source: draft-ietf-httpbis-security-properties/03/draft-ietf-httpbis-security-properties-03.html @ 2726

Last change on this file since 2726 was 2726, checked in by julian.reschke@…, 8 years ago

update to latest version of rfc2629.xslt, regen all HTML

File size: 39.6 KB
1<!DOCTYPE html
2  PUBLIC "-//W3C//DTD HTML 4.01//EN">
3<html lang="en">
4   <head profile="">
5      <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
6      <title>Security Requirements for HTTP</title><style type="text/css" title="Xml2Rfc (sans serif)">
7a {
8  text-decoration: none;
10a.smpl {
11  color: black;
13a:hover {
14  text-decoration: underline;
16a:active {
17  text-decoration: underline;
19address {
20  margin-top: 1em;
21  margin-left: 2em;
22  font-style: normal;
24body {
25  color: black;
26  font-family: cambria, helvetica, arial, sans-serif;
27  font-size: 11pt;
28  margin-right: 2em;
30cite {
31  font-style: normal;
33dl {
34  margin-left: 2em;
36ul.empty {
37  list-style-type: none;
39ul.empty li {
40  margin-top: .5em;
42dl p {
43  margin-left: 0em;
45dt {
46  margin-top: .5em;
48h1 {
49  font-size: 130%;
50  line-height: 21pt;
51  page-break-after: avoid;
52} {
54  page-break-before: always;
56h2 {
57  font-size: 120%;
58  line-height: 15pt;
59  page-break-after: avoid;
61h3 {
62  font-size: 110%;
63  page-break-after: avoid;
65h4, h5, h6 {
66  page-break-after: avoid;
68h1 a, h2 a, h3 a, h4 a, h5 a, h6 a {
69  color: black;
71img {
72  margin-left: 3em;
74li {
75  margin-left: 2em;
77ol {
78  margin-left: 2em;
79} {
81  list-style-type: lower-alpha;
82} {
84  list-style-type: upper-alpha;
86ol p {
87  margin-left: 0em;
89p {
90  margin-left: 2em;
92pre {
93  margin-left: 3em;
94  background-color: lightyellow;
95  padding: .25em;
96  page-break-inside: avoid;
98pre.text2 {
99  border-style: dotted;
100  border-width: 1px;
101  background-color: #f0f0f0;
102  width: 69em;
104pre.inline {
105  background-color: white;
106  padding: 0em;
108pre.text {
109  border-style: dotted;
110  border-width: 1px;
111  background-color: #f8f8f8;
112  width: 69em;
114pre.drawing {
115  border-style: solid;
116  border-width: 1px;
117  background-color: #f8f8f8;
118  padding: 2em;
120table {
121  margin-left: 2em;
123table.header {
124  border-spacing: 1px;
125  width: 95%;
126  font-size: 11pt;
127  color: white;
128} {
130  vertical-align: top;
132td.topnowrap {
133  vertical-align: top;
134  white-space: nowrap;
136table.header td {
137  background-color: gray;
138  width: 50%;
140td.reference {
141  vertical-align: top;
142  white-space: nowrap;
143  padding-right: 1em;
145thead {
146  display:table-header-group;
148ul.toc, ul.toc ul {
149  list-style: none;
150  margin-left: 1.5em;
151  padding-left: 0em;
153ul.toc li {
154  line-height: 150%;
155  font-weight: bold;
156  margin-left: 0em;
158ul.toc li li {
159  line-height: normal;
160  font-weight: normal;
161  font-size: 10pt;
162  margin-left: 0em;
164li.excluded {
165  font-size: 0pt;
167ul p {
168  margin-left: 0em;
170.title, .filename, h1, h2, h3, h4 {
171  font-family: candara, helvetica, arial, sans-serif;
173samp, tt, code, pre {
174  font: consolas, monospace;
177.comment {
178  background-color: yellow;
179} {
181  text-align: center;
183.error {
184  color: red;
185  font-style: italic;
186  font-weight: bold;
188.figure {
189  font-weight: bold;
190  text-align: center;
191  font-size: 10pt;
193.filename {
194  color: #333333;
195  font-size: 75%;
196  font-weight: bold;
197  line-height: 21pt;
198  text-align: center;
200.fn {
201  font-weight: bold;
203.left {
204  text-align: left;
206.right {
207  text-align: right;
209.title {
210  color: green;
211  font-size: 150%;
212  line-height: 18pt;
213  font-weight: bold;
214  text-align: center;
215  margin-top: 36pt;
217.warning {
218  font-size: 130%;
219  background-color: yellow;
223@media print {
224  .noprint {
225    display: none;
226  }
228  a {
229    color: black;
230    text-decoration: none;
231  }
233  table.header {
234    width: 90%;
235  }
237  td.header {
238    width: 50%;
239    color: black;
240    background-color: white;
241    vertical-align: top;
242    font-size: 110%;
243  }
245  ul.toc a:nth-child(2)::after {
246    content: leader('.') target-counter(attr(href), page);
247  }
249  ul.ind li li a {
250    content: target-counter(attr(href), page);
251  }
253  .print2col {
254    column-count: 2;
255    -moz-column-count: 2;
256    column-fill: auto;
257  }
260@page {
261  @top-left {
262       content: "Internet-Draft";
263  }
264  @top-right {
