref target="header.connection" format="none">Connection</xref> header field (if any): |
---|
2987 | <list style="symbols"> |
---|
2988 | <t>If the "<xref target="header.connection" format="none">close</xref>" connection option is present, the |
---|
2989 | connection will not persist after the current response; else,</t> |
---|
2990 | <t>If the received protocol is HTTP/1.1 (or later), the connection will |
---|
2991 | persist after the current response; else,</t> |
---|
2992 | <t>If the received protocol is HTTP/1.0, the "keep-alive" |
---|
2993 | connection option is present, the recipient is not a proxy, and |
---|
2994 | the recipient wishes to honor the HTTP/1.0 "keep-alive" mechanism, |
---|
2995 | the connection will persist after the current response; otherwise,</t> |
---|
2996 | <t>The connection will close after the current response.</t> |
---|
2997 | </list> |
---|
2998 | </t> |
---|
2999 | <t> |
---|
3000 | A client MAY send additional requests on a persistent connection until it |
---|
3001 | sends or receives a "<xref target="header.connection" format="none">close</xref>" connection option or receives an |
---|
3002 | HTTP/1.0 response without a "keep-alive" connection option. |
---|
3003 | </t> |
---|
3004 | <t> |
---|
3005 | In order to remain persistent, all messages on a connection need to |
---|
3006 | have a self-defined message length (i.e., one not defined by closure |
---|
3007 | of the connection), as described in <xref target="message.body"/>. |
---|
3008 | A server MUST read the entire request message body or close |
---|
3009 | the connection after sending its response, since otherwise the |
---|
3010 | remaining data on a persistent connection would be misinterpreted |
---|
3011 | as the next request. Likewise, |
---|
3012 | a client MUST read the entire response message body if it intends |
---|
3013 | to reuse the same connection for a subsequent request. |
---|
3014 | </t> |
---|
3015 | <t> |
---|
3016 | A proxy server MUST NOT maintain a persistent connection with an |
---|
3017 | HTTP/1.0 client (see Section 19.7.1 of <xref target="RFC2068"/> for |
---|
3018 | information and discussion of the problems with the Keep-Alive header field |
---|
3019 | implemented by many HTTP/1.0 clients). |
---|
3020 | </t> |
---|
3021 | <t> |
---|
3022 | See <xref target="compatibility.with.http.1.0.persistent.connections"/> |
---|
3023 | for more information on backwards compatibility with HTTP/1.0 clients. |
---|
3024 | </t> |
---|
3025 | |
---|
3026 | <section title="Retrying Requests" anchor="persistent.retrying.requests"> |
---|
3027 | <t> |
---|
3028 | Connections can be closed at any time, with or without intention. |
---|
3029 | Implementations ought to anticipate the need to recover |
---|
3030 | from asynchronous close events. |
---|
3031 | </t> |
---|
3032 | <t> |
---|
3033 | When an inbound connection is closed prematurely, a client MAY open a new |
---|
3034 | connection and automatically retransmit an aborted sequence of requests if |
---|
3035 | all of those requests have idempotent methods (Section 4.2.2 of <xref target="RFC7231"/>). |
---|
3036 | A proxy MUST NOT automatically retry non-idempotent requests. |
---|
3037 | </t> |
---|
3038 | <t> |
---|
3039 | A user agent MUST NOT automatically retry a request with a non-idempotent |
---|
3040 | method unless it has some means to know that the request semantics are |
---|
3041 | actually idempotent, regardless of the method, or some means to detect that |
---|
3042 | the original request was never applied. For example, a user agent that |
---|
3043 | knows (through design or configuration) that a POST request to a given |
---|
3044 | resource is safe can repeat that request automatically. |
---|
3045 | Likewise, a user agent designed specifically to operate on a version |
---|
3046 | control repository might be able to recover from partial failure conditions |
---|
3047 | by checking the target resource revision(s) after a failed connection, |
---|
3048 | reverting or fixing any changes that were partially applied, and then |
---|
3049 | automatically retrying the requests that failed. |
---|
3050 | </t> |
---|
3051 | <t> |
---|
3052 | A client SHOULD NOT automatically retry a failed automatic retry. |
---|
3053 | </t> |
---|
3054 | </section> |
---|
3055 | |
---|
3056 | <section title="Pipelining" anchor="pipelining"> |
---|
3057 | |
---|
3058 | <t> |
---|
3059 | A client that supports persistent connections MAY "pipeline" |
---|
3060 | its requests (i.e., send multiple requests without waiting for each |
---|
3061 | response). A server MAY process a sequence of pipelined requests in |
---|
3062 | parallel if they all have safe methods (Section 4.2.1 of <xref target="RFC7231"/>), but it MUST send |
---|
3063 | the corresponding responses in the same order that the requests were |
---|
3064 | received. |
---|
3065 | </t> |
---|
3066 | <t> |
---|
3067 | A client that pipelines requests SHOULD retry unanswered requests if the |
---|
3068 | connection closes before it receives all of the corresponding responses. |
---|
3069 | When retrying pipelined requests after a failed connection (a connection |
---|
3070 | not explicitly closed by the server in its last complete response), a |
---|
3071 | client MUST NOT pipeline immediately after connection establishment, |
---|
3072 | since the first remaining request in the prior pipeline might have caused |
---|
3073 | an error response that can be lost again if multiple requests are sent on a |
---|
3074 | prematurely closed connection (see the TCP reset problem described in |
---|
3075 | <xref target="persistent.tear-down"/>). |
---|
3076 | </t> |
---|
3077 | <t> |
---|
3078 | Idempotent methods (Section 4.2.2 of <xref target="RFC7231"/>) are significant to pipelining |
---|
3079 | because they can be automatically retried after a connection failure. |
---|
3080 | A user agent SHOULD NOT pipeline requests after a non-idempotent method, |
---|
3081 | until the final response status code for that method has been received, |
---|
3082 | unless the user agent has a means to detect and recover from partial |
---|
3083 | failure conditions involving the pipelined sequence. |
---|
3084 | </t> |
---|
3085 | <t> |
---|
3086 | An intermediary that receives pipelined requests MAY pipeline those |
---|
3087 | requests when forwarding them inbound, since it can rely on the outbound |
---|
3088 | user agent(s) to determine what requests can be safely pipelined. If the |
---|
3089 | inbound connection fails before receiving a response, the pipelining |
---|
3090 | intermediary MAY attempt to retry a sequence of requests that have yet |
---|
3091 | to receive a response if the requests all have idempotent methods; |
---|
3092 | otherwise, the pipelining intermediary SHOULD forward any received |
---|
3093 | responses and then close the corresponding outbound connection(s) so that |
---|
3094 | the outbound user agent(s) can recover accordingly. |
---|
3095 | </t> |
---|
3096 | </section> |
---|
3097 | </section> |
---|
3098 | |
---|
3099 | <section title="Concurrency" anchor="persistent.concurrency"> |
---|
3100 | <t> |
---|
3101 | A client ought to limit the number of simultaneous open |
---|
3102 | connections that it maintains to a given server. |
---|
3103 | </t> |
---|
3104 | <t> |
---|
3105 | Previous revisions of HTTP gave a specific number of connections as a |
---|
3106 | ceiling, but this was found to be impractical for many applications. As a |
---|
3107 | result, this specification does not mandate a particular maximum number of |
---|
3108 | connections but, instead, encourages clients to be conservative when opening |
---|
3109 | multiple connections. |
---|
3110 | </t> |
---|
3111 | <t> |
---|
3112 | Multiple connections are typically used to avoid the "head-of-line |
---|
3113 | blocking" problem, wherein a request that takes significant server-side |
---|
3114 | processing and/or has a large payload blocks subsequent requests on the |
---|
3115 | same connection. However, each connection consumes server resources. |
---|
3116 | Furthermore, using multiple connections can cause undesirable side effects |
---|
3117 | in congested networks. |
---|
3118 | </t> |
---|
3119 | <t> |
---|
3120 | Note that a server might reject traffic that it deems abusive or |
---|
3121 | characteristic of a denial-of-service attack, such as an excessive number |
---|
3122 | of open connections from a single client. |
---|
3123 | </t> |
---|
3124 | </section> |
---|
3125 | |
---|
3126 | <section title="Failures and Timeouts" anchor="persistent.failures"> |
---|
3127 | <t> |
---|
3128 | Servers will usually have some timeout value beyond which they will |
---|
3129 | no longer maintain an inactive connection. Proxy servers might make |
---|
3130 | this a higher value since it is likely that the client will be making |
---|
3131 | more connections through the same proxy server. The use of persistent |
---|
3132 | connections places no requirements on the length (or existence) of |
---|
3133 | this timeout for either the client or the server. |
---|
3134 | </t> |
---|
3135 | <t> |
---|
3136 | A client or server that wishes to time out SHOULD issue a graceful close |
---|
3137 | on the connection. Implementations SHOULD constantly monitor open |
---|
3138 | connections for a received closure signal and respond to it as appropriate, |
---|
3139 | since prompt closure of both sides of a connection enables allocated system |
---|
3140 | resources to be reclaimed. |
---|
3141 | </t> |
---|
3142 | <t> |
---|
3143 | A client, server, or proxy MAY close the transport connection at any |
---|
3144 | time. For example, a client might have started to send a new request |
---|
3145 | at the same time that the server has decided to close the "idle" |
---|
3146 | connection. From the server's point of view, the connection is being |
---|
3147 | closed while it was idle, but from the client's point of view, a |
---|
3148 | request is in progress. |
---|
3149 | </t> |
---|
3150 | <t> |
---|
3151 | A server SHOULD sustain persistent connections, when possible, and allow |
---|
3152 | the underlying |
---|
3153 | transport's flow-control mechanisms to resolve temporary overloads, rather |
---|
3154 | than terminate connections with the expectation that clients will retry. |
---|
3155 | The latter technique can exacerbate network congestion. |
---|
3156 | </t> |
---|
3157 | <t> |
---|
3158 | A client sending a message body SHOULD monitor |
---|
3159 | the network connection for an error response while it is transmitting |
---|
3160 | the request. If the client sees a response that indicates the server does |
---|
3161 | not wish to receive the message body and is closing the connection, the |
---|
3162 | client SHOULD immediately cease transmitting the body and close its side |
---|
3163 | of the connection. |
---|
3164 | </t> |
---|
3165 | </section> |
---|
3166 | |
---|
3167 | <section title="Teardown" anchor="persistent.tear-down"> |
---|
3168 | <iref primary="false" item="Connection header field"/> |
---|
3169 | <iref primary="false" item="close"/> |
---|
3170 | <t> |
---|
3171 | The <xref target="header.connection" format="none">Connection</xref> header field |
---|
3172 | (<xref target="header.connection"/>) provides a "<xref target="header.connection" format="none">close</xref>" |
---|
3173 | connection option that a sender SHOULD send when it wishes to close |
---|
3174 | the connection after the current request/response pair. |
---|
3175 | </t> |
---|
3176 | <t> |
---|
3177 | A client that sends a "<xref target="header.connection" format="none">close</xref>" connection option MUST NOT |
---|
3178 | send further requests on that connection (after the one containing |
---|
3179 | <xref target="header.connection" format="none">close</xref>) and MUST close the connection after reading the |
---|
3180 | final response message corresponding to this request. |
---|
3181 | </t> |
---|
3182 | <t> |
---|
3183 | A server that receives a "<xref target="header.connection" format="none">close</xref>" connection option MUST |
---|
3184 | initiate a close of the connection (see below) after it sends the |
---|
3185 | final response to the request that contained <xref target="header.connection" format="none">close</xref>. |
---|
3186 | The server SHOULD send a <xref target="header.connection" format="none">close</xref> connection option |
---|
3187 | in its final response on that connection. The server MUST NOT process |
---|
3188 | any further requests received on that connection. |
---|
3189 | </t> |
---|
3190 | <t> |
---|
3191 | A server that sends a "<xref target="header.connection" format="none">close</xref>" connection option MUST |
---|
3192 | initiate a close of the connection (see below) after it sends the |
---|
3193 | response containing <xref target="header.connection" format="none">close</xref>. The server MUST NOT process |
---|
3194 | any further requests received on that connection. |
---|
3195 | </t> |
---|
3196 | <t> |
---|
3197 | A client that receives a "<xref target="header.connection" format="none">close</xref>" connection option MUST |
---|
3198 | cease sending requests on that connection and close the connection |
---|
3199 | after reading the response message containing the close; if additional |
---|
3200 | pipelined requests had been sent on the connection, the client SHOULD NOT |
---|
3201 | assume that they will be processed by the server. |
---|
3202 | </t> |
---|
3203 | <t> |
---|
3204 | If a server performs an immediate close of a TCP connection, there is a |
---|
3205 | significant risk that the client will not be able to read the last HTTP |
---|
3206 | response. If the server receives additional data from the client on a |
---|
3207 | fully closed connection, such as another request that was sent by the |
---|
3208 | client before receiving the server's response, the server's TCP stack will |
---|
3209 | send a reset packet to the client; unfortunately, the reset packet might |
---|
3210 | erase the client's unacknowledged input buffers before they can be read |
---|
3211 | and interpreted by the client's HTTP parser. |
---|
3212 | </t> |
---|
3213 | <t> |
---|
3214 | To avoid the TCP reset problem, servers typically close a connection in |
---|
3215 | stages. First, the server performs a half-close by closing only the write |
---|
3216 | side of the read/write connection. The server then continues to read from |
---|
3217 | the connection until it receives a corresponding close by the client, or |
---|
3218 | until the server is reasonably certain that its own TCP stack has received |
---|
3219 | the client's acknowledgement of the packet(s) containing the server's last |
---|
3220 | response. Finally, the server fully closes the connection. |
---|
3221 | </t> |
---|
3222 | <t> |
---|
3223 | It is unknown whether the reset problem is exclusive to TCP or might also |
---|
3224 | be found in other transport connection protocols. |
---|
3225 | </t> |
---|
3226 | </section> |
---|
3227 | |
---|
3228 | <section title="Upgrade" anchor="header.upgrade"> |
---|
3229 | <iref primary="true" item="Upgrade header field"/> |
---|
3230 | |
---|
3231 | |
---|
3232 | |
---|
3233 | |
---|
3234 | <t> |
---|
3235 | The "Upgrade" header field is intended to provide a simple mechanism |
---|
3236 | for transitioning from HTTP/1.1 to some other protocol on the same |
---|
3237 | connection. A client MAY send a list of protocols in the Upgrade |
---|
3238 | header field of a request to invite the server to switch to one or |
---|
3239 | more of those protocols, in order of descending preference, before sending |
