source: draft-ietf-httpbis-http2/00/draft-ietf-httpbis-http2-00.xml

Last change on this file was 2011, checked in by martin.thomson@…, 7 years ago

Tagging -00 submission.

  • Property svn:eol-style set to native
  • Property svn:mime-type set to text/xml
File size: 104.7 KB
Line 
1<?xml version="1.0"?>
2<?xml-stylesheet type="text/xsl" href="rfc2629.xml"?>
3<?rfc toc="yes" ?>
4<?rfc symrefs="yes" ?>
5<?rfc sortrefs="yes" ?>
6<?rfc compact="yes"?>
7<?rfc subcompact="no" ?>
8<?rfc linkmailto="no" ?>
9<?rfc editing="no" ?>
10<?rfc comments="yes"?>
11<?rfc inline="yes"?>
12<?rfc rfcedstyle="yes"?>
13<?rfc-ext allow-markup-in-artwork="yes" ?>
14<?rfc-ext include-references-in-index="yes" ?>
15
16<rfc ipr="trust200902" docName="draft-ietf-httpbis-http2-00" xmlns:x='http://purl.org/net/xml2rfc/ext'>
17  <x:feedback template="mailto:ietf-http-wg@w3.org?subject={docname},%20%22{section}%22&amp;body=&lt;{ref}&gt;:"/>
18  <front>
19    <title abbrev="SPDY">SPDY Protocol</title>
20    <author initials="M." surname="Belshe" fullname="Mike Belshe">
21      <organization>Twist</organization>
22      <address>
23        <email>mbelshe@chromium.org</email>
24      </address>
25    </author>
26    <author initials="R." surname="Peon" fullname="Roberto Peon">
27      <organization>Google, Inc</organization>
28      <address>
29        <email>fenix@google.com</email>
30      </address>
31    </author>
32    <author initials="M." surname="Thomson" fullname="Martin Thomson" role="editor">
33      <organization>Microsoft</organization>
34      <address>
35        <postal>
36          <street>3210 Porter Drive</street>
37          <city>Palo Alto</city>
38          <code>94043</code>
39          <country>US</country>
40        </postal>
41        <email>martin.thomson@skype.net</email>
42      </address>
43    </author>
44
45    <author initials="A." surname="Melnikov" fullname="Alexey Melnikov" role="editor">
46      <organization>Isode Ltd</organization>
47      <address>
48        <postal>
49          <street>5 Castle Business Village</street>
50          <street>36 Station Road</street>
51          <city>Hampton</city>
52          <region>Middlesex</region>
53
54          <code>TW12 2BX</code>
55          <country>UK</country>
56        </postal>
57        <email>Alexey.Melnikov@isode.com</email>
58      </address>
59    </author>
60    <date year="2012" month="November" day="28"/>
61    <area>Applications</area>
62    <workgroup>HTTPbis Working Group</workgroup>
63    <keyword>HTTP</keyword>
64    <abstract>
65      <t>This document describes SPDY, a protocol designed for low-latency transport of content over the World Wide Web.  SPDY introduces two layers of protocol.  The lower layer is a general purpose framing layer which can be used atop a reliable transport (likely TCP) for multiplexed, prioritized, and compressed data communication of many concurrent streams.  The upper layer of the protocol provides HTTP-like <xref target="RFC2616">RFC2616</xref> semantics for compatibility with existing HTTP application servers.</t>
66    </abstract>
67
68<note title="Editorial Note (To be removed by RFC Editor)">
69  <t>
70    This draft is a work-in-progress, and does not yet reflect Working Group
71    consensus.
72  </t>
73  <t>
74    This first draft uses the SPDY Protocol as a starting point, as per the
75    Working Group's charter. Future drafts will add, remove and change text,
76    based upon the Working Group's decisions.
77  </t>
78  <t>
79    Discussion of this draft takes place on the HTTPBIS working group
80    mailing list (ietf-http-wg@w3.org), which is archived at
81    <eref target="http://lists.w3.org/Archives/Public/ietf-http-wg/"/>.
82  </t>
83  <t>
84    The current issues list is at
85    <eref target="http://tools.ietf.org/wg/httpbis/trac/report/21"/> and related
86    documents (including fancy diffs) can be found at
87    <eref target="http://tools.ietf.org/wg/httpbis/"/>.