265       content: "March 2009";
266  }
267  @top-center {
268       content: "Security Requirements for HTTP";
269  }
270  @bottom-left {
271       content: "Hoffman & Melnikov";
272  }
273  @bottom-center {
274       content: "Expires September 8, 2009";
275  }
276  @bottom-right {
277       content: "[Page " counter(page) "]";
278  }
281@page:first {
282    @top-left {
283      content: normal;
284    }
285    @top-right {
286      content: normal;
287    }
288    @top-center {
289      content: normal;
290    }
292</style><link rel="Author" href="#rfc.authors">
293      <link rel="Copyright" href="#rfc.copyrightnotice">
294      <link rel="Chapter" title="1 Introduction" href="#rfc.section.1">
295      <link rel="Chapter" title="2 Existing HTTP Security Mechanisms" href="#rfc.section.2">
296      <link rel="Chapter" title="3 Revisions To HTTP" href="#rfc.section.3">
297      <link rel="Chapter" title="4 Security Considerations" href="#rfc.section.4">
298      <link rel="Chapter" href="#rfc.section.5" title="5 Normative References">
299      <link rel="Appendix" title="A Acknowledgements" href="#rfc.section.A">
300      <link rel="Appendix" title="B Document History" href="#rfc.section.B">
301      <meta name="generator" content=", Revision 1.640, 2014/06/13 12:42:58, XSLT vendor: SAXON 8.9 from Saxonica">
302      <link rel="schema.dct" href="">
303      <meta name="dct.creator" content="Hoffman, P.">
304      <meta name="dct.creator" content="Melnikov, A.">
305      <meta name="dct.identifier" content="urn:ietf:id:draft-ietf-httpbis-security-properties-03">
306      <meta name="dct.issued" scheme="ISO8601" content="2009-03-07">
307      <meta name="dct.abstract" content="Recent IESG practice dictates that IETF protocols must specify mandatory-to-implement security mechanisms, so that all conformant implementations share a common baseline. This document examines all widely deployed HTTP security technologies, and analyzes the trade-offs of each.">
308      <meta name="description" content="Recent IESG practice dictates that IETF protocols must specify mandatory-to-implement security mechanisms, so that all conformant implementations share a common baseline. This document examines all widely deployed HTTP security technologies, and analyzes the trade-offs of each.">
309   </head>
310   <body>
311      <table class="header">
312         <tbody>
313            <tr>
314               <td class="left">Network Working Group</td>
315               <td class="right">P. Hoffman</td>
316            </tr>
317            <tr>
318               <td class="left">Internet-Draft</td>
319               <td class="right">VPN Consortium</td>
320            </tr>
321            <tr>
322               <td class="left">Intended status: Informational</td>
323               <td class="right">A. Melnikov</td>
324            </tr>
325            <tr>
326               <td class="left">Expires: September 8, 2009</td>
327               <td class="right">Isode Ltd.</td>
328            </tr>
329            <tr>
330               <td class="left"></td>
331               <td class="right">March 7, 2009</td>
332            </tr>
333         </tbody>
334      </table>
335      <p class="title">Security Requirements for HTTP<br><span class="filename">draft-ietf-httpbis-security-properties-03</span></p>
336      <div id="rfc.status">
337         <h1><a href="#rfc.status">Status of this Memo</a></h1>
338         <p>This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79. This document may contain
339            material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s)
340            controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of
341            such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the
342            copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of
343            it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it
344            into languages other than English.
345         </p>
346         <p>Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note
347            that other groups may also distribute working documents as Internet-Drafts.
348         </p>
349         <p>Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other
350            documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work
351            in progress”.
352         </p>
353         <p>The list of current Internet-Drafts can be accessed at <a href=""></a>.
354         </p>
355         <p>The list of Internet-Draft Shadow Directories can be accessed at <a href=""></a>.