---|
3240 | the final response. A server MAY ignore a received Upgrade header field |
---|
3241 | if it wishes to continue using the current protocol on that connection. |
---|
3242 | Upgrade cannot be used to insist on a protocol change. |
---|
3243 | </t> |
---|
3244 | <figure><iref primary="true" item="Grammar" subitem="Upgrade"/><artwork type="abnf2616"><![CDATA[ |
---|
3245 | Upgrade = 1#protocol |
---|
3246 | |
---|
3247 | protocol = protocol-name ["/" protocol-version] |
---|
3248 | protocol-name = token |
---|
3249 | protocol-version = token |
---|
3250 | ]]></artwork></figure> |
---|
3251 | <t> |
---|
3252 | A server that sends a 101 (Switching Protocols) response |
---|
3253 | MUST send an Upgrade header field to indicate the new protocol(s) to |
---|
3254 | which the connection is being switched; if multiple protocol layers are |
---|
3255 | being switched, the sender MUST list the protocols in layer-ascending |
---|
3256 | order. A server MUST NOT switch to a protocol that was not indicated by |
---|
3257 | the client in the corresponding request's Upgrade header field. |
---|
3258 | A server MAY choose to ignore the order of preference indicated by the |
---|
3259 | client and select the new protocol(s) based on other factors, such as the |
---|
3260 | nature of the request or the current load on the server. |
---|
3261 | </t> |
---|
3262 | <t> |
---|
3263 | A server that sends a 426 (Upgrade Required) response |
---|
3264 | MUST send an Upgrade header field to indicate the acceptable protocols, |
---|
3265 | in order of descending preference. |
---|
3266 | </t> |
---|
3267 | <t> |
---|
3268 | A server MAY send an Upgrade header field in any other response to |
---|
3269 | advertise that it implements support for upgrading to the listed protocols, |
---|
3270 | in order of descending preference, when appropriate for a future request. |
---|
3271 | </t> |
---|
3272 | <figure><preamble> |
---|
3273 | The following is a hypothetical example sent by a client: |
---|
3274 | </preamble><artwork type="message/http; msgtype="request""><![CDATA[ |
---|
3275 | GET /hello.txt HTTP/1.1 |
---|
3276 | Host: www.example.com |
---|
3277 | Connection: upgrade |
---|
3278 | Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11 |
---|
3279 | |
---|
3280 | ]]></artwork></figure> |
---|
3281 | <t> |
---|
3282 | The capabilities and nature of the |
---|
3283 | application-level communication after the protocol change is entirely |
---|
3284 | dependent upon the new protocol(s) chosen. However, immediately after |
---|
3285 | sending the 101 (Switching Protocols) response, the server is expected to continue responding to |
---|
3286 | the original request as if it had received its equivalent within the new |
---|
3287 | protocol (i.e., the server still has an outstanding request to satisfy |
---|
3288 | after the protocol has been changed, and is expected to do so without |
---|
3289 | requiring the request to be repeated). |
---|
3290 | </t> |
---|
3291 | <t> |
---|
3292 | For example, if the Upgrade header field is received in a GET request |
---|
3293 | and the server decides to switch protocols, it first responds |
---|
3294 | with a 101 (Switching Protocols) message in HTTP/1.1 and |
---|
3295 | then immediately follows that with the new protocol's equivalent of a |
---|
3296 | response to a GET on the target resource. This allows a connection to be |
---|
3297 | upgraded to protocols with the same semantics as HTTP without the |
---|
3298 | latency cost of an additional round trip. A server MUST NOT switch |
---|
3299 | protocols unless the received message semantics can be honored by the new |
---|
3300 | protocol; an OPTIONS request can be honored by any protocol. |
---|
3301 | </t> |
---|
3302 | <figure><preamble> |
---|
3303 | The following is an example response to the above hypothetical request: |
---|
3304 | </preamble><artwork type="message/http; msgtype="response""><![CDATA[ |
---|
3305 | HTTP/1.1 101 Switching Protocols |
---|
3306 | Connection: upgrade |
---|
3307 | Upgrade: HTTP/2.0 |
---|
3308 | |
---|
3309 | [... data stream switches to HTTP/2.0 with an appropriate response |
---|
3310 | (as defined by new protocol) to the "GET /hello.txt" request ...] |
---|
3311 | ]]></artwork></figure> |
---|
3312 | <t> |
---|
3313 | When Upgrade is sent, the sender MUST also send a |
---|
3314 | <xref target="header.connection" format="none">Connection</xref> header field (<xref target="header.connection"/>) |
---|
3315 | that contains an "upgrade" connection option, in order to prevent Upgrade |
---|
3316 | from being accidentally forwarded by intermediaries that might not implement |
---|
3317 | the listed protocols. A server MUST ignore an Upgrade header field that |
---|
3318 | is received in an HTTP/1.0 request. |
---|
3319 | </t> |
---|
3320 | <t> |
---|
3321 | A client cannot begin using an upgraded protocol on the connection until |
---|
3322 | it has completely sent the request message (i.e., the client can't change |
---|
3323 | the protocol it is sending in the middle of a message). |
---|
3324 | If a server receives both an Upgrade and an Expect header field |
---|
3325 | with the "100-continue" expectation (Section 5.1.1 of <xref target="RFC7231"/>), the |
---|
3326 | server MUST send a 100 (Continue) response before sending |
---|
3327 | a 101 (Switching Protocols) response. |
---|
3328 | </t> |
---|
3329 | <t> |
---|
3330 | The Upgrade header field only applies to switching protocols on top of the |
---|
3331 | existing connection; it cannot be used to switch the underlying connection |
---|
3332 | (transport) protocol, nor to switch the existing communication to a |
---|
3333 | different connection. For those purposes, it is more appropriate to use a |
---|
3334 | 3xx (Redirection) response (Section 6.4 of <xref target="RFC7231"/>). |
---|
3335 | </t> |
---|
3336 | <t> |
---|
3337 | This specification only defines the protocol name "HTTP" for use by |
---|
3338 | the family of Hypertext Transfer Protocols, as defined by the HTTP |
---|
3339 | version rules of <xref target="http.version"/> and future updates to this |
---|
3340 | specification. Additional tokens ought to be registered with IANA using the |
---|
3341 | registration procedure defined in <xref target="upgrade.token.registry"/>. |
---|
3342 | </t> |
---|
3343 | </section> |
---|
3344 | </section> |
---|
3345 | |
---|
3346 | <section title="ABNF List Extension: #rule" anchor="abnf.extension"> |
---|
3347 | <t> |
---|
3348 | A #rule extension to the ABNF rules of <xref target="RFC5234"/> is used to |
---|
3349 | improve readability in the definitions of some header field values. |
---|
3350 | </t> |
---|
3351 | <t> |
---|
3352 | A construct "#" is defined, similar to "*", for defining comma-delimited |
---|
3353 | lists of elements. The full form is "<n>#<m>element" indicating |
---|
3354 | at least <n> and at most <m> elements, each separated by a single |
---|
3355 | comma (",") and optional whitespace (OWS). |
---|
3356 | </t> |
---|
3357 | <figure><preamble> |
---|
3358 | In any production that uses the list construct, a sender MUST NOT |
---|
3359 | generate empty list elements. In other words, a sender MUST generate |
---|
3360 | lists that satisfy the following syntax: |
---|
3361 | </preamble><artwork type="example"><![CDATA[ |
---|
3362 | 1#element => element *( OWS "," OWS element ) |
---|
3363 | ]]></artwork></figure> |
---|
3364 | <figure><preamble> |
---|
3365 | and: |
---|
3366 | </preamble><artwork type="example"><![CDATA[ |
---|
3367 | #element => [ 1#element ] |
---|
3368 | ]]></artwork></figure> |
---|
3369 | <figure><preamble> |
---|
3370 | and for n >= 1 and m > 1: |
---|
3371 | </preamble><artwork type="example"><![CDATA[ |
---|
3372 | <n>#<m>element => element <n-1>*<m-1>( OWS "," OWS element ) |
---|
3373 | ]]></artwork></figure> |
---|
3374 | <t> |
---|
3375 | For compatibility with legacy list rules, a recipient MUST parse and ignore |
---|
3376 | a reasonable number of empty list elements: enough to handle common mistakes |
---|
3377 | by senders that merge values, but not so much that they could be used as a |
---|
3378 | denial-of-service mechanism. In other words, a recipient MUST accept lists |
---|
3379 | that satisfy the following syntax: |
---|
3380 | </t> |
---|
3381 | <figure><artwork type="example"><![CDATA[ |
---|
3382 | #element => [ ( "," / element ) *( OWS "," [ OWS element ] ) ] |
---|
3383 | |
---|
3384 | 1#element => *( "," OWS ) element *( OWS "," [ OWS element ] ) |
---|
3385 | ]]></artwork></figure> |
---|
3386 | <t> |
---|
3387 | Empty elements do not contribute to the count of elements present. |
---|
3388 | For example, given these ABNF productions: |
---|
3389 | </t> |
---|
3390 | <figure><artwork type="example"><![CDATA[ |
---|
3391 | example-list = 1#example-list-elmt |
---|
3392 | example-list-elmt = token ; see Section 3.2.6 |
---|
3393 | ]]></artwork></figure> |
---|
3394 | <t> |
---|
3395 | Then, the following are valid values for example-list (not including the |
---|
3396 | double quotes, which are present for delimitation only): |
---|
3397 | </t> |
---|
3398 | <figure><artwork type="example"><![CDATA[ |
---|
3399 | "foo,bar" |
---|
3400 | "foo ,bar," |
---|
3401 | "foo , ,bar,charlie " |
---|
3402 | ]]></artwork></figure> |
---|
3403 | <t> |
---|
3404 | In contrast, the following values would be invalid, since at least one |
---|
3405 | non-empty element is required by the example-list production: |
---|
3406 | </t> |
---|
3407 | <figure><artwork type="example"><![CDATA[ |
---|
3408 | "" |
---|
3409 | "," |
---|
3410 | ", ," |
---|
3411 | ]]></artwork></figure> |
---|
3412 | <t> |
---|
3413 | <xref target="collected.abnf"/> shows the collected ABNF for recipients |
---|
3414 | after the list constructs have been expanded. |
---|
3415 | </t> |
---|
3416 | </section> |
---|
3417 | |
---|
3418 | <section title="IANA Considerations" anchor="IANA.considerations"> |
---|
3419 | |
---|
3420 | <section title="Header Field Registration" anchor="header.field.registration"> |
---|
3421 | <t> |
---|
3422 | HTTP header fields are registered within the "Message Header" field registry |
---|
3423 | maintained at |
---|
3424 | <http://www.iana.org/assignments/message-headers/>. |
---|
3425 | </t> |
---|
3426 | <t> |
---|
3427 | This document defines the following HTTP header fields, so the |
---|
3428 | "Permanent Message Header Field Names" registry has been updated |
---|
3429 | accordingly (see <xref target="BCP90"/>). |
---|
3430 | </t> |
---|
3431 | |
---|
3432 | <!--AUTOGENERATED FROM extract-header-defs.xslt, do not edit manually--> |
---|
3433 | <texttable align="left" suppress-title="true" anchor="iana.header.registration.table"> |
---|
3434 | <ttcol>Header Field Name</ttcol> |
---|
3435 | <ttcol>Protocol</ttcol> |
---|
3436 | <ttcol>Status</ttcol> |
---|
3437 | <ttcol>Reference</ttcol> |
---|
3438 | |
---|
3439 | <c>Connection</c> |
---|
3440 | <c>http</c> |
---|
3441 | <c>standard</c> |
---|
3442 | <c> |
---|
3443 | <xref target="header.connection"/> |
---|
3444 | </c> |
---|
3445 | <c>Content-Length</c> |
---|
3446 | <c>http</c> |
---|
3447 | <c>standard</c> |
---|
3448 | <c> |
---|
3449 | <xref target="header.content-length"/> |
---|
3450 | </c> |
---|
3451 | <c>Host</c> |
---|
3452 | <c>http</c> |
---|
3453 | <c>standard</c> |
---|
3454 | <c> |
---|
3455 | <xref target="header.host"/> |
---|
3456 | </c> |
---|
3457 | <c>TE</c> |
---|
3458 | <c>http</c> |
---|
3459 | <c>standard</c> |
---|
3460 | <c> |
---|
3461 | <xref target="header.te"/> |
---|
3462 | </c> |
---|
3463 | <c>Trailer</c> |
---|
3464 | <c>http</c> |
---|
3465 | <c>standard</c> |
---|
3466 | <c> |
---|
3467 | <xref target="header.trailer"/> |
---|
3468 | </c> |
---|
3469 | <c>Transfer-Encoding</c> |
---|
3470 | <c>http</c> |
---|
3471 | <c>standard</c> |
---|
3472 | <c> |
---|
3473 | <xref target="header.transfer-encoding"/> |
---|
3474 | </c> |
---|
3475 | <c>Upgrade</c> |
---|
3476 | <c>http</c> |
---|
3477 | <c>standard</c> |
---|
3478 | <c> |
---|
3479 | <xref target="header.upgrade"/> |
---|
3480 | </c> |
---|
3481 | <c>Via</c> |
---|
3482 | <c>http</c> |
---|
3483 | <c>standard</c> |
---|
3484 | <c> |
---|
3485 | <xref target="header.via"/> |
---|
3486 | </c> |
---|
3487 | </texttable> |
---|
3488 | <!--(END)--> |
---|
3489 | |
---|
3490 | <t> |
---|
3491 | Furthermore, the header field-name "Close" has been registered as |
---|
3492 | "reserved", since using that name as an HTTP header field might |
---|
3493 | conflict with the "close" connection option of the "<xref target="header.connection" format="none">Connection</xref>" |
---|
3494 | header field (<xref target="header.connection"/>). |
---|
3495 | </t> |
---|
3496 | <texttable align="left" suppress-title="true"> |
---|
3497 | <ttcol>Header Field Name</ttcol> |
---|
3498 | <ttcol>Protocol</ttcol> |
---|
3499 | <ttcol>Status</ttcol> |
---|
3500 | <ttcol>Reference</ttcol> |
---|
3501 | |
---|
3502 | <c>Close</c> |
---|
3503 | <c>http</c> |
---|
3504 | <c>reserved</c> |
---|
3505 | <c> |
---|
3506 | <xref target="header.field.registration"/> |
---|
3507 | </c> |
---|
3508 | </texttable> |
---|
3509 | <t> |
---|
3510 | The change controller is: "IETF (iesg@ietf.org) - Internet Engineering Task Force". |
---|
3511 | </t> |
---|
3512 | </section> |
---|
3513 | |
---|
3514 | <section title="URI Scheme Registration" anchor="uri.scheme.registration"> |
---|
3515 | <t> |
---|
3516 | IANA maintains the registry of URI Schemes <xref target="BCP115"/> at |
---|
3517 | <http://www.iana.org/assignments/uri-schemes/>. |
---|
3518 | </t> |
---|
3519 | <t> |
---|
3520 | This document defines the following URI schemes, so the |
---|
3521 | "Permanent URI Schemes" registry has been updated accordingly. |
---|
3522 | </t> |
---|
3523 | <texttable align="left" suppress-title="true"> |
---|
3524 | <ttcol>URI Scheme</ttcol> |
---|
3525 | <ttcol>Description</ttcol> |
---|
3526 | <ttcol>Reference</ttcol> |
---|
3527 | |
---|
3528 | <c>http</c> |
---|
3529 | <c>Hypertext Transfer Protocol</c> |
---|
3530 | <c><xref target="http.uri"/></c> |
---|
3531 | |
---|
3532 | <c>https</c> |
---|
3533 | <c>Hypertext Transfer Protocol Secure</c> |
---|
3534 | <c><xref target="https.uri"/></c> |
---|
3535 | </texttable> |
---|
3536 | </section> |
---|
3537 | |
---|
3538 | <section title="Internet Media Type Registration" anchor="internet.media.type.http"> |
---|
3539 | <t> |
---|
3540 | IANA maintains the registry of Internet media types <xref target="BCP13"/> at |
---|
3541 | <http://www.iana.org/assignments/media-types>. |
---|
3542 | </t> |
---|
3543 | <t> |
---|
3544 | This document serves as the specification for the Internet media types |
---|
3545 | "message/http" and "application/http". The following has been registered with |
---|
3546 | IANA. |
---|
3547 | </t> |
---|
3548 | <section title="Internet Media Type message/http" anchor="internet.media.type.message.http"> |
---|
3549 | <iref item="Media Type" subitem="message/http" primary="true"/> |
---|
3550 | <iref item="message/http Media Type" primary="true"/> |
---|
3551 | <t> |
---|
3552 | The message/http type can be used to enclose a single HTTP request or |
---|
3553 | response message, provided that it obeys the MIME restrictions for all |
---|
3554 | "message" types regarding line length and encodings. |
---|
3555 | </t> |
---|
3556 | <t> |
---|
3557 | <!-- [rfced] http://www.iana.org/assignments/media-types/message/http includes |
---|
3558 | the following: |
---|
3559 | |
---|
3560 | (registered by RFC2616, last updated 2014-02-13) |
---|
3561 | |
---|
3562 | Does this text need to be updated? |