88  </t>
89  <t>
90    The changes in this draft are summarized in <xref target="changes.since.draft-mbelshe-httpbis-spdy-00"/>.
91  </t>
92</note>
93
94  </front>
95
96  <middle>
97    <section anchor="intro" title="Overview">
98<t>One of the bottlenecks of HTTP implementations is that HTTP relies on multiple connections for concurrency. This causes several problems, including additional round trips for connection setup, slow-start delays, and connection rationing by the client, where it tries to avoid opening too many connections to any single server.  HTTP pipelining helps some, but only achieves partial multiplexing.  In addition, pipelining has proven non-deployable in existing browsers due to intermediary interference.</t>
99
100<t>SPDY adds a framing layer for multiplexing multiple, concurrent streams across a single TCP connection (or any reliable transport stream).  The framing layer is optimized for HTTP-like request-response streams, such that applications which run over HTTP today can work over SPDY with little or no change on behalf of the web application writer.</t>
101
102<t>The SPDY session offers four improvements over HTTP:
103<list>
104<t>Multiplexed requests: There is no limit to the number of requests that can be issued concurrently over a single SPDY connection.</t>
105<t>Prioritized requests: Clients can request certain resources to be delivered first.  This avoids the problem of congesting the network channel with non-critical resources when a high-priority request is pending.</t>
106<t>Compressed headers:  Clients today send a significant amount of redundant data in the form of HTTP headers.  Because a single web page may require 50 or 100 subrequests, this data is significant.</t>
107<t>Server pushed streams:  Server Push enables content to be pushed from servers to clients without a request.</t>
108</list>
109</t>
110
111<t>SPDY attempts to preserve the existing semantics of HTTP. All features such as cookies, ETags, Vary headers, Content-Encoding negotiations, etc work as they do with HTTP; SPDY only replaces the way the data is written to the network.</t>
112
113      <section title="Document Organization">
114<t>The SPDY Specification is split into two parts: <xref target="FramingLayer">a framing layer</xref>, which multiplexes a TCP connection into independent, length-prefixed frames, and <xref target="HTTPLayer">an HTTP layer</xref>, which specifies the mechanism for overlaying HTTP request/response pairs on top of the framing layer. While some of the framing layer concepts are isolated from the HTTP layer, building a generic framing layer has not been a goal. The framing layer is tailored to the needs of the HTTP protocol and server push.</t>
115      </section>
116      <section title="Definitions">
117<t>
118<list>
119<t>client: The endpoint initiating the SPDY session.</t>
120<t>connection: A transport-level connection between two endpoints.</t>
121<t>endpoint: Either the client or server of a connection.</t>
122<t>frame: A header-prefixed sequence of bytes sent over a SPDY session.</t>
123<t>server: The endpoint which did not initiate the SPDY session.</t>
124<t>session: A synonym for a connection.</t>
125<t>session error: An error on the SPDY session.</t>
126<t>stream: A bi-directional flow of bytes across a virtual channel within a SPDY session.</t>
127<t>stream error: An error on an individual SPDY stream.</t>
128</list>
129</t>
130      </section>
131    </section>
132
133    <section anchor="FramingLayer" title="SPDY Framing Layer">
134      <section title="Session (Connections)">
135<t>The SPDY framing layer (or "session") runs atop a reliable transport layer such as <xref target="RFC0793">TCP</xref>. The client is the TCP connection initiator. SPDY connections are persistent connections.</t>
136
137<t>For best performance, it is expected that clients will not close open connections until the user navigates away from all web pages referencing a connection, or until the server closes the connection. Servers are encouraged to leave connections open for as long as possible, but can terminate idle connections if necessary.  When either endpoint closes the transport-level connection, it MUST first send a <xref target="GOAWAY">GOAWAY</xref> frame so that the endpoints can reliably determine if requests finished before the close.</t>
138      </section>
139      <section title="Framing">
140<t>Once the connection is established, clients and servers exchange framed messages. There are two types of frames: <xref target="ControlFrames">control frames</xref> and <xref target="DataFrames">data frames</xref>.  Frames always have a common header which is 8 bytes in length.</t>