356         </p>
357         <p>This Internet-Draft will expire on September 8, 2009.</p>
358      </div>
359      <div id="rfc.copyrightnotice">
360         <h1><a href="#rfc.copyrightnotice">Copyright Notice</a></h1>
361         <p>Copyright © 2009 IETF Trust and the persons identified as the document authors. All rights reserved.</p>
362         <p>This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents in effect on the date
363            of publication of this document (<a href=""></a>). Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
364         </p>
365      </div>
366      <h1 id="rfc.abstract"><a href="#rfc.abstract">Abstract</a></h1>
367      <p>Recent IESG practice dictates that IETF protocols must specify mandatory-to-implement security mechanisms, so that all conformant
368         implementations share a common baseline. This document examines all widely deployed HTTP security technologies, and analyzes
369         the trade-offs of each.
370      </p>
371      <hr class="noprint">
372      <div>
373         <h1 id="rfc.section.1" class="np"><a href="#rfc.section.1">1.</a>&nbsp;Introduction
374         </h1>
375         <p id="rfc.section.1.p.1">Recent IESG practice dictates that IETF protocols are required to specify mandatory to implement security mechanisms. "The
376            IETF Standards Process" <a href="#RFC2026"><cite title="The Internet Standards Process -- Revision 3">[RFC2026]</cite></a> does not require that protocols specify mandatory security mechanisms. "Strong Security Requirements for IETF Standard Protocols" <a href="#RFC3365"><cite title="Strong Security Requirements for Internet Engineering Task Force Standard Protocols">[RFC3365]</cite></a> requires that all IETF protocols provide a mechanism for implementers to provide strong security. RFC 3365 does not define
377            the term "strong security".
378         </p>
379         <p id="rfc.section.1.p.2">"Security Mechanisms for the Internet" <a href="#RFC3631"><cite title="Security Mechanisms for the Internet">[RFC3631]</cite></a> is not an IETF procedural RFC, but it is perhaps most relevant. Section 2.2 states:
380         </p>
381         <div id="rfc.figure.u.1"></div><pre>
382  We have evolved in the IETF the notion of "mandatory to implement"
383  mechanisms.  This philosophy evolves from our primary desire to
384  ensure interoperability between different implementations of a
385  protocol.  If a protocol offers many options for how to perform a
386  particular task, but fails to provide for at least one that all
387  must implement, it may be possible that multiple, non-interoperable
388  implementations may result.  This is the consequence of the
389  selection of non-overlapping mechanisms being deployed in the
390  different implementations.
391</pre><p id="rfc.section.1.p.4">This document examines the effects of applying security constraints to Web applications, documents the properties that result
392            from each method, and will make Best Current Practice recommendations for HTTP security in a later document version. At the
393            moment, it is mostly a laundry list of security technologies and tradeoffs.
394         </p>
395      </div>
396      <hr class="noprint">
397      <div>
398         <h1 id="rfc.section.2" class="np"><a href="#rfc.section.2">2.</a>&nbsp;Existing HTTP Security Mechanisms
399         </h1>
400         <p id="rfc.section.2.p.1">For HTTP, the IETF generally defines "security mechanisms" as some combination of access authentication and/or a secure transport.</p>
401         <p id="rfc.section.2.p.2">[[ There is a suggestion that this section be split into "browser-like" and "automation-like" subsections. ]]</p>
402         <p id="rfc.section.2.p.3">[[ NTLM (shudder) was brought up in the WG a few times in the discussion of the -00 draft. Should we add a section on it?
403            ]]
404         </p>
405         <div>
406            <h2 id="rfc.section.2.1"><a href="#rfc.section.2.1">2.1</a>&nbsp;Forms And Cookies
407            </h2>
408            <p id="rfc.section.2.1.p.1">Almost all HTTP authentication that involves a human using a web browser is accomplished through HTML forms, with session
409               identifiers stored in cookies. For cookies, most implementations rely on the "Netscape specification", which is described
410               loosely in section 10 of "HTTP State Management Mechanism" <a href="#RFC2109"><cite title="HTTP State Management Mechanism">[RFC2109]</cite></a>. The protocol in RFC 2109 is relatively widely implemented, but most clients don't advertise support for it. RFC 2109 was
411               later updated <a href="#RFC2965"><cite title="HTTP State Management Mechanism">[RFC2965]</cite></a>, but the newer version is not widely implemented.
412            </p>
413            <p id="rfc.section.2.1.p.2">Forms and cookies have many properties that make them an excellent solution for some implementers. However, many of those
414               properties introduce serious security trade-offs.
415            </p>
416            <p id="rfc.section.2.1.p.3">HTML forms provide a large degree of control over presentation, which is an imperative for many websites. However, this increases
417               user reliance on the appearance of the interface. Many users do not understand the construction of URIs <a href="#RFC3986"><cite title="Uniform Resource Identifier (URI): Generic Syntax">[RFC3986]</cite></a>, or their presentation in common clients <a href="#PhishingHOWTO"><cite title="Phishing Tips and Techniques">[PhishingHOWTO]</cite></a>. As a result, forms are extremely vulnerable to spoofing.