---|
3563 | --> |
---|
3564 | |
---|
3565 | |
---|
3566 | <list style="hanging"> |
---|
3567 | <t hangText="Type name:"> |
---|
3568 | message |
---|
3569 | </t> |
---|
3570 | <t hangText="Subtype name:"> |
---|
3571 | http |
---|
3572 | </t> |
---|
3573 | <t hangText="Required parameters:"> |
---|
3574 | N/A |
---|
3575 | </t> |
---|
3576 | <t hangText="Optional parameters:"> |
---|
3577 | version, msgtype |
---|
3578 | <list style="hanging"> |
---|
3579 | <t hangText="version:"> |
---|
3580 | The HTTP-version number of the enclosed message |
---|
3581 | (e.g., "1.1"). If not present, the version can be |
---|
3582 | determined from the first line of the body. |
---|
3583 | </t> |
---|
3584 | <t hangText="msgtype:"> |
---|
3585 | The message type -- "request" or "response". If not |
---|
3586 | present, the type can be determined from the first |
---|
3587 | line of the body. |
---|
3588 | </t> |
---|
3589 | </list> |
---|
3590 | </t> |
---|
3591 | <t hangText="Encoding considerations:"> |
---|
3592 | only "7bit", "8bit", or "binary" are permitted |
---|
3593 | </t> |
---|
3594 | <t hangText="Security considerations:"> |
---|
3595 | see <xref target="security.considerations"/> |
---|
3596 | </t> |
---|
3597 | <t hangText="Interoperability considerations:"> |
---|
3598 | N/A |
---|
3599 | </t> |
---|
3600 | <t hangText="Published specification:"> |
---|
3601 | This specification (see <xref target="internet.media.type.message.http"/>). |
---|
3602 | </t> |
---|
3603 | <t hangText="Applications that use this media type:"> |
---|
3604 | N/A |
---|
3605 | </t> |
---|
3606 | <t hangText="Fragment identifier considerations:"> |
---|
3607 | N/A |
---|
3608 | </t> |
---|
3609 | <t hangText="Additional information:"> |
---|
3610 | <list style="hanging"> |
---|
3611 | <t hangText="Magic number(s):">N/A</t> |
---|
3612 | <t hangText="Deprecated alias names for this type:">N/A</t> |
---|
3613 | <t hangText="File extension(s):">N/A</t> |
---|
3614 | <t hangText="Macintosh file type code(s):">N/A</t> |
---|
3615 | </list> |
---|
3616 | </t> |
---|
3617 | <t hangText="Person and email address to contact for further information:"> |
---|
3618 | See Authors' Addresses Section. |
---|
3619 | </t> |
---|
3620 | <t hangText="Intended usage:"> |
---|
3621 | COMMON |
---|
3622 | </t> |
---|
3623 | <t hangText="Restrictions on usage:"> |
---|
3624 | N/A |
---|
3625 | </t> |
---|
3626 | <t hangText="Author:"> |
---|
3627 | See Authors' Addresses Section. |
---|
3628 | </t> |
---|
3629 | <t hangText="Change controller:"> |
---|
3630 | IESG |
---|
3631 | </t> |
---|
3632 | </list> |
---|
3633 | </t> |
---|
3634 | </section> |
---|
3635 | <section title="Internet Media Type application/http" anchor="internet.media.type.application.http"> |
---|
3636 | <iref item="Media Type" subitem="application/http" primary="true"/> |
---|
3637 | <iref item="application/http Media Type" primary="true"/> |
---|
3638 | <t> |
---|
3639 | The application/http type can be used to enclose a pipeline of one or more |
---|
3640 | HTTP request or response messages (not intermixed). |
---|
3641 | </t> |
---|
3642 | <t> |
---|
3643 | <!-- [rfced] http://www.iana.org/assignments/media-types/application/http |
---|
3644 | includes the following: |
---|
3645 | |
---|
3646 | (registered by RFC2616, last updated 2014-02-13) |
---|
3647 | |
---|
3648 | Does this text need to be updated? |
---|
3649 | |
---|
3650 | --> |
---|
3651 | |
---|
3652 | |
---|
3653 | <list style="hanging"> |
---|
3654 | <t hangText="Type name:"> |
---|
3655 | application |
---|
3656 | </t> |
---|
3657 | <t hangText="Subtype name:"> |
---|
3658 | http |
---|
3659 | </t> |
---|
3660 | <t hangText="Required parameters:"> |
---|
3661 | N/A |
---|
3662 | </t> |
---|
3663 | <t hangText="Optional parameters:"> |
---|
3664 | version, msgtype |
---|
3665 | <list style="hanging"> |
---|
3666 | <t hangText="version:"> |
---|
3667 | The HTTP-version number of the enclosed messages |
---|
3668 | (e.g., "1.1"). If not present, the version can be |
---|
3669 | determined from the first line of the body. |
---|
3670 | </t> |
---|
3671 | <t hangText="msgtype:"> |
---|
3672 | The message type -- "request" or "response". If not |
---|
3673 | present, the type can be determined from the first |
---|
3674 | line of the body. |
---|
3675 | </t> |
---|
3676 | </list> |
---|
3677 | </t> |
---|
3678 | <t hangText="Encoding considerations:"> |
---|
3679 | HTTP messages enclosed by this type |
---|
3680 | are in "binary" format; use of an appropriate |
---|
3681 | Content-Transfer-Encoding is required when |
---|
3682 | transmitted via email. |
---|
3683 | </t> |
---|
3684 | <t hangText="Security considerations:"> |
---|
3685 | see <xref target="security.considerations"/> |
---|
3686 | </t> |
---|
3687 | <t hangText="Interoperability considerations:"> |
---|
3688 | N/A |
---|
3689 | </t> |
---|
3690 | <t hangText="Published specification:"> |
---|
3691 | This specification (see <xref target="internet.media.type.application.http"/>). |
---|
3692 | </t> |
---|
3693 | <t hangText="Applications that use this media type:"> |
---|
3694 | N/A |
---|
3695 | </t> |
---|
3696 | <t hangText="Fragment identifier considerations:"> |
---|
3697 | N/A |
---|
3698 | </t> |
---|
3699 | <t hangText="Additional information:"> |
---|
3700 | <list style="hanging"> |
---|
3701 | <t hangText="Deprecated alias names for this type:">N/A</t> |
---|
3702 | <t hangText="Magic number(s):">N/A</t> |
---|
3703 | <t hangText="File extension(s):">N/A</t> |
---|
3704 | <t hangText="Macintosh file type code(s):">N/A</t> |
---|
3705 | </list> |
---|
3706 | </t> |
---|
3707 | <t hangText="Person and email address to contact for further information:"> |
---|
3708 | See Authors' Addresses Section. |
---|
3709 | </t> |
---|
3710 | <t hangText="Intended usage:"> |
---|
3711 | COMMON |
---|
3712 | </t> |
---|
3713 | <t hangText="Restrictions on usage:"> |
---|
3714 | N/A |
---|
3715 | </t> |
---|
3716 | <t hangText="Author:"> |
---|
3717 | See Authors' Addresses Section. |
---|
3718 | </t> |
---|
3719 | <t hangText="Change controller:"> |
---|
3720 | IESG |
---|
3721 | </t> |
---|
3722 | </list> |
---|
3723 | </t> |
---|
3724 | </section> |
---|
3725 | </section> |
---|
3726 | |
---|
3727 | <section title="Transfer Coding Registry" anchor="transfer.coding.registry"> |
---|
3728 | <t> |
---|
3729 | The "HTTP Transfer Coding" registry defines the namespace for transfer |
---|
3730 | coding names. It is maintained at <http://www.iana.org/assignments/http-parameters>. |
---|
3731 | </t> |
---|
3732 | |
---|
3733 | <section title="Procedure" anchor="transfer.coding.registry.procedure"> |
---|
3734 | <t> |
---|
3735 | Registrations MUST include the following fields: |
---|
3736 | <list style="symbols"> |
---|
3737 | <t>Name</t> |
---|
3738 | <t>Description</t> |
---|
3739 | <t>Pointer to specification text</t> |
---|
3740 | </list> |
---|
3741 | </t> |
---|
3742 | <t> |
---|
3743 | Names of transfer codings MUST NOT overlap with names of content codings |
---|
3744 | (Section 3.1.2.1 of <xref target="RFC7231"/>) unless the encoding transformation is identical, as |
---|
3745 | is the case for the compression codings defined in |
---|
3746 | <xref target="compression.codings"/>. |
---|
3747 | </t> |
---|
3748 | <t> |
---|
3749 | Values to be added to this namespace require IETF Review (see |
---|
3750 | Section 4.1 of <xref target="RFC5226"/>), and MUST |
---|
3751 | conform to the purpose of transfer coding defined in this specification. |
---|
3752 | </t> |
---|
3753 | <t> |
---|
3754 | Use of program names for the identification of encoding formats |
---|
3755 | is not desirable and is discouraged for future encodings. |
---|
3756 | </t> |
---|
3757 | </section> |
---|
3758 | |
---|
3759 | <section title="Registration" anchor="transfer.coding.registration"> |
---|
3760 | <t> |
---|
3761 | The "HTTP Transfer Coding Registry" has been updated with the registrations |
---|
3762 | below: |
---|
3763 | </t> |
---|
3764 | <texttable align="left" suppress-title="true" anchor="iana.transfer.coding.registration.table"> |
---|
3765 | <ttcol>Name</ttcol> |
---|
3766 | <ttcol>Description</ttcol> |
---|
3767 | <ttcol>Reference</ttcol> |
---|
3768 | <c>chunked</c> |
---|
3769 | <c>Transfer in a series of chunks</c> |
---|
3770 | <c> |
---|
3771 | <xref target="chunked.encoding"/> |
---|
3772 | </c> |
---|
3773 | <c>compress</c> |
---|
3774 | <c>UNIX "compress" data format <xref target="Welch"/></c> |
---|
3775 | <c> |
---|
3776 | <xref target="compress.coding"/> |
---|
3777 | </c> |
---|
3778 | <c>deflate</c> |
---|
3779 | <c>"deflate" compressed data (<xref target="RFC1951"/>) inside |
---|
3780 | the "zlib" data format (<xref target="RFC1950"/>) |
---|
3781 | </c> |
---|
3782 | <c> |
---|
3783 | <xref target="deflate.coding"/> |
---|
3784 | </c> |
---|
3785 | <c>gzip</c> |
---|
3786 | <c>GZIP file format <xref target="RFC1952"/></c> |
---|
3787 | <c> |
---|
3788 | <xref target="gzip.coding"/> |
---|
3789 | </c> |
---|
3790 | <c>x-compress</c> |
---|
3791 | <c>Deprecated (alias for compress)</c> |
---|
3792 | <c> |
---|
3793 | <xref target="compress.coding"/> |
---|
3794 | </c> |
---|
3795 | <c>x-gzip</c> |
---|
3796 | <c>Deprecated (alias for gzip)</c> |
---|
3797 | <c> |
---|
3798 | <xref target="gzip.coding"/> |
---|
3799 | </c> |
---|
3800 | </texttable> |
---|
3801 | </section> |
---|
3802 | </section> |
---|
3803 | |
---|
3804 | <section title="Content Coding Registration" anchor="content.coding.registration"> |
---|
3805 | <t> |
---|
3806 | IANA maintains the "HTTP Content Coding Registry" at |
---|
3807 | <http://www.iana.org/assignments/http-parameters>. |
---|
3808 | </t> |
---|
3809 | <t> |
---|
3810 | The "HTTP Content Codings Registry" has been updated with the registrations |
---|
3811 | below: |
---|
3812 | </t> |
---|
3813 | <texttable align="left" suppress-title="true" anchor="iana.content.coding.registration.table"> |
---|
3814 | <ttcol>Name</ttcol> |
---|
3815 | <ttcol>Description</ttcol> |
---|
3816 | <ttcol>Reference</ttcol> |
---|
3817 | <c>compress</c> |
---|
3818 | <c>UNIX "compress" data format <xref target="Welch"/></c> |
---|
3819 | <c> |
---|
3820 | <xref target="compress.coding"/> |
---|
3821 | </c> |
---|
3822 | <c>deflate</c> |
---|
3823 | <c>"deflate" compressed data (<xref target="RFC1951"/>) inside |
---|
3824 | the "zlib" data format (<xref target="RFC1950"/>)</c> |
---|
3825 | <c> |
---|
3826 | <xref target="deflate.coding"/> |
---|
3827 | </c> |
---|
3828 | <c>gzip</c> |
---|
3829 | <c>GZIP file format <xref target="RFC1952"/></c> |
---|
3830 | <c> |
---|
3831 | <xref target="gzip.coding"/> |
---|
3832 | </c> |
---|
3833 | <c>x-compress</c> |
---|
3834 | <c>Deprecated (alias for compress)</c> |
---|
3835 | <c> |
---|
3836 | <xref target="compress.coding"/> |
---|
3837 | </c> |
---|
3838 | <c>x-gzip</c> |
---|
3839 | <c>Deprecated (alias for gzip)</c> |
---|
3840 | <c> |
---|
3841 | <xref target="gzip.coding"/> |
---|
3842 | </c> |
---|
3843 | </texttable> |
---|
3844 | </section> |
---|
3845 | |
---|
3846 | <section title="Upgrade Token Registry" anchor="upgrade.token.registry"> |
---|
3847 | <t> |
---|
3848 | The "Hypertext Transfer Protocol (HTTP) Upgrade Token Registry" defines the namespace for protocol-name |
---|
3849 | tokens used to identify protocols in the <xref target="header.upgrade" format="none">Upgrade</xref> header |
---|
3850 | field. The registry is maintained at <http://www.iana.org/assignments/http-upgrade-tokens>. |
---|
3851 | </t> |
---|
3852 | |
---|
3853 | <section title="Procedure" anchor="upgrade.token.registry.procedure"> |
---|
3854 | <t> |
---|
3855 | Each registered protocol name is associated with contact information |
---|
3856 | and an optional set of specifications that details how the connection |
---|
3857 | will be processed after it has been upgraded. |
---|
3858 | </t> |
---|
3859 | <t> |
---|
3860 | Registrations happen on a "First Come First Served" basis (see |
---|
3861 | Section 4.1 of <xref target="RFC5226"/>) and are subject to the |
---|
3862 | following rules: |
---|
3863 | <list style="numbers"> |
---|
3864 | <t>A protocol-name token, once registered, stays registered forever.</t> |
---|
3865 | <t>The registration MUST name a responsible party for the |
---|
3866 | registration.</t> |
---|
3867 | <t>The registration MUST name a point of contact.</t> |
---|
3868 | <t>The registration MAY name a set of specifications associated with |
---|
3869 | that token. Such specifications need not be publicly available.</t> |
---|
3870 | <t>The registration SHOULD name a set of expected "protocol-version" |
---|
3871 | tokens associated with that token at the time of registration.</t> |
---|
3872 | <t>The responsible party MAY change the registration at any time. |
---|
3873 | The IANA will keep a record of all such changes, and make them |
---|
3874 | available upon request.</t> |
---|
3875 | <t>The IESG MAY reassign responsibility for a protocol token. |
---|
3876 | This will normally only be used in the case when a |
---|
3877 | responsible party cannot be contacted.</t> |
---|
3878 | </list> |
---|
3879 | </t> |
---|
3880 | <t> |
---|
3881 | This registration procedure for HTTP Upgrade Tokens replaces that |
---|
3882 | previously defined in Section 7.2 of <xref target="RFC2817"/>. |
---|
3883 | </t> |
---|
3884 | </section> |
---|
3885 | |
---|
3886 | <section title="Upgrade Token Registration" anchor="upgrade.token.registration"> |
---|
3887 | <t> |
---|
3888 | The "HTTP" entry in the "HTTP Upgrade Token" registry shall be updated with |
---|
3889 | the registration below: |
---|
3890 | </t> |
---|
3891 | <texttable align="left" suppress-title="true"> |
---|
3892 | <ttcol>Value</ttcol> |
---|
3893 | <ttcol>Description</ttcol> |
---|
3894 | <ttcol>Expected Version Tokens</ttcol> |
---|
3895 | <ttcol>Reference</ttcol> |
---|
3896 | |
---|
3897 | <c>HTTP</c> |
---|
3898 | <c>Hypertext Transfer Protocol</c> |
---|
3899 | <c>any DIGIT.DIGIT (e.g, "2.0")</c> |
---|
3900 | <c><xref target="http.version"/></c> |
---|
3901 | </texttable> |
---|
3902 | <t> |
---|
3903 | The responsible party is: "IETF (iesg@ietf.org) - Internet Engineering Task Force". |
---|
3904 | </t> |
---|
3905 | </section> |
---|
3906 | </section> |
---|
3907 | |
---|
3908 | </section> |
---|
3909 | |
---|
3910 | <section title="Security Considerations" anchor="security.considerations"> |
---|
3911 | <t> |
---|
3912 | This section is meant to inform developers, information providers, and |
---|
3913 | users of known security considerations relevant to HTTP message syntax, |
---|
3914 | parsing, and routing. Security considerations about HTTP semantics and |
---|
3915 | payloads are addressed in <xref target="RFC7231"/>. |
---|
3916 | </t> |
---|
3917 | |
---|
3918 | <section title="Establishing Authority" anchor="establishing.authority"> |
---|
3919 | <iref item="authoritative response" primary="true"/> |
---|
3920 | <iref item="phishing" primary="true"/> |
---|
3921 | <t> |
---|
3922 | HTTP relies on the notion of an authoritative response: a |
---|
3923 | response that has been determined by (or at the direction of) the authority |
---|
3924 | identified within the target URI to be the most appropriate response for |
---|
3925 | that request given the state of the target resource at the time of |
---|
3926 | response message origination. Providing a response from a non-authoritative |
---|
3927 | source, such as a shared cache, is often useful to improve performance and |
---|
3928 | availability, but only to the extent that the source can be trusted or |
---|
3929 | the distrusted response can be safely used. |