141
142<t>The first bit is a control bit indicating whether a frame is a control frame or data frame. Control frames carry a version number, a frame type, flags, and a length. Data frames contain the stream ID, flags, and the length for the payload carried after the common header. The simple header is designed to make reading and writing of frames easy.</t>
143
144<t>All integer values, including length, version, and type, are in network byte order.  SPDY does not enforce alignment of types in dynamically sized frames.</t>
145        <section anchor="ControlFrames" title="Control frames">
146<figure>
147  <artwork>
148+----------------------------------+
149|C| Version(15bits) | Type(16bits) |
150+----------------------------------+
151| Flags (8)  |  Length (24 bits)   |
152+----------------------------------+
153|               Data               |
154+----------------------------------+
155  </artwork>
156</figure>
157<t>Control bit: The 'C' bit is a single bit indicating if this is a control message. For control frames this value is always 1.</t>
158
159<t>Version: The version number of the SPDY protocol.  This document describes SPDY version 3.</t>
160
161<t>Type: The type of control frame. See Control Frames for the complete list of control frames.</t>
162
163<t>Flags: Flags related to this frame. Flags for control frames and data frames are different.</t>
164
165<t>Length: An unsigned 24-bit value representing the number of bytes after the length field.</t>
166
167<t>Data: data associated with this control frame. The format and length of this data is controlled by the control frame type.</t>
168
169<t>Control frame processing requirements:
170<list>
171<t>Note that full length control frames (16MB) can be large for implementations running on resource-limited hardware.  In such cases, implementations MAY limit the maximum length frame supported.  However, all implementations MUST be able to receive control frames of at least 8192 octets in length.</t>
172</list>
173</t>
174        </section>
175
176        <section anchor="DataFrames" title="Data frames">
177<figure>
178  <artwork>
179+----------------------------------+
180|C|       Stream-ID (31bits)       |
181+----------------------------------+
182| Flags (8)  |  Length (24 bits)   |
183+----------------------------------+
184|               Data               |
185+----------------------------------+
186  </artwork>
187</figure>
188<t>Control bit: For data frames this value is always 0.</t>
189
190<t>Stream-ID: A 31-bit value identifying the stream.</t>
191
192<t>Flags: Flags related to this frame. Valid flags are:
193<list>
194<t>0x01 = FLAG_FIN - signifies that this frame represents the last frame to be transmitted on this stream.  See <xref target="StreamClose">Stream Close</xref> below.</t>
195<t>0x02 = FLAG_COMPRESS - indicates that the data in this frame has been compressed.</t>
196</list>
197</t>
198
199<t>Length: An unsigned 24-bit value representing the number of bytes after the length field. The total size of a data frame is 8 bytes + length. It is valid to have a zero-length data frame.</t>
200
201<t>Data: The variable-length data payload; the length was defined in the length field.</t>
202
203<t>Data frame processing requirements:
204<list>
205<t>If an endpoint receives a data frame for a stream-id which is not open and the endpoint has not sent a <xref target="GOAWAY">GOAWAY</xref> frame, it MUST send issue a <xref target="StreamErrorHandler">stream error</xref> with the error code INVALID_STREAM for the stream-id.</t>
206<t>If the endpoint which created the stream receives a data frame before receiving a SYN_REPLY on that stream, it is a protocol error, and the recipient MUST issue a <xref target="StreamErrorHandler">stream error</xref> with the status code PROTOCOL_ERROR for the stream-id.</t>
207<t>Implementors note: If an endpoint receives multiple data frames for invalid stream-ids, it MAY close the session.</t>
208<t>All SPDY endpoints MUST accept compressed data frames.  Compression of data frames is always done using zlib compression.  Each stream initializes and uses its own compression context dedicated to use within that stream.  Endpoints are encouraged to use application level compression rather than SPDY stream level compression.</t>
209<t>Each SPDY stream sending compressed frames creates its own zlib context for that stream, and these compression contexts MUST be distinct from the compression contexts used with SYN_STREAM/SYN_REPLY/HEADER compression. (Thus, if both endpoints of a stream are compressing data on the stream, there will be two zlib contexts, one for sending and one for receiving).</t>