418            </p>
419            <p id="rfc.section.2.1.p.4">HTML forms provide acceptable internationalization if used carefully, at the cost of being transmitted as normal HTTP content
420               in all cases (credentials are not differentiated in the protocol).
421            </p>
422            <p id="rfc.section.2.1.p.5">Many Web browsers have an auto-complete feature that stores a user's information and pre-populates fields in forms. This is
423               considered to be a convenience mechanism, and convenience mechanisms often have negative security properties. The security
424               concerns with auto-completion are particularly poignant for web browsers that reside on computers with multiple users. HTML
425               forms provide a facility for sites to indicate that a field, such as a password, should never be pre-populated. However, it
426               is clear that some form creators do not use this facility when they should.
427            </p>
428            <p id="rfc.section.2.1.p.6">The cookies that result from a successful form submission make it unnecessary to validate credentials with each HTTP request;
429               this makes cookies an excellent property for scalability. Cookies are susceptible to a large variety of XSS (cross-site scripting)
430               attacks, and measures to prevent such attacks will never be as stringent as necessary for authentication credentials because
431               cookies are used for many purposes. Cookies are also susceptible to a wide variety of attacks from malicious intermediaries
432               and observers. The possible attacks depend on the contents of the cookie data. There is no standard format for most of the
433               data.
434            </p>
435            <p id="rfc.section.2.1.p.7">HTML forms and cookies provide flexible ways of ending a session from the client.</p>
436            <p id="rfc.section.2.1.p.8">HTML forms require an HTML rendering engine for which many protocols have no use.</p>
437         </div>
438         <div>
439            <h2 id="rfc.section.2.2"><a href="#rfc.section.2.2">2.2</a>&nbsp;HTTP Access Authentication
440            </h2>
441            <p id="rfc.section.2.2.p.1">HTTP 1.1 provides a simple authentication framework, "HTTP Authentication: Basic and Digest Access Authentication" <a href="#RFC2617"><cite title="HTTP Authentication: Basic and Digest Access Authentication">[RFC2617]</cite></a>, which defines two optional mechanisms. Both of these mechanisms are extremely rarely used in comparison to forms and cookies,
442               but some degree of support for one or both is available in many implementations. Neither scheme provides presentation control,
443               logout capabilities, or interoperable internationalization.
444            </p>
445            <div>
446               <h3 id="rfc.section.2.2.1"><a href="#rfc.section.2.2.1">2.2.1</a>&nbsp;Basic Authentication
447               </h3>
448               <p id="rfc.section.2.2.1.p.1">Basic Authentication (normally called just "Basic") transmits usernames and passwords in the clear. It is very easy to implement,
449                  but not at all secure unless used over a secure transport.
450               </p>
451               <p id="rfc.section.2.2.1.p.2">Basic has very poor scalability properties because credentials must be revalidated with every request, and because secure
452                  transports negate many of HTTP's caching mechanisms. Some implementations use cookies in combination with Basic credentials,
453                  but there is no standard method of doing so.
454               </p>
455               <p id="rfc.section.2.2.1.p.3">Since Basic credentials are clear text, they are reusable by any party. This makes them compatible with any authentication
456                  database, at the cost of making the user vulnerable to mismanaged or malicious servers, even over a secure channel.
457               </p>
458               <p id="rfc.section.2.2.1.p.4">Basic is not interoperable when used with credentials that contain characters outside of the ISO 8859-1 repertoire.</p>
459            </div>
460            <div>
461               <h3 id="rfc.section.2.2.2"><a href="#rfc.section.2.2.2">2.2.2</a>&nbsp;Digest Authentication
462               </h3>
463               <p id="rfc.section.2.2.2.p.1">In Digest Authentication, the client transmits the results of hashing user credentials with properties of the request and
464                  values from the server challenge. Digest is susceptible to man-in-the-middle attacks when not used over a secure transport.
465               </p>
466               <p id="rfc.section.2.2.2.p.2">Digest has some properties that are preferable to Basic and Cookies. Credentials are not immediately reusable by parties that
467                  observe or receive them, and session data can be transmitted along side credentials with each request, allowing servers to
468                  validate credentials only when absolutely necessary. Authentication data session keys are distinct from other protocol traffic.
469               </p>
470               <p id="rfc.section.2.2.2.p.3">Digest includes many modes of operation, but only the simplest modes enjoy any degree of interoperability. For example, most
471                  implementations do not implement the mode that provides full message integrity. Perhaps one reason is that implementation
472                  experience has shown that in some cases, especially those involving large requests or responses such as streams, the message
473                  integrity mode is impractical because it requires servers to analyze the full request before determining whether the client
474                  knows the shared secret or whether message-body integrity has been violated and hence whether the request can be processed.