---|
3930 | </t> |
---|
3931 | <t> |
---|
3932 | Unfortunately, establishing authority can be difficult. |
---|
3933 | For example, phishing is an attack on the user's perception |
---|
3934 | of authority, where that perception can be misled by presenting similar |
---|
3935 | branding in hypertext, possibly aided by userinfo obfuscating the authority |
---|
3936 | component (see <xref target="http.uri"/>). |
---|
3937 | User agents can reduce the impact of phishing attacks by enabling users to |
---|
3938 | easily inspect a target URI prior to making an action, by prominently |
---|
3939 | distinguishing (or rejecting) userinfo when present, and by not sending |
---|
3940 | stored credentials and cookies when the referring document is from an |
---|
3941 | unknown or untrusted source. |
---|
3942 | </t> |
---|
3943 | <t> |
---|
3944 | When a registered name is used in the authority component, the "http" URI |
---|
3945 | scheme (<xref target="http.uri"/>) relies on the user's local name |
---|
3946 | resolution service to determine where it can find authoritative responses. |
---|
3947 | This means that any attack on a user's network host table, cached names, or |
---|
3948 | name resolution libraries becomes an avenue for attack on establishing |
---|
3949 | authority. Likewise, the user's choice of server for Domain Name Service |
---|
3950 | (DNS), and the hierarchy of servers from which it obtains resolution |
---|
3951 | results, could impact the authenticity of address mappings; |
---|
3952 | DNS Security Extensions (DNSSEC) (<xref target="RFC4033"/>) is one way to improve authenticity. |
---|
3953 | </t> |
---|
3954 | <t> |
---|
3955 | Furthermore, after an IP address is obtained, establishing authority for |
---|
3956 | an "http" URI is vulnerable to attacks on Internet Protocol routing. |
---|
3957 | </t> |
---|
3958 | <t> |
---|
3959 | The "https" scheme (<xref target="https.uri"/>) is intended to prevent |
---|
3960 | (or at least reveal) many of these potential attacks on establishing |
---|
3961 | authority, provided that the negotiated TLS connection is secured and |
---|
3962 | the client properly verifies that the communicating server's identity |
---|
3963 | matches the target URI's authority component |
---|
3964 | (see <xref target="RFC2818"/>). Correctly implementing such verification |
---|
3965 | can be difficult (see <xref target="Georgiev"/>). |
---|
3966 | </t> |
---|
3967 | </section> |
---|
3968 | |
---|
3969 | <section title="Risks of Intermediaries" anchor="risks.intermediaries"> |
---|
3970 | <t> |
---|
3971 | By their very nature, HTTP intermediaries are men in the middle and, thus, |
---|
3972 | represent an opportunity for man-in-the-middle attacks. Compromise of |
---|
3973 | the systems on which the intermediaries run can result in serious security |
---|
3974 | and privacy problems. Intermediaries might have access to security-related |
---|
3975 | information, personal information about individual users and |
---|
3976 | organizations, and proprietary information belonging to users and |
---|
3977 | content providers. A compromised intermediary, or an intermediary |
---|
3978 | implemented or configured without regard to security and privacy |
---|
3979 | considerations, might be used in the commission of a wide range of |
---|
3980 | potential attacks. |
---|
3981 | </t> |
---|
3982 | <t> |
---|
3983 | Intermediaries that contain a shared cache are especially vulnerable |
---|
3984 | to cache poisoning attacks, as described in Section 8 of <xref target="RFC7234"/>. |
---|
3985 | </t> |
---|
3986 | <t> |
---|
3987 | Implementers need to consider the privacy and security |
---|
3988 | implications of their design and coding decisions, and of the |
---|
3989 | configuration options they provide to operators (especially the |
---|
3990 | default configuration). |
---|
3991 | </t> |
---|
3992 | <t> |
---|
3993 | Users need to be aware that intermediaries are no more trustworthy than |
---|
3994 | the people who run them; HTTP itself cannot solve this problem. |
---|
3995 | </t> |
---|
3996 | </section> |
---|
3997 | |
---|
3998 | <section title="Attacks via Protocol Element Length" anchor="attack.protocol.element.length"> |
---|
3999 | <t> |
---|
4000 | Because HTTP uses mostly textual, character-delimited fields, parsers are |
---|
4001 | often vulnerable to attacks based on sending very long (or very slow) |
---|
4002 | streams of data, particularly where an implementation is expecting a |
---|
4003 | protocol element with no predefined length. |
---|
4004 | </t> |
---|
4005 | <t> |
---|
4006 | To promote interoperability, specific recommendations are made for minimum |
---|
4007 | size limits on request-line (<xref target="request.line"/>) |
---|
4008 | and header fields (<xref target="header.fields"/>). These are |
---|
4009 | minimum recommendations, chosen to be supportable even by implementations |
---|
4010 | with limited resources; it is expected that most implementations will |
---|
4011 | choose substantially higher limits. |
---|
4012 | </t> |
---|
4013 | <t> |
---|
4014 | A server can reject a message that |
---|
4015 | has a request-target that is too long (Section 6.5.12 of <xref target="RFC7231"/>) or a request payload |
---|
4016 | that is too large (Section 6.5.11 of <xref target="RFC7231"/>). Additional status codes related to |
---|
4017 | capacity limits have been defined by extensions to HTTP |
---|
4018 | <xref target="RFC6585"/>. |
---|
4019 | </t> |
---|
4020 | <t> |
---|
4021 | Recipients ought to carefully limit the extent to which they process other |
---|
4022 | protocol elements, including (but not limited to) request methods, response |
---|
4023 | status phrases, header field-names, numeric values, and body chunks. |
---|
4024 | Failure to limit such processing can result in buffer overflows, arithmetic |
---|
4025 | overflows, or increased vulnerability to denial-of-service attacks. |
---|
4026 | </t> |
---|
4027 | </section> |
---|
4028 | |
---|
4029 | <section title="Response Splitting" anchor="response.splitting"> |
---|
4030 | <t> |
---|
4031 | Response splitting (a.k.a, CRLF injection) is a common technique, used in |
---|
4032 | various attacks on Web usage, that exploits the line-based nature of HTTP |
---|
4033 | message framing and the ordered association of requests to responses on |
---|
4034 | persistent connections <xref target="Klein"/>. This technique can be |
---|
4035 | particularly damaging when the requests pass through a shared cache. |
---|
4036 | </t> |
---|
4037 | <t> |
---|
4038 | Response splitting exploits a vulnerability in servers (usually within an |
---|
4039 | application server) where an attacker can send encoded data within some |
---|
4040 | parameter of the request that is later decoded and echoed within any of the |
---|
4041 | response header fields of the response. If the decoded data is crafted to |
---|
4042 | look like the response has ended and a subsequent response has begun, the |
---|
4043 | response has been split and the content within the apparent second response |
---|
4044 | is controlled by the attacker. The attacker can then make any other request |
---|
4045 | on the same persistent connection and trick the recipients (including |
---|
4046 | intermediaries) into believing that the second half of the split is an |
---|
4047 | authoritative answer to the second request. |
---|
4048 | </t> |
---|
4049 | <t> |
---|
4050 | For example, a parameter within the request-target might be read by an |
---|
4051 | application server and reused within a redirect, resulting in the same |
---|
4052 | parameter being echoed in the Location header field of the |
---|
4053 | response. If the parameter is decoded by the application and not properly |
---|
4054 | encoded when placed in the response field, the attacker can send encoded |
---|
4055 | CRLF octets and other content that will make the application's single |
---|
4056 | response look like two or more responses. |
---|
4057 | </t> |
---|
4058 | <t> |
---|
4059 | A common defense against response splitting is to filter requests for data |
---|
4060 | that looks like encoded CR and LF (e.g., "%0D" and "%0A"). However, that |
---|
4061 | assumes the application server is only performing URI decoding, rather |
---|
4062 | than more obscure data transformations like charset transcoding, XML entity |
---|
4063 | translation, base64 decoding, sprintf reformatting, etc. A more effective |
---|
4064 | mitigation is to prevent anything other than the server's core protocol |
---|
4065 | libraries from sending a CR or LF within the header section, which means |
---|
4066 | restricting the output of header fields to APIs that filter for bad octets |
---|
4067 | and not allowing application servers to write directly to the protocol |
---|
4068 | stream. |
---|
4069 | </t> |
---|
4070 | </section> |
---|
4071 | |
---|
4072 | <section title="Request Smuggling" anchor="request.smuggling"> |
---|
4073 | <t> |
---|
4074 | Request smuggling (<xref target="Linhart"/>) is a technique that exploits |
---|
4075 | differences in protocol parsing among various recipients to hide additional |
---|
4076 | requests (which might otherwise be blocked or disabled by policy) within an |
---|
4077 | apparently harmless request. Like response splitting, request smuggling |
---|
4078 | can lead to a variety of attacks on HTTP usage. |
---|
4079 | </t> |
---|
4080 | <t> |
---|
4081 | This specification has introduced new requirements on request parsing, |
---|
4082 | particularly with regard to message framing in |
---|
4083 | <xref target="message.body.length"/>, to reduce the effectiveness of |
---|
4084 | request smuggling. |
---|
4085 | </t> |
---|
4086 | </section> |
---|
4087 | |
---|
4088 | <section title="Message Integrity" anchor="message.integrity"> |
---|
4089 | <t> |
---|
4090 | HTTP does not define a specific mechanism for ensuring message integrity, |
---|
4091 | instead relying on the error-detection ability of underlying transport |
---|
4092 | protocols and the use of length or chunk-delimited framing to detect |
---|
4093 | completeness. Additional integrity mechanisms, such as hash functions or |
---|
4094 | digital signatures applied to the content, can be selectively added to |
---|
4095 | messages via extensible metadata header fields. Historically, the lack of |
---|
4096 | a single integrity mechanism has been justified by the informal nature of |
---|
4097 | most HTTP communication. However, the prevalence of HTTP as an information |
---|
4098 | access mechanism has resulted in its increasing use within environments |
---|
4099 | where verification of message integrity is crucial. |
---|
4100 | </t> |
---|
4101 | <t> |
---|
4102 | User agents are encouraged to implement configurable means for detecting |
---|
4103 | and reporting failures of message integrity such that those means can be |
---|
4104 | enabled within environments for which integrity is necessary. For example, |
---|
4105 | a browser being used to view medical history or drug interaction |
---|
4106 | information needs to indicate to the user when such information is detected |
---|
4107 | by the protocol to be incomplete, expired, or corrupted during transfer. |
---|
4108 | Such mechanisms might be selectively enabled via user-agent extensions or |
---|
4109 | the presence of message integrity metadata in a response. |
---|
4110 | At a minimum, user agents ought to provide some indication that allows a |
---|
4111 | user to distinguish between a complete and incomplete response message |
---|
4112 | (<xref target="incomplete.messages"/>) when such verification is desired. |
---|
4113 | </t> |
---|
4114 | </section> |
---|
4115 | |
---|
4116 | <section title="Message Confidentiality" anchor="message.confidentiality"> |
---|
4117 | <t> |
---|
4118 | HTTP relies on underlying transport protocols to provide message |
---|
4119 | confidentiality when that is desired. HTTP has been specifically designed |
---|
4120 | to be independent of the transport protocol, such that it can be used |
---|
4121 | over many different forms of encrypted connection, with the selection of |
---|
4122 | such transports being identified by the choice of URI scheme or within |
---|
4123 | user agent configuration. |
---|
4124 | </t> |
---|
4125 | <t> |
---|
4126 | The "https" scheme can be used to identify resources that require a |
---|
4127 | confidential connection, as described in <xref target="https.uri"/>. |
---|
4128 | </t> |
---|
4129 | </section> |
---|
4130 | |
---|
4131 | <section title="Privacy of Server Log Information" anchor="privacy.of.server.log.information"> |
---|
4132 | <t> |
---|
4133 | A server is in the position to save personal data about a user's requests |
---|
4134 | over time, which might identify their reading patterns or subjects of |
---|
4135 | interest. In particular, log information gathered at an intermediary |
---|
4136 | often contains a history of user agent interaction, across a multitude |
---|
4137 | of sites, that can be traced to individual users. |
---|
4138 | </t> |
---|
4139 | <t> |
---|
4140 | HTTP log information is confidential in nature; its handling is often |
---|
4141 | constrained by laws and regulations. Log information needs to be securely |
---|
4142 | stored and appropriate guidelines followed for its analysis. |
---|
4143 | Anonymization of personal information within individual entries helps, |
---|
4144 | but it is generally not sufficient to prevent real log traces from being |
---|
4145 | re-identified based on correlation with other access characteristics. |
---|
4146 | As such, access traces that are keyed to a specific client are unsafe to |
---|
4147 | publish even if the key is pseudonymous. |
---|
4148 | </t> |
---|
4149 | <t> |
---|
4150 | To minimize the risk of theft or accidental publication, log information |
---|
4151 | ought to be purged of personally identifiable information, including |
---|
4152 | user identifiers, IP addresses, and user-provided query parameters, |
---|
4153 | as soon as that information is no longer necessary to support operational |
---|
4154 | needs for security, auditing, or fraud control. |
---|
4155 | </t> |
---|
4156 | </section> |
---|
4157 | </section> |
---|
4158 | |
---|
4159 | <section title="Acknowledgments" anchor="acks"> |
---|
4160 | <t> |
---|
4161 | This edition of HTTP/1.1 builds on the many contributions that went into |
---|
4162 | <xref target="RFC1945" format="none">RFC 1945</xref>, |
---|
4163 | <xref target="RFC2068" format="none">RFC 2068</xref>, |
---|
4164 | <xref target="RFC2145" format="none">RFC 2145</xref>, and |
---|
4165 | <xref target="RFC2616" format="none">RFC 2616</xref>, including |
---|
4166 | substantial contributions made by the previous authors, editors, and |
---|
4167 | Working Group Chairs: Tim Berners-Lee, Ari Luotonen, Roy T. Fielding, |
---|
4168 | Henrik Frystyk Nielsen, Jim Gettys, Jeffrey C. Mogul, Larry Masinter, |
---|
4169 | and Paul J. Leach. Mark Nottingham oversaw this effort as Working Group Chair. |
---|
4170 | </t> |
---|
4171 | <t> |
---|
4172 | Since 1999, the following contributors have helped improve the HTTP |
---|
4173 | specification by reporting bugs, asking smart questions, drafting or |
---|
4174 | reviewing text, and evaluating open issues: |
---|
4175 | </t> |
---|
4176 | |
---|
4177 | <t>Adam Barth, |
---|
4178 | Adam Roach, |
---|
4179 | Addison Phillips, |
---|
4180 | Adrian Chadd, |
---|
4181 | Adrian Cole, |
---|
4182 | Adrien W. de Croy, |
---|
4183 | Alan Ford, |
---|
4184 | Alan Ruttenberg, |
---|
4185 | Albert Lunde, |
---|
4186 | Alek Storm, |
---|
4187 | Alex Rousskov, |
---|
4188 | Alexandre Morgaut, |
---|
4189 | Alexey Melnikov, |
---|
4190 | Alisha Smith, |
---|
4191 | Amichai Rothman, |
---|
4192 | Amit Klein, |
---|
4193 | Amos Jeffries, |
---|
4194 | Andreas Maier, |
---|
4195 | Andreas Petersson, |
---|
4196 | Andrei Popov, |
---|
4197 | Anil Sharma, |
---|
4198 | Anne van Kesteren, |
---|
4199 | Anthony Bryan, |
---|
4200 | Asbjorn Ulsberg, |
---|
4201 | Ashok Kumar, |
---|
4202 | Balachander Krishnamurthy, |
---|
4203 | Barry Leiba, |
---|
4204 | Ben Laurie, |
---|
4205 | Benjamin Carlyle, |
---|
4206 | Benjamin Niven-Jenkins, |
---|
4207 | Benoit Claise, |
---|
4208 | Bil Corry, |
---|
4209 | Bill Burke, |
---|
4210 | Bjoern Hoehrmann, |
---|
4211 | Bob Scheifler, |
---|
4212 | Boris Zbarsky, |
---|
4213 | Brett Slatkin, |
---|
4214 | Brian Kell, |
---|
4215 | Brian McBarron, |
---|
4216 | Brian Pane, |
---|
4217 | Brian Raymor, |
---|
4218 | Brian Smith, |
---|
4219 | Bruce Perens, |
---|
4220 | Bryce Nesbitt, |
---|
4221 | Cameron Heavon-Jones, |
---|
4222 | Carl Kugler, |
---|
4223 | Carsten Bormann, |
---|
4224 | Charles Fry, |
---|
4225 | Chris Burdess, |
---|
4226 | Chris Newman, |
---|
4227 | Christian Huitema, |
---|
4228 | Cyrus Daboo, |
---|
4229 | Dale Robert Anderson, |
---|
4230 | Dan Wing, |
---|
4231 | Dan Winship, |
---|
4232 | Daniel Stenberg, |
---|
4233 | Darrel Miller, |
---|
4234 | Dave Cridland, |
---|
4235 | Dave Crocker, |
---|
4236 | Dave Kristol, |
---|
4237 | Dave Thaler, |
---|
4238 | David Booth, |
---|
4239 | David Singer, |
---|
4240 | David W. Morris, |
---|
4241 | Diwakar Shetty, |
---|
4242 | Dmitry Kurochkin, |
---|
4243 | Drummond Reed, |
---|
4244 | Duane Wessels, |
---|
4245 | Edward Lee, |
---|
4246 | Eitan Adler, |
---|
4247 | Eliot Lear, |
---|
4248 | Emile Stephan, |
---|
4249 | Eran Hammer-Lahav, |
---|
4250 | Eric D. Williams, |
---|
4251 | Eric J. Bowman, |
---|
4252 | Eric Lawrence, |
---|
4253 | Eric Rescorla, |
---|
4254 | Erik Aronesty, |
---|
4255 | EungJun Yi, |
---|
4256 | Evan Prodromou, |
---|
4257 | Felix Geisendoerfer, |
---|
4258 | Florian Weimer, |
---|
4259 | Frank Ellermann, |
---|
4260 | Fred Akalin, |
---|
4261 | Fred Bohle, |
---|
4262 | Frederic Kayser, |
---|
4263 | Gabor Molnar, |
---|
4264 | Gabriel Montenegro, |
---|
4265 | Geoffrey Sneddon, |
---|
4266 | Gervase Markham, |
---|
4267 | Gili Tzabari, |
---|
4268 | Grahame Grieve, |
---|
4269 | Greg Slepak, |
---|
4270 | Greg Wilkins, |
---|
4271 | Grzegorz Calkowski, |
---|
4272 | Harald Tveit Alvestrand, |
---|
4273 | Harry Halpin, |
---|
4274 | Helge Hess, |
---|
4275 | Henrik Nordstrom, |
---|
4276 | Henry S. Thompson, |
---|
4277 | Henry Story, |
---|
4278 | Herbert van de Sompel, |
---|
4279 | Herve Ruellan, |
---|
4280 | Howard Melman, |
---|
4281 | Hugo Haas, |
---|
4282 | Ian Fette, |
---|
4283 | Ian Hickson, |
---|
4284 | Ido Safruti, |
---|
4285 | Ilari Liusvaara, |
---|
4286 | Ilya Grigorik, |
---|
4287 | Ingo Struck, |
---|
4288 | J. Ross Nicoll, |
---|
4289 | James Cloos, |
---|
4290 | James H. Manger, |
---|
4291 | James Lacey, |
---|
4292 | James M. Snell, |
---|
4293 | Jamie Lokier, |
---|
4294 | Jan Algermissen, |
---|
4295 | Jari Arkko, |
---|
4296 | Jeff Hodges (who came up with the term 'effective Request-URI'), |
---|
4297 | Jeff Pinner, |
---|
4298 | Jeff Walden, |
---|
4299 | Jim Luther, |
---|
4300 | Jitu Padhye, |
---|
4301 | Joe D. Williams, |
---|
4302 | Joe Gregorio, |
---|
4303 | Joe Orton, |
---|
4304 | Joel Jaeggli, |
---|
4305 | John C. Klensin, |
---|
4306 | John C. Mallery, |
---|
4307 | John Cowan, |
---|
4308 | John Kemp, |
---|
4309 | John Panzer, |
---|
4310 | John Schneider, |
---|
4311 | John Stracke, |
---|
4312 | John Sullivan, |
---|
4313 | Jonas Sicking, |
---|
4314 | Jonathan A. Rees, |
---|
4315 | Jonathan Billington, |
---|
4316 | Jonathan Moore, |
---|
4317 | Jonathan Silvera, |
---|
4318 | Jordi Ros, |
---|
4319 | Joris Dobbelsteen, |
---|
4320 | Josh Cohen, |
---|
4321 | Julien Pierre, |
---|
4322 | Jungshik Shin, |
---|
4323 | Justin Chapweske, |
---|
4324 | Justin Erenkrantz, |
---|
4325 | Justin James, |
---|
4326 | Kalvinder Singh, |
---|
4327 | Karl Dubost, |
---|
4328 | Kathleen Moriarty, |
---|
4329 | Keith Hoffman, |
---|
4330 | Keith Moore, |
---|
4331 | Ken Murchison, |
---|
4332 | Koen Holtman, |
---|
4333 | Konstantin Voronkov, |
---|
4334 | Kris Zyp, |
---|
4335 | Leif Hedstrom, |
---|
4336 | Lionel Morand, |
---|
4337 | Lisa Dusseault, |
---|
4338 | Maciej Stachowiak, |
---|
4339 | Manu Sporny, |
---|
4340 | Marc Schneider, |
---|
4341 | Marc Slemko, |
---|
4342 | Mark Baker, |
---|
4343 | Mark Pauley, |
---|
4344 | Mark Watson, |
---|
4345 | Markus Isomaki, |
---|
4346 | Markus Lanthaler, |
---|
4347 | Martin J. Duerst, |
---|
4348 | Martin Musatov, |
---|
4349 | Martin Nilsson, |
---|
4350 | Martin Thomson, |
---|
4351 | Matt Lynch, |
---|
4352 | Matthew Cox, |
---|
4353 | Matthew Kerwin, |
---|
4354 | Max Clark, |
---|
4355 | Menachem Dodge, |
---|
4356 | Meral Shirazipour, |
---|
4357 | Michael Burrows, |
---|
4358 | Michael Hausenblas, |
---|
4359 | Michael Scharf, |
---|
4360 | Michael Sweet, |
---|
4361 | Michael Tuexen, |
---|
4362 | Michael Welzl, |
---|
4363 | Mike Amundsen, |
---|
4364 | Mike Belshe, |
---|
4365 | Mike Bishop, |
---|
4366 | Mike Kelly, |
---|
4367 | Mike Schinkel, |
---|
4368 | Miles Sabin, |
---|
4369 | Murray S. Kucherawy, |
---|
4370 | Mykyta Yevstifeyev, |
---|
4371 | Nathan Rixham, |
---|
4372 | Nicholas Shanks, |
---|
4373 | Nico Williams, |
---|
4374 | Nicolas Alvarez, |
---|
4375 | Nicolas Mailhot, |
---|
4376 | Noah Slater, |
---|
4377 | Osama Mazahir, |
---|
4378 | Pablo Castro, |
---|
4379 | Pat Hayes, |
---|
4380 | Patrick R. McManus, |
---|
4381 | Paul E. Jones, |
---|
4382 | Paul Hoffman, |
---|
4383 | Paul Marquess, |
---|
4384 | Pete Resnick, |
---|
4385 | Peter Lepeska, |
---|
4386 | Peter Occil, |
---|
4387 | Peter Saint-Andre, |
---|
4388 | Peter Watkins, |
---|
4389 | Phil Archer, |
---|
4390 | Phil Hunt, |
---|
4391 | Philippe Mougin, |
---|
4392 | Phillip Hallam-Baker, |
---|
4393 | Piotr Dobrogost, |
---|
4394 | Poul-Henning Kamp, |
---|
4395 | Preethi Natarajan, |
---|
4396 | Rajeev Bector, |
---|
4397 | Ray Polk, |
---|
4398 | Reto Bachmann-Gmuer, |
---|
4399 | Richard Barnes, |
---|
4400 | Richard Cyganiak, |
---|
4401 | Rob Trace, |
---|
4402 | Robby Simpson, |
---|
4403 | Robert Brewer, |
---|
4404 | Robert Collins, |
---|
4405 | Robert Mattson, |
---|
4406 | Robert O'Callahan, |
---|
4407 | Robert Olofsson, |
---|
4408 | Robert Sayre, |
---|
4409 | Robert Siemer, |
---|
4410 | Robert de Wilde, |
---|
4411 | Roberto Javier Godoy, |
---|
4412 | Roberto Peon, |
---|
4413 | Roland Zink, |
---|
4414 | Ronny Widjaja, |
---|
4415 | Ryan Hamilton, |
---|
4416 | S. Mike Dierken, |
---|
4417 | Salvatore Loreto, |
---|
4418 | Sam Johnston, |
---|
4419 | Sam Pullara, |
---|
4420 | Sam Ruby, |
---|
4421 | Saurabh Kulkarni, |
---|
4422 | Scott Lawrence (who maintained the original issues list), |
---|
4423 | Sean B. Palmer, |
---|
4424 | Sean Turner, |
---|
4425 | Sebastien Barnoud, |
---|
4426 | Shane McCarron, |
---|
4427 | Shigeki Ohtsu, |
---|
4428 | Simon Yarde, |
---|
4429 | Stefan Eissing, |
---|
4430 | Stefan Tilkov, |
---|
4431 | Stefanos Harhalakis, |
---|
4432 | Stephane Bortzmeyer, |
---|
4433 | Stephen Farrell, |
---|
4434 | Stephen Kent, |
---|
4435 | Stephen Ludin, |
---|
4436 | Stuart Williams, |
---|
4437 | Subbu Allamaraju, |
---|
4438 | Subramanian Moonesamy, |
---|
4439 | Susan Hares, |
---|
4440 | Sylvain Hellegouarch, |
---|
4441 | Tapan Divekar, |
---|
4442 | Tatsuhiro Tsujikawa, |
---|
4443 | Tatsuya Hayashi, |
---|
4444 | Ted Hardie, |
---|
4445 | Ted Lemon, |
---|
4446 | Thomas Broyer, |
---|
4447 | Thomas Fossati, |
---|
4448 | Thomas Maslen, |
---|
4449 | Thomas Nadeau, |
---|
4450 | Thomas Nordin, |
---|
4451 | Thomas Roessler, |
---|
4452 | Tim Bray, |
---|
4453 | Tim Morgan, |
---|
4454 | Tim Olsen, |
---|
4455 | Tom Zhou, |
---|
4456 | Travis Snoozy, |
---|
4457 | Tyler Close, |
---|
4458 | Vincent Murphy, |
---|
4459 | Wenbo Zhu, |
---|
4460 | Werner Baumann, |
---|
4461 | Wilbur Streett, |
---|
4462 | Wilfredo Sanchez Vega, |
---|
4463 | William A. Rowe Jr., |
---|
4464 | William Chan, |
---|
4465 | Willy Tarreau, |
---|
4466 | Xiaoshu Wang, |
---|
4467 | Yaron Goland, |
---|
4468 | Yngve Nysaeter Pettersen, |
---|
4469 | Yoav Nir, |
---|
4470 | Yogesh Bang, |
---|
4471 | Yuchung Cheng, |
---|
4472 | Yutaka Oiwa, |
---|
4473 | Yves Lafon (long-time member of the editor team), |
---|
4474 | Zed A. Shaw, and |
---|
4475 | Zhong Yu. |
---|
4476 | </t> |
---|
4477 | |
---|
4478 | <t> |
---|
4479 | See Section 16 of <xref target="RFC2616"/> for additional |
---|
4480 | acknowledgements from prior revisions. |
---|
4481 | </t> |
---|
4482 | </section> |
---|
4483 | |
---|
4484 | </middle> |
---|
4485 | <back> |
---|
4486 | |
---|
4487 | <references title="Normative References"> |
---|
4488 | |
---|
4489 | <!--draft-ietf-httpbis-p2-semantics-26; Companion document, RFC 7231 --> |
---|
4490 | <reference anchor="RFC7231"> |
---|
4491 | <front> |
---|
4492 | <title>Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content</title> |
---|
4493 | <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor"> |
---|
4494 | <organization abbrev="Adobe">Adobe Systems Incorporated</organization> |
---|
4495 | <address><email>fielding@gbiv.com</email></address> |
---|
4496 | </author> |
---|
4497 | <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor"> |
---|
4498 | <organization abbrev="greenbytes">greenbytes GmbH</organization> |
---|
4499 | <address><email>julian.reschke@greenbytes.de</email></address> |
---|
4500 | </author> |
---|
4501 | <date month="May" year="2014"/> |
---|
4502 | </front> |
---|
4503 | <seriesInfo name="RFC" value="7231"/> |
---|
4504 | |
---|
4505 | <!-- draft-ietf-httpbis-p4-conditional-26; Companion doc; RFC 7232 --> |
---|
4506 | </reference> |
---|
4507 | |
---|
4508 | <reference anchor="RFC7232"> |
---|
4509 | <front> |
---|
4510 | <title>Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests</title> |
---|
4511 | <author fullname="Roy T. Fielding" initials="R." role="editor" surname="Fielding"> |
---|
4512 | <organization abbrev="Adobe">Adobe Systems Incorporated</organization> |
---|
4513 | <address><email>fielding@gbiv.com</email></address> |
---|
4514 | </author> |
---|
4515 | <author fullname="Julian F. Reschke" initials="J. F." role="editor" surname="Reschke"> |
---|
4516 | <organization abbrev="greenbytes">greenbytes GmbH</organization> |
---|
4517 | <address><email>julian.reschke@greenbytes.de</email></address> |
---|
4518 | </author> |
---|
4519 | <date month="May" year="2014"/> |
---|
4520 | </front> |
---|
4521 | <seriesInfo name="RFC" value="7232"/> |
---|
4522 | |
---|
4523 | </reference> |
---|
4524 | |
---|
4525 | |
---|
4526 | <!--draft-ietf-httpbis-p5-range-26; Companion Doc; RFC 7233 --> |
---|
4527 | <!-- [rfced] RFC 7233 is not cited in the body of the document, except in the |
---|
4528 | Introduction. Should this document be mentioned elsewhere, or should the list |
---|
4529 | of documents making up HTTP/1.1 be turned into citations? |
---|
4530 | |
---|
4531 | From the intro: |
---|
4532 | |
---|
4533 | This document is the |
---|
4534 | first in a series of documents that collectively form the HTTP/1.1 |
---|
4535 | specification: |
---|
4536 | |
---|
4537 | RFC 7230: Message Syntax and Routing |
---|
4538 | RFC 7231: Semantics and Content |
---|
4539 | RFC 7232: Conditional Requests |
---|
4540 | RFC 7233: Range Requests |
---|
4541 | RFC 7234: Caching |
---|
4542 | RFC 7235: Authentication |
---|
4543 | --> |
---|
4544 | |
---|
4545 | <reference anchor="RFC7233"> |
---|
4546 | <front> |
---|
4547 | <title>Hypertext Transfer Protocol (HTTP/1.1): Range Requests</title> |
---|
4548 | <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor"> |
---|
4549 | <organization abbrev="Adobe">Adobe Systems Incorporated</organization> |
---|
4550 | <address><email>fielding@gbiv.com</email></address> |
---|
4551 | </author> |
---|
4552 | <author initials="Y." surname="Lafon" fullname="Yves Lafon" role="editor"> |
---|
4553 | <organization abbrev="W3C">World Wide Web Consortium</organization> |
---|
4554 | <address><email>ylafon@w3.org</email></address> |
---|
4555 | </author> |
---|
4556 | <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor"> |
---|
4557 | <organization abbrev="greenbytes">greenbytes GmbH</organization> |
---|
4558 | <address><email>julian.reschke@greenbytes.de</email></address> |
---|
4559 | </author> |
---|
4560 | <date month="May" year="2014"/> |
---|
4561 | </front> |
---|
4562 | <seriesInfo name="RFC" value="7233"/> |
---|
4563 | |
---|
4564 | </reference> |
---|
4565 | |
---|
4566 | <!--draft-ietf-httpbis-p6-cache-26; Companion doc; RFC 7234 --> |
---|
4567 | |
---|
4568 | <reference anchor="RFC7234"> |
---|
4569 | <front> |
---|
4570 | <title>Hypertext Transfer Protocol (HTTP/1.1): Caching</title> |
---|
4571 | <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor"> |
---|
4572 | <organization abbrev="Adobe">Adobe Systems Incorporated</organization> |
---|
4573 | <address><email>fielding@gbiv.com</email></address> |
---|
4574 | </author> |
---|
4575 | <author initials="M." surname="Nottingham" fullname="Mark Nottingham" role="editor"> |
---|
4576 | <organization>Akamai</organization> |
---|
4577 | <address><email>mnot@mnot.net</email></address> |
---|
4578 | </author> |
---|
4579 | <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor"> |
---|
4580 | <organization abbrev="greenbytes">greenbytes GmbH</organization> |
---|
4581 | <address><email>julian.reschke@greenbytes.de</email></address> |
---|
4582 | </author> |
---|
4583 | <date month="May" year="2014"/> |
---|
4584 | </front> |
---|
4585 | <seriesInfo name="RFC" value="7234"/> |
---|
4586 | |
---|
4587 | </reference> |
---|
4588 | |
---|
4589 | |
---|
4590 | <!--draft-ietf-httpbis-p7-auth-26; Companion doc; RFC 7235 --> |
---|
4591 | <reference anchor="RFC7235"> |
---|
4592 | <front> |
---|
4593 | <title>Hypertext Transfer Protocol (HTTP/1.1): Authentication</title> |
---|
4594 | <author initials="R." surname="Fielding" fullname="Roy T. Fielding" role="editor"> |
---|
4595 | <organization abbrev="Adobe">Adobe Systems Incorporated</organization> |
---|
4596 | <address><email>fielding@gbiv.com</email></address> |
---|
4597 | </author> |
---|
4598 | <author initials="J. F." surname="Reschke" fullname="Julian F. Reschke" role="editor"> |
---|
4599 | <organization abbrev="greenbytes">greenbytes GmbH</organization> |
---|
4600 | <address><email>julian.reschke@greenbytes.de</email></address> |
---|
4601 | </author> |
---|
4602 | <date month="May" year="2014"/> |
---|
4603 | </front> |
---|
4604 | <seriesInfo name="RFC" value="7235"/> |
---|
4605 | |
---|
4606 | </reference> |
---|
4607 | |
---|
4608 | <reference anchor="RFC5234"> |
---|
4609 | <front> |
---|
4610 | <title abbrev="ABNF for Syntax Specifications">Augmented BNF for Syntax Specifications: ABNF</title> |
---|
4611 | <author initials="D." surname="Crocker" fullname="Dave Crocker" role="editor"> |
---|
4612 | <organization>Brandenburg InternetWorking</organization> |
---|
4613 | <address> |
---|
4614 | <email>dcrocker@bbiw.net</email> |
---|
4615 | </address> |
---|
4616 | </author> |
---|
4617 | <author initials="P." surname="Overell" fullname="Paul Overell"> |
---|
4618 | <organization>THUS plc.</organization> |
---|
4619 | <address> |
---|
4620 | <email>paul.overell@thus.net</email> |
---|
4621 | </address> |
---|
4622 | </author> |
---|
4623 | <date month="January" year="2008"/> |