475               </p>
476               <p id="rfc.section.2.2.2.p.4">Digest is extremely susceptible to offline dictionary attacks, making it practical for attackers to perform a namespace walk
477                  consisting of a few million passwords for most users.
478               </p>
479               <p id="rfc.section.2.2.2.p.5">Many of the most widely-deployed HTTP/1.1 clients are not compliant when GET requests include a query string <a href="#Apache_Digest"><cite title="Apache HTTP Server - mod_auth_digest">[Apache_Digest]</cite></a>.
480               </p>
481               <p id="rfc.section.2.2.2.p.6">Digest either requires that authentication databases be expressly designed to accommodate it, or requires access to cleartext
482                  passwords. As a result, many authentication databases that chose to do the former are incompatible, including the most common
483                  method of storing passwords for use with Forms and Cookies.
484               </p>
485               <p id="rfc.section.2.2.2.p.7">Many Digest capabilities included to prevent replay attacks expose the server to Denial of Service attacks.</p>
486               <p id="rfc.section.2.2.2.p.8">Digest is not interoperable when used with credentials that contain characters outside of the ISO 8859-1 repertoire.</p>
487            </div>
488            <div>
489               <h3 id="rfc.section.2.2.3"><a href="#rfc.section.2.2.3">2.2.3</a>&nbsp;Authentication Using Certificates in TLS
490               </h3>
491               <p id="rfc.section.2.2.3.p.1">Running HTTP over TLS provides authentication of the HTTP server to the client. HTTP over TLS can also provides authentication
492                  of the client to the server using certificates. Although forms are a much more common way to authenticate users to HTTP servers,
493                  TLS client certificates are widely used in some environments. The public key infrastructure (PKI) used to validate certificates
494                  in TLS can be rooted in public trust anchors or can be based on local trust anchors.
495               </p>
496            </div>
497            <div>
498               <h3 id="rfc.section.2.2.4"><a href="#rfc.section.2.2.4">2.2.4</a>&nbsp;Other Access Authentication Schemes
499               </h3>
500               <p id="rfc.section.2.2.4.p.1">There are many niche schemes that make use of the HTTP Authentication framework, but very few are well documented. Some are
501                  bound to transport layer connections.
502               </p>
503               <div>
504                  <h4 id="rfc.section."><a href="#rfc.section."></a>&nbsp;Negotiate (GSS-API) Authentication
505                  </h4>
506                  <p id="rfc.section.">Microsoft has designed an HTTP authentication mechanism that utilizes SPNEGO <a href="#RFC4178"><cite title="The Simple and Protected Generic Security Service Application Program Interface (GSS-API) Negotiation Mechanism">[RFC4178]</cite></a> GSSAPI <a href="#RFC4559"><cite title="SPNEGO-based Kerberos and NTLM HTTP Authentication in Microsoft Windows">[RFC4559]</cite></a>. In Microsoft's implementation, SPNEGO allows selection between Kerberos and NTLM (Microsoft NT Lan Manager protocols).
507                  </p>
508                  <p id="rfc.section.">In Kerberos, clients and servers rely on a trusted third-party authentication service which maintains its own authentication
509                     database. Kerberos is typically used with shared secret key cryptography, but extensions for use of other authentication mechnanisms
510                     such as PKIX certificates and two-factor tokens are also common. Kerberos was designed to work under the assumption that packets
511                     traveling along the network can be read, modified, and inserted at will.
512                  </p>
513                  <p id="rfc.section.">Unlike Digest, Negotiate authentication can take multiple round trips (client sending authentication data in Authorization,
514                     server sending authentication data in WWW-Authenticate) to complete.
515                  </p>
516                  <p id="rfc.section.">Kerberos authentication is generally more secure than Digest. However the requirement for having a separate network authentication
517                     service might be a barrier to deployment.
518                  </p>
519               </div>
520            </div>
521         </div>
522         <div>
523            <h2 id="rfc.section.2.3"><a href="#rfc.section.2.3">2.3</a>&nbsp;Centrally-Issued Tickets
524            </h2>
525            <p id="rfc.section.2.3.p.1">Many large Internet services rely on authentication schemes that center on clients consulting a single service for a time-limited
526               ticket that is validated with undocumented heuristics. Centralized ticket issuing has the advantage that users may employ
527               one set of credentials for many services, and clients don't send credentials to many servers. This approach is often no more
528               than a sophisticated application of forms and cookies.
529            </p>
530            <p id="rfc.section.2.3.p.2">All of the schemes in wide use are proprietary and non-standard, and usually are undocumented. There are many standardization
531               efforts in progress, as usual.
532            </p>
533         </div>
534         <div>
535            <h2 id="rfc.section.2.4"><a href="#rfc.section.2.4">2.4</a>&nbsp;Web Services
536            </h2>
537            <p id="rfc.section.2.4.p.1">Many security properties mentioned in this document have been recast in XML-based protocols, using HTTP as a substitute for
538               TCP. Like the amalgam of HTTP technologies mentioned above, the XML-based protocols are defined by an ever-changing combination
539               of standard and vendor-produced specifications, some of which may be obsoleted at any time <a href="#WS-Pagecount"><cite title="WS-Pagecount">[WS-Pagecount]</cite></a> without any documented change control procedures. These protocols usually don't have much in common with the Architecture
540               of the World Wide Web. It's not clear why the term "Web" is used to group them, but they are obviously out of scope for HTTP-based
541               application protocols.
542            </p>
543            <p id="rfc.section.2.4.p.2">[[ This section could really use a good definition of "Web Services" to differentiate it from REST. ]]</p>
544         </div>
545         <div>
546            <h2 id="rfc.section.2.5"><a href="#rfc.section.2.5">2.5</a>&nbsp;Transport Layer Security
547            </h2>
548            <p id="rfc.section.2.5.p.1">In addition to using TLS for client and/or server authentication, it is also very commonly used to protect the confidentiality
549               and integrity of the HTTP session. For instance, both HTTP Basic authentication and Cookies are often protected against snooping
550               by TLS.
551            </p>
552            <p id="rfc.section.2.5.p.2">It should be noted that, in that case, TLS does not protect against a breach of the credential store at the server or against
553               a keylogger or phishing interface at the client. TLS does not change the fact that Basic Authentication passwords are reusable
554               and does not address that weakness.
555            </p>
556         </div>
557      </div>
558      <hr class="noprint">
559      <div>
560         <h1 id="rfc.section.3" class="np"><a href="#rfc.section.3">3.</a>&nbsp;Revisions To HTTP
561         </h1>
562         <p id="rfc.section.3.p.1">Is is possible that HTTP will be revised in the future. "HTTP/1.1" <a href="#RFC2616"><cite title="Hypertext Transfer Protocol -- HTTP/1.1">[RFC2616]</cite></a> and "Use and Interpretation of HTTP Version Numbers" <a href="#RFC2145"><cite title="Use and Interpretation of HTTP Version Numbers">[RFC2145]</cite></a> define conformance requirements in relation to version numbers. In HTTP 1.1, all authentication mechanisms are optional, and
563            no single transport substrate is specified. Any HTTP revision that adds a mandatory security mechanism or transport substrate
564            will have to increment the HTTP version number appropriately. All widely used schemes are non-standard and/or proprietary.
565         </p>
566      </div>
567      <hr class="noprint">
568      <div>
569         <h1 id="rfc.section.4" class="np"><a href="#rfc.section.4">4.</a>&nbsp;Security Considerations
570         </h1>
571         <p id="rfc.section.4.p.1">This entire document is about security considerations.</p>
572      </div>
573      <h1 class="np" id="rfc.references"><a href="#rfc.section.5" id="rfc.section.5">5.</a> Normative References
574      </h1>
575      <table>
576         <tr>
577            <td class="reference"><b id="RFC2026">[RFC2026]</b></td>
578            <td class="top"><a href="" title="Harvard University">Bradner, S.</a>, “<a href="">The Internet Standards Process -- Revision 3</a>”, BCP&nbsp;9, RFC&nbsp;2026, October&nbsp;1996.
579            </td>
580         </tr>
581         <tr>
582            <td class="reference"><b id="RFC2109">[RFC2109]</b></td>
583            <td class="top"><a href="" title="Bell Laboratories, Lucent Technologies">Kristol, D.</a> and <a href="" title="Netscape Communications Corp.">L. Montulli</a>, “<a href="">HTTP State Management Mechanism</a>”, RFC&nbsp;2109, February&nbsp;1997.
584            </td>
585         </tr>
586         <tr>
587            <td class="reference"><b id="RFC2145">[RFC2145]</b></td>
588            <td class="top"><a href="" title="Western Research Laboratory">Mogul, J.</a>, <a href="" title="Department of Information and Computer Science">Fielding, R.</a>, <a href="" title="MIT Laboratory for Computer Science">Gettys, J.</a>, and <a href="" title="W3 Consortium">H. Nielsen</a>, “<a href="">Use and Interpretation of HTTP Version Numbers</a>”, RFC&nbsp;2145, May&nbsp;1997.