---|
4624 | </front> |
---|
4625 | <seriesInfo name="STD" value="68"/> |
---|
4626 | <seriesInfo name="RFC" value="5234"/> |
---|
4627 | </reference> |
---|
4628 | |
---|
4629 | <reference anchor="RFC2119"> |
---|
4630 | <front> |
---|
4631 | <title>Key words for use in RFCs to Indicate Requirement Levels</title> |
---|
4632 | <author initials="S." surname="Bradner" fullname="Scott Bradner"> |
---|
4633 | <organization>Harvard University</organization> |
---|
4634 | <address><email>sob@harvard.edu</email></address> |
---|
4635 | </author> |
---|
4636 | <date month="March" year="1997"/> |
---|
4637 | </front> |
---|
4638 | <seriesInfo name="BCP" value="14"/> |
---|
4639 | <seriesInfo name="RFC" value="2119"/> |
---|
4640 | </reference> |
---|
4641 | |
---|
4642 | <reference anchor="RFC3986"> |
---|
4643 | <front> |
---|
4644 | <title abbrev="URI Generic Syntax">Uniform Resource Identifier (URI): Generic Syntax</title> |
---|
4645 | <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee"> |
---|
4646 | <organization abbrev="W3C/MIT">World Wide Web Consortium</organization> |
---|
4647 | <address> |
---|
4648 | <email>timbl@w3.org</email> |
---|
4649 | <uri>http://www.w3.org/People/Berners-Lee/</uri> |
---|
4650 | </address> |
---|
4651 | </author> |
---|
4652 | <author initials="R." surname="Fielding" fullname="Roy T. Fielding"> |
---|
4653 | <organization abbrev="Day Software">Day Software</organization> |
---|
4654 | <address> |
---|
4655 | <email>fielding@gbiv.com</email> |
---|
4656 | <uri>http://roy.gbiv.com/</uri> |
---|
4657 | </address> |
---|
4658 | </author> |
---|
4659 | <author initials="L." surname="Masinter" fullname="Larry Masinter"> |
---|
4660 | <organization abbrev="Adobe Systems">Adobe Systems Incorporated</organization> |
---|
4661 | <address> |
---|
4662 | <email>LMM@acm.org</email> |
---|
4663 | <uri>http://larry.masinter.net/</uri> |
---|
4664 | </address> |
---|
4665 | </author> |
---|
4666 | <date month="January" year="2005"/> |
---|
4667 | </front> |
---|
4668 | <seriesInfo name="STD" value="66"/> |
---|
4669 | <seriesInfo name="RFC" value="3986"/> |
---|
4670 | </reference> |
---|
4671 | |
---|
4672 | <reference anchor="RFC793"> |
---|
4673 | <front> |
---|
4674 | <title>Transmission Control Protocol</title> |
---|
4675 | <author initials="J." surname="Postel" fullname="Jon Postel"> |
---|
4676 | <organization>University of Southern California (USC)/Information Sciences Institute</organization> |
---|
4677 | </author> |
---|
4678 | <date year="1981" month="September"/> |
---|
4679 | </front> |
---|
4680 | <seriesInfo name="STD" value="7"/> |
---|
4681 | <seriesInfo name="RFC" value="793"/> |
---|
4682 | </reference> |
---|
4683 | |
---|
4684 | <reference anchor="USASCII"> |
---|
4685 | <front> |
---|
4686 | <title>Coded Character Set -- 7-bit American Standard Code for Information Interchange</title> |
---|
4687 | <author> |
---|
4688 | <organization>American National Standards Institute</organization> |
---|
4689 | </author> |
---|
4690 | <date year="1986"/> |
---|
4691 | </front> |
---|
4692 | <seriesInfo name="ANSI" value="X3.4"/> |
---|
4693 | </reference> |
---|
4694 | |
---|
4695 | <reference anchor="RFC1950"> |
---|
4696 | <front> |
---|
4697 | <title>ZLIB Compressed Data Format Specification version 3.3</title> |
---|
4698 | <author initials="L.P." surname="Deutsch" fullname="L. Peter Deutsch"> |
---|
4699 | <organization>Aladdin Enterprises</organization> |
---|
4700 | <address><email>ghost@aladdin.com</email></address> |
---|
4701 | </author> |
---|
4702 | <author initials="J-L." surname="Gailly" fullname="Jean-Loup Gailly"/> |
---|
4703 | <date month="May" year="1996"/> |
---|
4704 | </front> |
---|
4705 | <seriesInfo name="RFC" value="1950"/> |
---|
4706 | |
---|
4707 | </reference> |
---|
4708 | |
---|
4709 | <reference anchor="RFC1951"> |
---|
4710 | <front> |
---|
4711 | <title>DEFLATE Compressed Data Format Specification version 1.3</title> |
---|
4712 | <author initials="P." surname="Deutsch" fullname="L. Peter Deutsch"> |
---|
4713 | <organization>Aladdin Enterprises</organization> |
---|
4714 | <address><email>ghost@aladdin.com</email></address> |
---|
4715 | </author> |
---|
4716 | <date month="May" year="1996"/> |
---|
4717 | </front> |
---|
4718 | <seriesInfo name="RFC" value="1951"/> |
---|
4719 | |
---|
4720 | </reference> |
---|
4721 | |
---|
4722 | <reference anchor="RFC1952"> |
---|
4723 | <front> |
---|
4724 | <title>GZIP file format specification version 4.3</title> |
---|
4725 | <author initials="P." surname="Deutsch" fullname="L. Peter Deutsch"> |
---|
4726 | <organization>Aladdin Enterprises</organization> |
---|
4727 | <address><email>ghost@aladdin.com</email></address> |
---|
4728 | </author> |
---|
4729 | <author initials="J-L." surname="Gailly" fullname="Jean-Loup Gailly"> |
---|
4730 | <address><email>gzip@prep.ai.mit.edu</email></address> |
---|
4731 | </author> |
---|
4732 | <author initials="M." surname="Adler" fullname="Mark Adler"> |
---|
4733 | <address><email>madler@alumni.caltech.edu</email></address> |
---|
4734 | </author> |
---|
4735 | <author initials="L.P." surname="Deutsch" fullname="L. Peter Deutsch"> |
---|
4736 | <address><email>ghost@aladdin.com</email></address> |
---|
4737 | </author> |
---|
4738 | <author initials="G." surname="Randers-Pehrson" fullname="Glenn Randers-Pehrson"> |
---|
4739 | <address><email>randeg@alumni.rpi.edu</email></address> |
---|
4740 | </author> |
---|
4741 | <date month="May" year="1996"/> |
---|
4742 | </front> |
---|
4743 | <seriesInfo name="RFC" value="1952"/> |
---|
4744 | |
---|
4745 | </reference> |
---|
4746 | |
---|
4747 | <reference anchor="Welch"> |
---|
4748 | <front> |
---|
4749 | <title>A Technique for High-Performance Data Compression</title> |
---|
4750 | <author initials="T.A." surname="Welch" fullname="Terry A. Welch"/> |
---|
4751 | <date month="June" year="1984"/> |
---|
4752 | </front> |
---|
4753 | <seriesInfo name="IEEE Computer" value="17(6)"/> |
---|
4754 | </reference> |
---|
4755 | |
---|
4756 | </references> |
---|
4757 | |
---|
4758 | <references title="Informative References"> |
---|
4759 | |
---|
4760 | <reference anchor="ISO-8859-1"> |
---|
4761 | <front> |
---|
4762 | <title> |
---|
4763 | Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin alphabet No. 1 |
---|
4764 | </title> |
---|
4765 | <author> |
---|
4766 | <organization>International Organization for Standardization</organization> |
---|
4767 | </author> |
---|
4768 | <date year="1998"/> |
---|
4769 | </front> |
---|
4770 | <seriesInfo name="ISO/IEC" value="8859-1:1998"/> |
---|
4771 | </reference> |
---|
4772 | |
---|
4773 | <reference anchor="RFC1919"> |
---|
4774 | <front> |
---|
4775 | <title>Classical versus Transparent IP Proxies</title> |
---|
4776 | <author initials="M." surname="Chatel" fullname="Marc Chatel"> |
---|
4777 | <address><email>mchatel@pax.eunet.ch</email></address> |
---|
4778 | </author> |
---|
4779 | <date year="1996" month="March"/> |
---|
4780 | </front> |
---|
4781 | <seriesInfo name="RFC" value="1919"/> |
---|
4782 | </reference> |
---|
4783 | |
---|
4784 | <reference anchor="RFC1945"> |
---|
4785 | <front> |
---|
4786 | <title abbrev="HTTP/1.0">Hypertext Transfer Protocol -- HTTP/1.0</title> |
---|
4787 | <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee"> |
---|
4788 | <organization>MIT, Laboratory for Computer Science</organization> |
---|
4789 | <address><email>timbl@w3.org</email></address> |
---|
4790 | </author> |
---|
4791 | <author initials="R.T." surname="Fielding" fullname="Roy T. Fielding"> |
---|
4792 | <organization>University of California, Irvine, Department of Information and Computer Science</organization> |
---|
4793 | <address><email>fielding@ics.uci.edu</email></address> |
---|
4794 | </author> |
---|
4795 | <author initials="H.F." surname="Nielsen" fullname="Henrik Frystyk Nielsen"> |
---|
4796 | <organization>W3 Consortium, MIT Laboratory for Computer Science</organization> |
---|
4797 | <address><email>frystyk@w3.org</email></address> |
---|
4798 | </author> |
---|
4799 | <date month="May" year="1996"/> |
---|
4800 | </front> |
---|
4801 | <seriesInfo name="RFC" value="1945"/> |
---|
4802 | </reference> |
---|
4803 | |
---|
4804 | <reference anchor="RFC2045"> |
---|
4805 | <front> |
---|
4806 | <title abbrev="Internet Message Bodies">Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies</title> |
---|
4807 | <author initials="N." surname="Freed" fullname="Ned Freed"> |
---|
4808 | <organization>Innosoft International, Inc.</organization> |
---|
4809 | <address><email>ned@innosoft.com</email></address> |
---|
4810 | </author> |
---|
4811 | <author initials="N.S." surname="Borenstein" fullname="Nathaniel S. Borenstein"> |
---|
4812 | <organization>First Virtual Holdings</organization> |
---|
4813 | <address><email>nsb@nsb.fv.com</email></address> |
---|
4814 | </author> |
---|
4815 | <date month="November" year="1996"/> |
---|
4816 | </front> |
---|
4817 | <seriesInfo name="RFC" value="2045"/> |
---|
4818 | </reference> |
---|
4819 | |
---|
4820 | <reference anchor="RFC2047"> |
---|
4821 | <front> |
---|
4822 | <title abbrev="Message Header Extensions">MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text</title> |
---|
4823 | <author initials="K." surname="Moore" fullname="Keith Moore"> |
---|
4824 | <organization>University of Tennessee</organization> |
---|
4825 | <address><email>moore@cs.utk.edu</email></address> |
---|
4826 | </author> |
---|
4827 | <date month="November" year="1996"/> |
---|
4828 | </front> |
---|
4829 | <seriesInfo name="RFC" value="2047"/> |
---|
4830 | </reference> |
---|
4831 | |
---|
4832 | <reference anchor="RFC2068"> |
---|
4833 | <front> |
---|
4834 | <title>Hypertext Transfer Protocol -- HTTP/1.1</title> |
---|
4835 | <author initials="R." surname="Fielding" fullname="Roy T. Fielding"> |
---|
4836 | <organization>University of California, Irvine, Department of Information and Computer Science</organization> |
---|
4837 | <address><email>fielding@ics.uci.edu</email></address> |
---|
4838 | </author> |
---|
4839 | <author initials="J." surname="Gettys" fullname="Jim Gettys"> |
---|
4840 | <organization>MIT Laboratory for Computer Science</organization> |
---|
4841 | <address><email>jg@w3.org</email></address> |
---|
4842 | </author> |
---|
4843 | <author initials="J." surname="Mogul" fullname="Jeffrey C. Mogul"> |
---|
4844 | <organization>Digital Equipment Corporation, Western Research Laboratory</organization> |
---|
4845 | <address><email>mogul@wrl.dec.com</email></address> |
---|
4846 | </author> |
---|
4847 | <author initials="H." surname="Nielsen" fullname="Henrik Frystyk Nielsen"> |
---|
4848 | <organization>MIT Laboratory for Computer Science</organization> |
---|
4849 | <address><email>frystyk@w3.org</email></address> |
---|
4850 | </author> |
---|
4851 | <author initials="T." surname="Berners-Lee" fullname="Tim Berners-Lee"> |
---|
4852 | <organization>MIT Laboratory for Computer Science</organization> |
---|
4853 | <address><email>timbl@w3.org</email></address> |
---|
4854 | </author> |
---|
4855 | <date month="January" year="1997"/> |
---|
4856 | </front> |
---|
4857 | <seriesInfo name="RFC" value="2068"/> |
---|
4858 | </reference> |
---|
4859 | |
---|
4860 | <reference anchor="RFC2145"> |
---|
4861 | <front> |
---|
4862 | <title abbrev="HTTP Version Numbers">Use and Interpretation of HTTP Version Numbers</title> |
---|
4863 | <author initials="J.C." surname="Mogul" fullname="Jeffrey C. Mogul"> |
---|
4864 | <organization>Western Research Laboratory</organization> |
---|
4865 | <address><email>mogul@wrl.dec.com</email></address> |
---|
4866 | </author> |
---|
4867 | <author initials="R.T." surname="Fielding" fullname="Roy T. Fielding"> |
---|
4868 | <organization>Department of Information and Computer Science</organization> |
---|
4869 | <address><email>fielding@ics.uci.edu</email></address> |
---|
4870 | </author> |
---|
4871 | <author initials="J." surname="Gettys" fullname="Jim Gettys"> |
---|
4872 | <organization>MIT Laboratory for Computer Science</organization> |
---|
4873 | <address><email>jg@w3.org</email></address> |
---|
4874 | </author> |
---|
4875 | <author initials="H.F." surname="Nielsen" fullname="Henrik Frystyk Nielsen"> |
---|
4876 | <organization>W3 Consortium</organization> |
---|
4877 | <address><email>frystyk@w3.org</email></address> |
---|
4878 | </author> |
---|
4879 | <date month="May" year="1997"/> |
---|
4880 | </front> |
---|
4881 | <seriesInfo name="RFC" value="2145"/> |
---|
4882 | </reference> |
---|
4883 | |
---|
4884 | <reference anchor="RFC2616"> |
---|
4885 | <front> |
---|
4886 | <title>Hypertext Transfer Protocol -- HTTP/1.1</title> |
---|
4887 | <author initials="R." surname="Fielding" fullname="R. Fielding"> |
---|
4888 | <organization>University of California, Irvine</organization> |
---|
4889 | <address><email>fielding@ics.uci.edu</email></address> |
---|
4890 | </author> |
---|
4891 | <author initials="J." surname="Gettys" fullname="J. Gettys"> |
---|
4892 | <organization>W3C</organization> |
---|
4893 | <address><email>jg@w3.org</email></address> |
---|
4894 | </author> |
---|
4895 | <author initials="J." surname="Mogul" fullname="J. Mogul"> |
---|
4896 | <organization>Compaq Computer Corporation</organization> |
---|
4897 | <address><email>mogul@wrl.dec.com</email></address> |
---|
4898 | </author> |
---|
4899 | <author initials="H." surname="Frystyk" fullname="H. Frystyk"> |
---|
4900 | <organization>MIT Laboratory for Computer Science</organization> |
---|
4901 | <address><email>frystyk@w3.org</email></address> |
---|
4902 | </author> |
---|
4903 | <author initials="L." surname="Masinter" fullname="L. Masinter"> |
---|
4904 | <organization>Xerox Corporation</organization> |
---|
4905 | <address><email>masinter@parc.xerox.com</email></address> |
---|
4906 | </author> |
---|
4907 | <author initials="P." surname="Leach" fullname="P. Leach"> |
---|
4908 | <organization>Microsoft Corporation</organization> |
---|
4909 | <address><email>paulle@microsoft.com</email></address> |
---|
4910 | </author> |
---|
4911 | <author initials="T." surname="Berners-Lee" fullname="T. Berners-Lee"> |
---|
4912 | <organization>W3C</organization> |
---|
4913 | <address><email>timbl@w3.org</email></address> |
---|
4914 | </author> |
---|
4915 | <date month="June" year="1999"/> |
---|
4916 | </front> |
---|
4917 | <seriesInfo name="RFC" value="2616"/> |
---|
4918 | </reference> |
---|
4919 | |
---|
4920 | <reference anchor="RFC2817"> |
---|
4921 | <front> |
---|
4922 | <title>Upgrading to TLS Within HTTP/1.1</title> |
---|
4923 | <author initials="R." surname="Khare" fullname="R. Khare"> |
---|
4924 | <organization>4K Associates / UC Irvine</organization> |
---|
4925 | <address><email>rohit@4K-associates.com</email></address> |
---|
4926 | </author> |
---|
4927 | <author initials="S." surname="Lawrence" fullname="S. Lawrence"> |
---|
4928 | <organization>Agranat Systems, Inc.</organization> |
---|
4929 | <address><email>lawrence@agranat.com</email></address> |
---|
4930 | </author> |
---|
4931 | <date year="2000" month="May"/> |
---|
4932 | </front> |
---|
4933 | <seriesInfo name="RFC" value="2817"/> |
---|
4934 | </reference> |
---|
4935 | |
---|
4936 | <reference anchor="RFC2818"> |
---|
4937 | <front> |
---|
4938 | <title>HTTP Over TLS</title> |
---|
4939 | <author initials="E." surname="Rescorla" fullname="Eric Rescorla"> |
---|
4940 | <organization>RTFM, Inc.</organization> |
---|
4941 | <address><email>ekr@rtfm.com</email></address> |
---|
4942 | </author> |
---|
4943 | <date year="2000" month="May"/> |
---|
4944 | </front> |
---|
4945 | <seriesInfo name="RFC" value="2818"/> |
---|
4946 | </reference> |
---|
4947 | |
---|
4948 | <reference anchor="RFC3040"> |
---|
4949 | <front> |
---|
4950 | <title>Internet Web Replication and Caching Taxonomy</title> |
---|
4951 | <author initials="I." surname="Cooper" fullname="I. Cooper"> |
---|
4952 | <organization>Equinix, Inc.</organization> |
---|
4953 | </author> |
---|
4954 | <author initials="I." surname="Melve" fullname="I. Melve"> |
---|
4955 | <organization>UNINETT</organization> |
---|
4956 | </author> |
---|
4957 | <author initials="G." surname="Tomlinson" fullname="G. Tomlinson"> |
---|
4958 | <organization>CacheFlow Inc.</organization> |
---|
4959 | </author> |
---|
4960 | <date year="2001" month="January"/> |
---|
4961 | </front> |
---|
4962 | <seriesInfo name="RFC" value="3040"/> |
---|
4963 | </reference> |
---|
4964 | |
---|
4965 | <reference anchor="BCP90"> |
---|
4966 | <front> |
---|
4967 | <title>Registration Procedures for Message Header Fields</title> |
---|
4968 | <author initials="G." surname="Klyne" fullname="G. Klyne"> |
---|
4969 | <organization>Nine by Nine</organization> |
---|
4970 | <address><email>GK-IETF@ninebynine.org</email></address> |
---|
4971 | </author> |
---|
4972 | <author initials="M." surname="Nottingham" fullname="M. Nottingham"> |
---|
4973 | <organization>BEA Systems</organization> |
---|
4974 | <address><email>mnot@pobox.com</email></address> |
---|
4975 | </author> |
---|
4976 | <author initials="J." surname="Mogul" fullname="J. Mogul"> |
---|
4977 | <organization>HP Labs</organization> |
---|
4978 | <address><email>JeffMogul@acm.org</email></address> |
---|
4979 | </author> |
---|
4980 | <date year="2004" month="September"/> |
---|
4981 | </front> |
---|
4982 | <seriesInfo name="BCP" value="90"/> |
---|
4983 | <seriesInfo name="RFC" value="3864"/> |
---|
4984 | </reference> |
---|
4985 | |
---|
4986 | <reference anchor="RFC4033"> |
---|
4987 | <front> |
---|
4988 | <title>DNS Security Introduction and Requirements</title> |
---|
4989 | <author initials="R." surname="Arends" fullname="R. Arends"/> |
---|
4990 | <author initials="R." surname="Austein" fullname="R. Austein"/> |
---|
4991 | <author initials="M." surname="Larson" fullname="M. Larson"/> |
---|
4992 | <author initials="D." surname="Massey" fullname="D. Massey"/> |
---|
4993 | <author initials="S." surname="Rose" fullname="S. Rose"/> |
---|
4994 | <date year="2005" month="March"/> |
---|
4995 | </front> |
---|
4996 | <seriesInfo name="RFC" value="4033"/> |
---|
4997 | </reference> |
---|
4998 | |
---|
4999 | <reference anchor="BCP13"> |
---|
5000 | <front> |
---|
5001 | <title>Media Type Specifications and Registration Procedures</title> |
---|
5002 | <author initials="N." surname="Freed" fullname="Ned Freed"> |
---|
5003 | <organization>Oracle</organization> |
---|
5004 | <address> |
---|
5005 | <email>ned+ietf@mrochek.com</email> |
---|
5006 | </address> |
---|
5007 | </author> |
---|
5008 | <author initials="J." surname="Klensin" fullname="John C. Klensin"> |
---|
5009 | <address> |
---|
5010 | <email>john+ietf@jck.com</email> |
---|
5011 | </address> |
---|
5012 | </author> |
---|
5013 | <author initials="T." surname="Hansen" fullname="Tony Hansen"> |
---|
5014 | <organization>AT&T Laboratories</organization> |
---|
5015 | <address> |
---|
5016 | <email>tony+mtsuffix@maillennium.att.com</email> |
---|
5017 | </address> |
---|
5018 | </author> |
---|
5019 | <date year="2013" month="January"/> |
---|
5020 | </front> |
---|
5021 | <seriesInfo name="BCP" value="13"/> |
---|
5022 | <seriesInfo name="RFC" value="6838"/> |
---|
5023 | </reference> |
---|
5024 | |
---|
5025 | <reference anchor="BCP115"> |
---|
5026 | <front> |
---|
5027 | <title>Guidelines and Registration Procedures for New URI Schemes</title> |
---|
5028 | <author initials="T." surname="Hansen" fullname="T. Hansen"> |
---|
5029 | <organization>AT&T Laboratories</organization> |
---|
5030 | <address> |
---|
5031 | <email>tony+urireg@maillennium.att.com</email> |
---|
5032 | </address> |
---|
5033 | </author> |
---|
5034 | <author initials="T." surname="Hardie" fullname="T. Hardie"> |
---|
5035 | <organization>Qualcomm, Inc.</organization> |
---|
5036 | <address> |
---|
5037 | <email>hardie@qualcomm.com</email> |
---|
5038 | </address> |
---|
5039 | </author> |
---|
5040 | <author initials="L." surname="Masinter" fullname="L. Masinter"> |
---|
5041 | <organization>Adobe Systems</organization> |
---|
5042 | <address> |
---|
5043 | <email>LMM@acm.org</email> |
---|
5044 | </address> |
---|
5045 | </author> |
---|
5046 | <date year="2006" month="February"/> |
---|
5047 | </front> |
---|
5048 | <seriesInfo name="BCP" value="115"/> |
---|
5049 | <seriesInfo name="RFC" value="4395"/> |
---|
5050 | </reference> |
---|
5051 | |
---|
5052 | <reference anchor="RFC4559"> |
---|
5053 | <front> |
---|
5054 | <title>SPNEGO-based Kerberos and NTLM HTTP Authentication in Microsoft Windows</title> |
---|
5055 | <author initials="K." surname="Jaganathan" fullname="K. Jaganathan"/> |
---|
5056 | <author initials="L." surname="Zhu" fullname="L. Zhu"/> |
---|
5057 | <author initials="J." surname="Brezak" fullname="J. Brezak"/> |
---|
5058 | <date year="2006" month="June"/> |
---|
5059 | </front> |
---|
5060 | <seriesInfo name="RFC" value="4559"/> |
---|
5061 | </reference> |
---|
5062 | |
---|
5063 | <reference anchor="RFC5226"> |
---|
5064 | <front> |
---|
5065 | <title>Guidelines for Writing an IANA Considerations Section in RFCs</title> |
---|
5066 | <author initials="T." surname="Narten" fullname="T. Narten"> |
---|
5067 | <organization>IBM</organization> |
---|
5068 | <address><email>narten@us.ibm.com</email></address> |
---|
5069 | </author> |
---|
5070 | <author initials="H." surname="Alvestrand" fullname="H. Alvestrand"> |
---|
5071 | <organization>Google</organization> |
---|
5072 | <address><email>Harald@Alvestrand.no</email></address> |
---|
5073 | </author> |
---|
5074 | <date year="2008" month="May"/> |
---|
5075 | </front> |
---|
5076 | <seriesInfo name="BCP" value="26"/> |
---|
5077 | <seriesInfo name="RFC" value="5226"/> |
---|
5078 | </reference> |
---|
5079 | |
---|
5080 | <reference anchor="RFC5246"> |
---|
5081 | <front> |
---|
5082 | <title>The Transport Layer Security (TLS) Protocol Version 1.2</title> |
---|
5083 | <author initials="T." surname="Dierks" fullname="T. Dierks"/> |
---|
5084 | <author initials="E." surname="Rescorla" fullname="E. Rescorla"> |
---|
5085 | <organization>RTFM, Inc.</organization> |
---|
5086 | </author> |
---|
5087 | <date year="2008" month="August"/> |
---|
5088 | </front> |
---|
5089 | <seriesInfo name="RFC" value="5246"/> |
---|
5090 | </reference> |
---|
5091 | |
---|
5092 | <reference anchor="RFC5322"> |
---|
5093 | <front> |
---|
5094 | <title>Internet Message Format</title> |
---|
5095 | <author initials="P." surname="Resnick" fullname="P. Resnick"> |
---|
5096 | <organization>Qualcomm Incorporated</organization> |
---|
5097 | </author> |
---|
5098 | <date year="2008" month="October"/> |
---|
5099 | </front> |
---|
5100 | <seriesInfo name="RFC" value="5322"/> |
---|
5101 | </reference> |
---|
5102 | |
---|
5103 | <reference anchor="RFC6265"> |
---|
5104 | <front> |
---|
5105 | <title>HTTP State Management Mechanism</title> |
---|
5106 | <author initials="A." surname="Barth" fullname="Adam Barth"> |
---|
5107 | <organization abbrev="U.C. Berkeley"> |
---|
5108 | University of California, Berkeley |
---|
5109 | </organization> |
---|
5110 | <address><email>abarth@eecs.berkeley.edu</email></address> |
---|
5111 | </author> |
---|
5112 | <date year="2011" month="April"/> |
---|
5113 | </front> |
---|
5114 | <seriesInfo name="RFC" value="6265"/> |
---|
5115 | </reference> |
---|
5116 | |
---|
5117 | <reference anchor="RFC6585"> |
---|
5118 | <front> |
---|
5119 | <title>Additional HTTP Status Codes</title> |
---|
5120 | <author initials="M." surname="Nottingham" fullname="M. Nottingham"> |
---|
5121 | <organization>Rackspace</organization> |
---|
5122 | </author> |
---|
5123 | <author initials="R." surname="Fielding" fullname="R. Fielding"> |
---|
5124 | <organization>Adobe</organization> |
---|
5125 | </author> |
---|
5126 | <date year="2012" month="April"/> |
---|
5127 | </front> |
---|
5128 | <seriesInfo name="RFC" value="6585"/> |
---|
5129 | </reference> |
---|
5130 | |
---|
5131 | |
---|
5132 | <reference anchor="Kri2001" target="http://arxiv.org/abs/cs.SE/0105018"> |
---|
5133 | <front> |
---|
5134 | <title>HTTP Cookies: Standards, Privacy, and Politics</title> |
---|
5135 | <author initials="D." surname="Kristol" fullname="David M. Kristol"/> |
---|
5136 | <date year="2001" month="November"/> |
---|
5137 | </front> |
---|
5138 | <seriesInfo name="ACM Transactions on Internet Technology" value="1(2)"/> |
---|
5139 | </reference> |
---|
5140 | |
---|
5141 | <reference anchor="Klein" target="http://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf"> |
---|
5142 | <front> |
---|
5143 | <title>Divide and Conquer - HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics</title> |
---|
5144 | <author initials="A." surname="Klein" fullname="Amit Klein"> |
---|
5145 | <organization>Sanctum, Inc.</organization> |
---|
5146 | </author> |
---|
5147 | <date year="2004" month="March"/> |
---|
5148 | </front> |
---|
5149 | </reference> |
---|
5150 | |
---|
5151 | <reference anchor="Georgiev" target="http://doi.acm.org/10.1145/2382196.2382204"> |
---|
5152 | <front> |
---|
5153 | <title>The Most Dangerous Code in the World: Validating SSL Certificates in Non-browser Software</title> |
---|
5154 | <author initials="M." surname="Georgiev" fullname="Martin Georgiev"/> |
---|
5155 | <author initials="S." surname="Iyengar" fullname="Subodh Iyengar"/> |
---|
5156 | <author initials="S." surname="Jana" fullname="Suman Jana"/> |
---|
5157 | <author initials="R." surname="Anubhai" fullname="Rishita Anubhai"/> |
---|
5158 | <author initials="D." surname="Boneh" fullname="Dan Boneh"/> |
---|
5159 | <author initials="V." surname="Shmatikov" fullname="Vitaly Shmatikov"/> |
---|
5160 | <date year="2012" month="October"/> |
---|
5161 | </front> |
---|
5162 | <!--Converted from rfc2629.xslt x:prose extension--><seriesInfo name="In" value="Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCS '12), pp. 38-49"/> |
---|
5163 | </reference> |
---|
5164 | |
---|
5165 | <reference anchor="Linhart" target="http://www.watchfire.com/news/whitepapers.aspx"> |
---|
5166 | <front> |
---|
5167 | <title>HTTP Request Smuggling</title> |
---|
5168 | <author initials="C." surname="Linhart" fullname="Chaim Linhart"/> |
---|
5169 | <author initials="A." surname="Klein" fullname="Amit Klein"/> |
---|
5170 | <author initials="R." surname="Heled" fullname="Ronen Heled"/> |
---|
5171 | <author initials="S." surname="Orrin" fullname="Steve Orrin"/> |
---|
5172 | <date year="2005" month="June"/> |
---|
5173 | </front> |
---|
5174 | </reference> |
---|
5175 | |
---|
5176 | </references> |
---|
5177 | |
---|
5178 | |
---|
5179 | <section title="HTTP Version History" anchor="compatibility"> |
---|
5180 | <t> |
---|
5181 | HTTP has been in use since 1990. The first version, later referred to as |
---|
5182 | HTTP/0.9, was a simple protocol for hypertext data transfer across the |
---|
5183 | Internet, using only a single request method (GET) and no metadata. |
---|
5184 | HTTP/1.0, as defined by <xref target="RFC1945"/>, added a range of request |
---|
5185 | methods and MIME-like messaging, allowing for metadata to be transferred |
---|
5186 | and modifiers placed on the request/response semantics. However, |
---|
5187 | HTTP/1.0 did not sufficiently take into consideration the effects of |
---|
5188 | hierarchical proxies, caching, the need for persistent connections, or |
---|
5189 | name-based virtual hosts. The proliferation of incompletely implemented |
---|
5190 | applications calling themselves "HTTP/1.0" further necessitated a |
---|
5191 | protocol version change in order for two communicating applications |
---|
5192 | to determine each other's true capabilities. |
---|
5193 | </t> |
---|
5194 | <t> |
---|
5195 | HTTP/1.1 remains compatible with HTTP/1.0 by including more stringent |
---|
5196 | requirements that enable reliable implementations, adding only |
---|
5197 | those features that can either be safely ignored by an HTTP/1.0 |
---|
5198 | recipient or only be sent when communicating with a party advertising |
---|
5199 | conformance with HTTP/1.1. |
---|
5200 | </t> |
---|
5201 | <t> |
---|
5202 | HTTP/1.1 has been designed to make supporting previous versions easy. |
---|
5203 | A general-purpose HTTP/1.1 server ought to be able to understand any valid |
---|
5204 | request in the format of HTTP/1.0, responding appropriately with an |
---|
5205 | HTTP/1.1 message that only uses features understood (or safely ignored) by |
---|
5206 | HTTP/1.0 clients. Likewise, an HTTP/1.1 client can be expected to |
---|
5207 | understand any valid HTTP/1.0 response. |
---|
5208 | </t> |
---|
5209 | <t> |
---|
5210 | Since HTTP/0.9 did not support header fields in a request, there is no |
---|
5211 | mechanism for it to support name-based virtual hosts (selection of resource |
---|
5212 | by inspection of the <xref target="header.host" format="none">Host</xref> header field). |
---|
5213 | Any server that implements name-based virtual hosts ought to disable |
---|
5214 | support for HTTP/0.9. Most requests that appear to be HTTP/0.9 are, in |
---|
5215 | fact, badly constructed HTTP/1.x requests caused by a client failing to |
---|
5216 | properly encode the request-target. |
---|
5217 | </t> |
---|
5218 | |
---|
5219 | <section title="Changes from HTTP/1.0" anchor="changes.from.1.0"> |
---|
5220 | <t> |
---|
5221 | This section summarizes major differences between versions HTTP/1.0 |
---|
5222 | and HTTP/1.1. |
---|
5223 | </t> |
---|
5224 | |
---|
5225 | <section title="Multihomed Web Servers" anchor="changes.to.simplify.multi-homed.web.servers.and.conserve.ip.addresses"> |
---|
5226 | <t> |
---|
5227 | The requirements that clients and servers support the <xref target="header.host" format="none">Host</xref> |
---|
5228 | header field (<xref target="header.host"/>), report an error if it is |
---|
5229 | missing from an HTTP/1.1 request, and accept absolute URIs (<xref target="request-target"/>) |
---|
5230 | are among the most important changes defined by HTTP/1.1. |
---|
5231 | </t> |
---|
5232 | <t> |
---|
5233 | Older HTTP/1.0 clients assumed a one-to-one relationship of IP |
---|
5234 | addresses and servers; there was no other established mechanism for |
---|
5235 | distinguishing the intended server of a request than the IP address |
---|
5236 | to which that request was directed. The <xref target="header.host" format="none">Host</xref> header field was |
---|
5237 | introduced during the development of HTTP/1.1 and, though it was |
---|
5238 | quickly implemented by most HTTP/1.0 browsers, additional requirements |
---|
5239 | were placed on all HTTP/1.1 requests in order to ensure complete |
---|
5240 | adoption. At the time of this writing, most HTTP-based services |
---|
5241 | are dependent upon the Host header field for targeting requests. |
---|
5242 | </t> |
---|
5243 | </section> |
---|
5244 | |
---|
5245 | <section title="Keep-Alive Connections" anchor="compatibility.with.http.1.0.persistent.connections"> |
---|
5246 | <t> |
---|
5247 | In HTTP/1.0, each connection is established by the client prior to the |
---|
5248 | request and closed by the server after sending the response. However, some |
---|
5249 | implementations implement the explicitly negotiated ("Keep-Alive") version |
---|