589            </td>
590         </tr>
591         <tr>
592            <td class="reference"><b id="RFC2616">[RFC2616]</b></td>
593            <td class="top"><a href="" title="Department of Information and Computer Science">Fielding, R.</a>, <a href="" title="World Wide Web Consortium">Gettys, J.</a>, <a href="" title="Compaq Computer Corporation">Mogul, J.</a>, <a href="" title="World Wide Web Consortium">Frystyk, H.</a>, <a href="" title="Xerox Corporation">Masinter, L.</a>, <a href="" title="Microsoft Corporation">Leach, P.</a>, and <a href="" title="World Wide Web Consortium">T. Berners-Lee</a>, “<a href="">Hypertext Transfer Protocol -- HTTP/1.1</a>”, RFC&nbsp;2616, June&nbsp;1999.
594            </td>
595         </tr>
596         <tr>
597            <td class="reference"><b id="RFC2617">[RFC2617]</b></td>
598            <td class="top"><a href="" title="Northwestern University, Department of Mathematics">Franks, J.</a>, <a href="" title="Verisign Inc.">Hallam-Baker, P.</a>, <a href="" title="AbiSource, Inc.">Hostetler, J.</a>, <a href="" title="Agranat Systems, Inc.">Lawrence, S.</a>, <a href="" title="Microsoft Corporation">Leach, P.</a>, Luotonen, A., and <a href="" title="Open Market, Inc.">L. Stewart</a>, “<a href="">HTTP Authentication: Basic and Digest Access Authentication</a>”, RFC&nbsp;2617, June&nbsp;1999.
599            </td>
600         </tr>
601         <tr>
602            <td class="reference"><b id="RFC2965">[RFC2965]</b></td>
603            <td class="top"><a href="" title="Bell Laboratories, Lucent Technologies">Kristol, D.</a> and <a href="" title=", Inc.">L. Montulli</a>, “<a href="">HTTP State Management Mechanism</a>”, RFC&nbsp;2965, October&nbsp;2000.
604            </td>
605         </tr>
606         <tr>
607            <td class="reference"><b id="RFC3365">[RFC3365]</b></td>
608            <td class="top">Schiller, J., “<a href="">Strong Security Requirements for Internet Engineering Task Force Standard Protocols</a>”, BCP&nbsp;61, RFC&nbsp;3365, August&nbsp;2002.
609            </td>
610         </tr>
611         <tr>
612            <td class="reference"><b id="RFC3631">[RFC3631]</b></td>
613            <td class="top">Bellovin, S., Schiller, J., and C. Kaufman, “<a href="">Security Mechanisms for the Internet</a>”, RFC&nbsp;3631, December&nbsp;2003.
614            </td>
615         </tr>
616         <tr>
617            <td class="reference"><b id="RFC3986">[RFC3986]</b></td>
618            <td class="top"><a href="" title="World Wide Web Consortium">Berners-Lee, T.</a>, <a href="" title="Day Software">Fielding, R.</a>, and <a href="" title="Adobe Systems Incorporated">L. Masinter</a>, “<a href="">Uniform Resource Identifier (URI): Generic Syntax</a>”, STD&nbsp;66, RFC&nbsp;3986, January&nbsp;2005.
619            </td>
620         </tr>
621         <tr>
622            <td class="reference"><b id="RFC4178">[RFC4178]</b></td>
623            <td class="top">Zhu, L., Leach, P., Jaganathan, K., and W. Ingersoll, “<a href="">The Simple and Protected Generic Security Service Application Program Interface (GSS-API) Negotiation Mechanism</a>”, RFC&nbsp;4178, October&nbsp;2005.
624            </td>
625         </tr>
626         <tr>
627            <td class="reference"><b id="RFC4559">[RFC4559]</b></td>
628            <td class="top">Jaganathan, K., Zhu, L., and J. Brezak, “<a href="">SPNEGO-based Kerberos and NTLM HTTP Authentication in Microsoft Windows</a>”, RFC&nbsp;4559, June&nbsp;2006.
629            </td>
630         </tr>
631         <tr>
632            <td class="reference"><b id="Apache_Digest">[Apache_Digest]</b></td>
633            <td class="top">Apache Software Foundation, ., “<a href="">Apache HTTP Server - mod_auth_digest</a>”, &lt;<a href=""></a>&gt;.
634            </td>
635         </tr>
636         <tr>
637            <td class="reference"><b id="PhishingHOWTO">[PhishingHOWTO]</b></td>
638            <td class="top">Gutmann, P., “<a href="">Phishing Tips and Techniques</a>”, February&nbsp;2008, &lt;<a href=""></a>&gt;.
639            </td>
640         </tr>
641         <tr>
642            <td class="reference"><b id="WS-Pagecount">[WS-Pagecount]</b></td>
643            <td class="top">Bray, T., “<a href="">WS-Pagecount</a>”, September&nbsp;2004, &lt;<a href=""></a>&gt;.
644            </td>
645         </tr>
646      </table>
647      <hr class="noprint">
648      <div>
649         <h1 id="rfc.section.A" class="np"><a href="#rfc.section.A">A.</a>&nbsp;Acknowledgements
650         </h1>
651         <p id="rfc.section.A.p.1">Much of the material in this document was written by Rob Sayre, who first promoted the topic. Many others on the HTTPbis Working
652            Group have contributed to this document in the discussion.
653         </p>
654      </div>
655      <hr class="noprint">
656      <div>
657         <h1 id="rfc.section.B" class="np"><a href="#rfc.section.B">B.</a>&nbsp;Document History
658         </h1>
659         <p id="rfc.section.B.p.1">[This entire section is to be removed when published as an RFC.]</p>
660         <div>
661            <h2 id="rfc.section.B.1"><a href="#rfc.section.B.1">B.1</a>&nbsp;Changes between draft-sayre-http-security-variance-00 and   draft-ietf-httpbis-security-properties-00
662            </h2>
663            <p id="rfc.section.B.1.p.1">Changed the authors to Paul Hoffman and Alexey Melnikov, with permission of Rob Sayre.</p>
664            <p id="rfc.section.B.1.p.2">Made lots of minor editorial changes.</p>
665            <p id="rfc.section.B.1.p.3">Removed what was section 2 (Requirements Notation), the reference to RFC 2119, and any use of 2119ish all-caps words.</p>
666            <p id="rfc.section.B.1.p.4">In 3.2.1 and 3.2.2, changed "Latin-1 range" to "ISO 8859-1 repertoire" to match the definition of "TEXT" in RFC 2616.</p>
667            <p id="rfc.section.B.1.p.5">Added minor text to the Security Considerations section.</p>
668            <p id="rfc.section.B.1.p.6">Added URLs to the two non-RFC references.</p>
669         </div>
670         <div>
671            <h2 id="rfc.section.B.2"><a href="#rfc.section.B.2">B.2</a>&nbsp;Changes between -00 and -01
672            </h2>
673            <p id="rfc.section.B.2.p.1">Fixed some editorial nits reported by Iain Calder.</p>
674            <p id="rfc.section.B.2.p.2">Added the suggestions about splitting for browsers and automation, and about adding NTLM, to be beginning of 2.</p>
675            <p id="rfc.section.B.2.p.3">In 2.1, added "that involves a human using a web browser" in the first sentence.</p>
676            <p id="rfc.section.B.2.p.4">In 2.1, changed "session key" to "session identifier".</p>
677            <p id="rfc.section.B.2.p.5">In 2.2.2, changed </p><span id="rfc.figure.u.2"></span><pre>
678Digest includes many modes of operation, but only the simplest modes
679enjoy any degree of interoperability.  For example, most
680implementations do not implement the mode that provides full message
681integrity.  Additionally, implementation experience has shown that
682the message integrity mode is impractical because it requires servers
683to analyze the full request before determining whether the client
684knows the shared secret.
685</pre><p> to </p><span id="rfc.figure.u.3"></span><pre>
686Digest includes many modes of operation, but only the simplest
687modes enjoy any degree of interoperability.  For example, most
688implementations do not implement the mode that provides full message
689integrity.  Perhaps one reason is that implementation experience has
690shown that in some cases, especially those involving large requests
691or responses such as streams, the message integrity mode is
692impractical because it requires servers to analyze the full request
693before determining whether the client knows the shared secret or
694whether message-body integrity has been violated and hence whether
695the request can be processed.
696</pre><p id="rfc.section.B.2.p.6">In 2.4, asked for a definition of "Web Services".</p>
697            <p id="rfc.section.B.2.p.7">In A, added the WG.</p>
698         </div>
699         <div>
700            <h2 id="rfc.section.B.3"><a href="#rfc.section.B.3">B.3</a>&nbsp;Changes between -01 and -02
701            </h2>
702            <p id="rfc.section.B.3.p.1">In section 2.1, added more to the paragraph on auto-completion of HTML forms.</p>
703            <p id="rfc.section.B.3.p.2">Added the section on TLS for authentication.</p>
704            <p id="rfc.section.B.3.p.3">Filled in section 2.5.</p>
705         </div>
706      </div>
707      <hr class="noprint">
708      <div class="avoidbreak">
709         <h1 id="rfc.authors" class="np"><a href="#rfc.authors">Authors' Addresses</a></h1>
710         <p><b>Paul Hoffman</b><br>VPN Consortium<br>EMail: <a href=""></a></p>
711         <p><b>Alexey Melnikov</b><br>Isode Ltd.<br>EMail: <a href=""></a></p>
712      </div>
713   </body>
Note: See TracBrowser for help on using the repository browser.