5250 | of persistent connections described in Section 19.7.1 of <xref target="RFC2068"/>. |
---|
5251 | </t> |
---|
5252 | <t> |
---|
5253 | Some clients and servers might wish to be compatible with these previous |
---|
5254 | approaches to persistent connections, by explicitly negotiating for them |
---|
5255 | with a "Connection: keep-alive" request header field. However, some |
---|
5256 | experimental implementations of HTTP/1.0 persistent connections are faulty; |
---|
5257 | for example, if an HTTP/1.0 proxy server doesn't understand |
---|
5258 | <xref target="header.connection" format="none">Connection</xref>, it will erroneously forward that header field |
---|
5259 | to the next inbound server, which would result in a hung connection. |
---|
5260 | </t> |
---|
5261 | <t> |
---|
5262 | One attempted solution was the introduction of a Proxy-Connection header |
---|
5263 | field, targeted specifically at proxies. In practice, this was also |
---|
5264 | unworkable, because proxies are often deployed in multiple layers, bringing |
---|
5265 | about the same problem discussed above. |
---|
5266 | </t> |
---|
5267 | <t> |
---|
5268 | As a result, clients are encouraged not to send the Proxy-Connection header |
---|
5269 | field in any requests. |
---|
5270 | </t> |
---|
5271 | <t> |
---|
5272 | Clients are also encouraged to consider the use of Connection: keep-alive |
---|
5273 | in requests carefully; while they can enable persistent connections with |
---|
5274 | HTTP/1.0 servers, clients using them will need to monitor the |
---|
5275 | connection for "hung" requests (which indicate that the client ought stop |
---|
5276 | sending the header field), and this mechanism ought not be used by clients |
---|
5277 | at all when a proxy is being used. |
---|
5278 | </t> |
---|
5279 | </section> |
---|
5280 | |
---|
5281 | <section title="Introduction of Transfer-Encoding" anchor="introduction.of.transfer-encoding"> |
---|
5282 | <t> |
---|
5283 | HTTP/1.1 introduces the <xref target="header.transfer-encoding" format="none">Transfer-Encoding</xref> header field |
---|
5284 | (<xref target="header.transfer-encoding"/>). |
---|
5285 | Transfer codings need to be decoded prior to forwarding an HTTP message |
---|
5286 | over a MIME-compliant protocol. |
---|
5287 | </t> |
---|
5288 | </section> |
---|
5289 | |
---|
5290 | </section> |
---|
5291 | |
---|
5292 | <section title="Changes from RFC 2616" anchor="changes.from.rfc.2616"> |
---|
5293 | <t> |
---|
5294 | HTTP's approach to error handling has been explained |
---|
5295 | (<xref target="conformance"/>). |
---|
5296 | </t> |
---|
5297 | <t> |
---|
5298 | The HTTP-version ABNF production has been clarified to be case sensitive. |
---|
5299 | Additionally, version numbers have been restricted to single digits, due |
---|
5300 | to the fact that implementations are known to handle multi-digit version |
---|
5301 | numbers incorrectly |
---|
5302 | (<xref target="http.version"/>). |
---|
5303 | </t> |
---|
5304 | <t> |
---|
5305 | Userinfo (i.e., username and password) are now disallowed in HTTP and |
---|
5306 | HTTPS URIs, because of security issues related to their transmission on the |
---|
5307 | wire |
---|
5308 | (<xref target="http.uri"/>). |
---|
5309 | </t> |
---|
5310 | <t> |
---|
5311 | The HTTPS URI scheme is now defined by this specification; previously, |
---|
5312 | it was defined in Section 2.4 of <xref target="RFC2818"/>. |
---|
5313 | Furthermore, it implies end-to-end security |
---|
5314 | (<xref target="https.uri"/>). |
---|
5315 | </t> |
---|
5316 | <t> |
---|
5317 | HTTP messages can be (and often are) buffered by implementations; despite |
---|
5318 | it sometimes being available as a stream, HTTP is fundamentally a |
---|
5319 | message-oriented protocol. |
---|
5320 | Minimum supported sizes for various protocol elements have been |
---|
5321 | suggested, to improve interoperability |
---|
5322 | (<xref target="http.message"/>). |
---|
5323 | </t> |
---|
5324 | <t> |
---|
5325 | Invalid whitespace around field-names is now required to be rejected, |
---|
5326 | because accepting it represents a security vulnerability. |
---|
5327 | The ABNF productions defining header fields now only list the field value |
---|
5328 | (<xref target="header.fields"/>). |
---|
5329 | </t> |
---|
5330 | <t> |
---|
5331 | Rules about implicit linear whitespace between certain grammar productions |
---|
5332 | have been removed; now whitespace is only allowed where specifically |
---|
5333 | defined in the ABNF |
---|
5334 | (<xref target="whitespace"/>). |
---|
5335 | </t> |
---|
5336 | <t> |
---|
5337 | Header fields that span multiple lines ("line folding") are deprecated |
---|
5338 | (<xref target="field.parsing"/>). |
---|
5339 | </t> |
---|
5340 | <t> |
---|
5341 | The NUL octet is no longer allowed in comment and quoted-string text, and |
---|
5342 | handling of backslash-escaping in them has been clarified. |
---|
5343 | The quoted-pair rule no longer allows escaping control characters other than |
---|
5344 | HTAB. |
---|
5345 | Non-US-ASCII content in header fields and the reason phrase has been obsoleted |
---|
5346 | and made opaque (the TEXT rule was removed) |
---|
5347 | (<xref target="field.components"/>). |
---|
5348 | </t> |
---|
5349 | <t> |
---|
5350 | Bogus "<xref target="header.content-length" format="none">Content-Length</xref>" header fields are now required to be |
---|
5351 | handled as errors by recipients |
---|
5352 | (<xref target="header.content-length"/>). |
---|
5353 | </t> |
---|
5354 | <t> |
---|
5355 | The algorithm for determining the message body length has been clarified |
---|
5356 | to indicate all of the special cases (e.g., driven by methods or status |
---|
5357 | codes) that affect it, and that new protocol elements cannot define such |
---|
5358 | special cases. |
---|
5359 | CONNECT is a new, special case in determining message body length. |
---|
5360 | "multipart/byteranges" is no longer a way of determining message body length |
---|
5361 | detection |
---|
5362 | (<xref target="message.body.length"/>). |
---|
5363 | </t> |
---|
5364 | <t> |
---|
5365 | The "identity" transfer coding token has been removed |
---|
5366 | (Sections <xref format="counter" target="message.body"/> and |
---|
5367 | <xref format="counter" target="transfer.codings"/>). |
---|
5368 | </t> |
---|
5369 | <t> |
---|
5370 | Chunk length does not include the count of the octets in the |
---|
5371 | chunk header and trailer. |
---|
5372 | Line folding in chunk extensions is disallowed |
---|
5373 | (<xref target="chunked.encoding"/>). |
---|
5374 | </t> |
---|
5375 | <t> |
---|
5376 | The meaning of the "deflate" content coding has been clarified |
---|
5377 | (<xref target="deflate.coding"/>). |
---|
5378 | </t> |
---|
5379 | <t> |
---|
5380 | The segment + query components of RFC 3986 have been used to define the |
---|
5381 | request-target, instead of abs_path from RFC 1808. |
---|
5382 | The asterisk-form of the request-target is only allowed with the OPTIONS |
---|
5383 | method |
---|
5384 | (<xref target="request-target"/>). |
---|
5385 | </t> |
---|
5386 | <t> |
---|
5387 | The term "Effective Request URI" has been introduced |
---|
5388 | (<xref target="effective.request.uri"/>). |
---|
5389 | </t> |
---|
5390 | <t> |
---|
5391 | Gateways do not need to generate <xref target="header.via" format="none">Via</xref> header fields anymore |
---|
5392 | (<xref target="header.via"/>). |
---|
5393 | </t> |
---|
5394 | <t> |
---|
5395 | Exactly when "close" connection options have to be sent has been clarified. |
---|
5396 | Also, "hop-by-hop" header fields are required to appear in the Connection header |
---|
5397 | field; just because they're defined as hop-by-hop in this specification |
---|
5398 | doesn't exempt them |
---|
5399 | (<xref target="header.connection"/>). |
---|
5400 | </t> |
---|
5401 | <t> |
---|
5402 | The limit of two connections per server has been removed. |
---|
5403 | An idempotent sequence of requests is no longer required to be retried. |
---|
5404 | The requirement to retry requests under certain circumstances when the |
---|
5405 | server prematurely closes the connection has been removed. |
---|
5406 | Also, some extraneous requirements about when servers are allowed to close |
---|
5407 | connections prematurely have been removed |
---|
5408 | (<xref target="persistent.connections"/>). |
---|
5409 | </t> |
---|
5410 | <t> |
---|
5411 | The semantics of the <xref target="header.upgrade" format="none">Upgrade</xref> header field is now defined in |
---|
5412 | responses other than 101 (this was incorporated from <xref target="RFC2817"/>). Furthermore, the ordering in the field value is now |
---|
5413 | significant |
---|
5414 | (<xref target="header.upgrade"/>). |
---|
5415 | </t> |
---|
5416 | <t> |
---|
5417 | Empty list elements in list productions (e.g., a list header field containing |
---|
5418 | ", ,") have been deprecated |
---|
5419 | (<xref target="abnf.extension"/>). |
---|
5420 | </t> |
---|
5421 | <t> |
---|
5422 | Registration of Transfer Codings now requires IETF Review |
---|
5423 | (<xref target="transfer.coding.registry"/>). |
---|
5424 | </t> |
---|
5425 | <t> |
---|
5426 | This specification now defines the "HTTP Upgrade Tokens" registry, previously |
---|
5427 | defined in Section 7.2 of <xref target="RFC2817"/> |
---|
5428 | (<xref target="upgrade.token.registry"/>). |
---|
5429 | </t> |
---|
5430 | <t> |
---|
5431 | The expectation to support HTTP/0.9 requests has been removed |
---|
5432 | (<xref target="compatibility"/>). |
---|
5433 | </t> |
---|
5434 | <t> |
---|
5435 | Issues with the Keep-Alive and Proxy-Connection header fields in requests |
---|
5436 | are pointed out, with use of the latter being discouraged altogether |
---|
5437 | (<xref target="compatibility.with.http.1.0.persistent.connections"/>). |
---|
5438 | </t> |
---|
5439 | </section> |
---|
5440 | </section> |
---|
5441 | |
---|
5442 | |
---|
5443 | <section title="Collected ABNF" anchor="collected.abnf"> |
---|
5444 | <figure> |
---|
5445 | <artwork type="abnf" name="p1-messaging.parsed-abnf"><![CDATA[ |
---|
5446 | BWS = OWS |
---|
5447 | |
---|
5448 | Connection = *( "," OWS ) connection-option *( OWS "," [ OWS |
---|
5449 | connection-option ] ) |
---|
5450 | Content-Length = 1*DIGIT |
---|
5451 | |
---|
5452 | HTTP-message = start-line *( header-field CRLF ) CRLF [ message-body |
---|
5453 | ] |
---|
5454 | HTTP-name = %x48.54.54.50 ; HTTP |
---|
5455 | HTTP-version = HTTP-name "/" DIGIT "." DIGIT |
---|
5456 | Host = uri-host [ ":" port ] |
---|
5457 | |
---|
5458 | OWS = *( SP / HTAB ) |
---|
5459 | |
---|
5460 | RWS = 1*( SP / HTAB ) |
---|
5461 | |
---|
5462 | TE = [ ( "," / t-codings ) *( OWS "," [ OWS t-codings ] ) ] |
---|
5463 | Trailer = *( "," OWS ) field-name *( OWS "," [ OWS field-name ] ) |
---|
5464 | Transfer-Encoding = *( "," OWS ) transfer-coding *( OWS "," [ OWS |
---|
5465 | transfer-coding ] ) |
---|
5466 | |
---|
5467 | URI-reference = <URI-reference, defined in [RFC3986], Section 4.1> |
---|
5468 | Upgrade = *( "," OWS ) protocol *( OWS "," [ OWS protocol ] ) |
---|
5469 | |
---|
5470 | Via = *( "," OWS ) ( received-protocol RWS received-by [ RWS comment |
---|
5471 | ] ) *( OWS "," [ OWS ( received-protocol RWS received-by [ RWS |
---|
5472 | comment ] ) ] ) |
---|
5473 | |
---|
5474 | absolute-URI = <absolute-URI, defined in [RFC3986], Section 4.3> |
---|
5475 | absolute-form = absolute-URI |
---|
5476 | absolute-path = 1*( "/" segment ) |
---|
5477 | asterisk-form = "*" |
---|
5478 | authority = <authority, defined in [RFC3986], Section 3.2> |
---|
5479 | authority-form = authority |
---|
5480 | |
---|
5481 | chunk = chunk-size [ chunk-ext ] CRLF chunk-data CRLF |
---|
5482 | chunk-data = 1*OCTET |
---|
5483 | chunk-ext = *( ";" chunk-ext-name [ "=" chunk-ext-val ] ) |
---|
5484 | chunk-ext-name = token |
---|
5485 | chunk-ext-val = token / quoted-string |
---|
5486 | chunk-size = 1*HEXDIG |
---|
5487 | chunked-body = *chunk last-chunk trailer-part CRLF |
---|
5488 | comment = "(" *( ctext / quoted-pair / comment ) ")" |
---|
5489 | connection-option = token |
---|
5490 | ctext = HTAB / SP / %x21-27 ; '!'-''' |
---|
5491 | / %x2A-5B ; '*'-'[' |
---|
5492 | / %x5D-7E ; ']'-'~' |
---|
5493 | / obs-text |
---|
5494 | |
---|
5495 | field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ] |
---|
5496 | field-name = token |
---|
5497 | field-value = *( field-content / obs-fold ) |
---|
5498 | field-vchar = VCHAR / obs-text |
---|
5499 | fragment = <fragment, defined in [RFC3986], Section 3.5> |
---|
5500 | |
---|
5501 | header-field = field-name ":" OWS field-value OWS |
---|
5502 | http-URI = "http://" authority path-abempty [ "?" query ] [ "#" |
---|
5503 | fragment ] |
---|
5504 | https-URI = "https://" authority path-abempty [ "?" query ] [ "#" |
---|
5505 | fragment ] |
---|
5506 | |
---|
5507 | last-chunk = 1*"0" [ chunk-ext ] CRLF |
---|
5508 | |
---|
5509 | message-body = *OCTET |
---|
5510 | method = token |
---|
5511 | |
---|
5512 | obs-fold = CRLF 1*( SP / HTAB ) |
---|
5513 | obs-text = %x80-FF |
---|
5514 | origin-form = absolute-path [ "?" query ] |
---|
5515 | |
---|
5516 | partial-URI = relative-part [ "?" query ] |
---|
5517 | path-abempty = <path-abempty, defined in [RFC3986], Section 3.3> |
---|
5518 | port = <port, defined in [RFC3986], Section 3.2.3> |
---|
5519 | protocol = protocol-name [ "/" protocol-version ] |
---|
5520 | protocol-name = token |
---|
5521 | protocol-version = token |
---|
5522 | pseudonym = token |
---|
5523 | |
---|
5524 | qdtext = HTAB / SP / "!" / %x23-5B ; '#'-'[' |
---|
5525 | / %x5D-7E ; ']'-'~' |
---|
5526 | / obs-text |
---|
5527 | query = <query, defined in [RFC3986], Section 3.4> |
---|
5528 | quoted-pair = "\" ( HTAB / SP / VCHAR / obs-text ) |
---|
5529 | quoted-string = DQUOTE *( qdtext / quoted-pair ) DQUOTE |
---|
5530 | |
---|
5531 | rank = ( "0" [ "." *3DIGIT ] ) / ( "1" [ "." *3"0" ] ) |
---|
5532 | reason-phrase = *( HTAB / SP / VCHAR / obs-text ) |
---|
5533 | received-by = ( uri-host [ ":" port ] ) / pseudonym |
---|
5534 | received-protocol = [ protocol-name "/" ] protocol-version |
---|
5535 | relative-part = <relative-part, defined in [RFC3986], Section 4.2> |
---|
5536 | request-line = method SP request-target SP HTTP-version CRLF |
---|
5537 | request-target = origin-form / absolute-form / authority-form / |
---|
5538 | asterisk-form |
---|
5539 | |
---|
5540 | scheme = <scheme, defined in [RFC3986], Section 3.1> |
---|
5541 | segment = <segment, defined in [RFC3986], Section 3.3> |
---|
5542 | start-line = request-line / status-line |
---|
5543 | status-code = 3DIGIT |
---|
5544 | status-line = HTTP-version SP status-code SP reason-phrase CRLF |
---|
5545 | |
---|
5546 | t-codings = "trailers" / ( transfer-coding [ t-ranking ] ) |
---|
5547 | t-ranking = OWS ";" OWS "q=" rank |
---|
5548 | tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." / |
---|
5549 | "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA |
---|
5550 | token = 1*tchar |
---|
5551 | trailer-part = *( header-field CRLF ) |
---|
5552 | transfer-coding = "chunked" / "compress" / "deflate" / "gzip" / |
---|
5553 | transfer-extension |
---|
5554 | transfer-extension = token *( OWS ";" OWS transfer-parameter ) |
---|
5555 | transfer-parameter = token BWS "=" BWS ( token / quoted-string ) |
---|
5556 | |
---|
5557 | uri-host = <host, defined in [RFC3986], Section 3.2.2> |
---|
5558 | ]]></artwork> |
---|
5559 | </figure> |
---|
5560 | </section> |
---|
5561 | |
---|
5562 | |
---|
5563 | |
---|
5564 | </back> |
---|
5565 | </rfc> |
---|