210</list>
211</t>
212        </section>
213      </section>
214
215      <section title="Streams">
216<t>Streams are independent sequences of bi-directional data divided into frames with several properties:
217<list>
218<t>Streams may be created by either the client or server.</t>
219<t>Streams optionally carry a set of name/value header pairs.</t>
220<t>Streams can concurrently send data interleaved with other streams.</t>
221<t>Streams may be cancelled.</t>
222</list>
223</t>
224
225        <section anchor="StreamFrames" title="Stream frames">
226<t>SPDY defines 3 control frames to manage the lifecycle of a stream:
227    <list>
228        <t>SYN_STREAM - Open a new stream</t>
229        <t>SYN_REPLY - Remote acknowledgement of a new, open stream</t>
230        <t>RST_STREAM - Close a stream</t>
231    </list>
232</t>
233        </section>
234
235        <section anchor="StreamCreation" title="Stream creation">
236<t>A stream is created by sending a control frame with the type set to <xref target="SYN_STREAM">SYN_STREAM</xref>.  If the server is initiating the stream, the Stream-ID must be even.  If the client is initiating the stream, the Stream-ID must be odd.  0 is not a valid Stream-ID. Stream-IDs from each side of the connection must increase monotonically as new streams are created.  E.g. Stream 2 may be created after stream 3, but stream 7 must not be created after stream 9. Stream IDs do not wrap: when a client or server cannot create a new stream id without exceeding a 31 bit value, it MUST NOT create a new stream.</t>
237
238<t>The stream-id MUST increase with each new stream.  If an endpoint receives a SYN_STREAM with a stream id which is less than any previously received SYN_STREAM, it MUST issue a <xref target="SessionErrorHandler">session error</xref> with the status PROTOCOL_ERROR.</t>
239
240<t>It is a protocol error to send two SYN_STREAMs with the same stream-id.  If a recipient receives a second SYN_STREAM for the same stream, it MUST issue a <xref target="StreamErrorHandler">stream error</xref> with the status code PROTOCOL_ERROR.</t>
241
242<t>Upon receipt of a SYN_STREAM, the recipient can reject the stream by sending a <xref target="StreamErrorHandler">stream error</xref> with the error code REFUSED_STREAM. Note, however, that the creating endpoint may have already sent additional frames for that stream which cannot be immediately stopped.</t>
243
244<t>Once the stream is created, the creator may immediately send HEADERS or DATA frames for that stream, without needing to wait for the recipient to acknowledge.</t>
245
246          <section title="Unidirectional streams">
247<t>When an endpoint creates a stream with the FLAG_UNIDIRECTIONAL flag set, it creates a unidirectional stream which the creating endpoint can use to send frames, but the receiving endpoint cannot.  The receiving endpoint is implicitly already in the <xref target="StreamHalfClose">half-closed</xref> state.</t>
248          </section>
249
250          <section title="Bidirectional streams">
251<t>SYN_STREAM frames which do not use the FLAG_UNIDIRECTIONAL flag are bidirectional streams.  Both endpoints can send data on a bi-directional stream.</t>
252          </section>
253        </section>
254
255        <section anchor="StreamPriority" title="Stream priority">
256<t>The creator of a stream assigns a priority for that stream.  Priority is represented as an integer from 0 to 7.  0 represents the highest priority and 7 represents the lowest priority.</t>
257
258<t>The sender and recipient SHOULD use best-effort to process streams in the order of highest priority to lowest priority.</t>
259        </section>
260
261        <section title="Stream headers">
262<t>Streams carry optional sets of name/value pair headers which carry metadata about the stream.  After the stream has been created, and as long as the sender is not <xref target="StreamClose">closed</xref> or <xref target="StreamHalfClose">half-closed</xref>, each side may send HEADERS frame(s) containing the header data.  Header data can be sent in multiple HEADERS frames, and HEADERS frames may be interleaved with data frames.</t>
263        </section>
264
265        <section title="Stream data exchange">
266<t>Once a stream is created, it can be used to send arbitrary amounts of data.  Generally this means that a series of data frames will be sent on the stream until a frame containing the FLAG_FIN flag is set.  The FLAG_FIN can be set on a <xref target="SYN_STREAM">SYN_STREAM</xref>, <xref target="SYN_REPLY">SYN_REPLY</xref>, <xref target="HEADERS">HEADERS</xref> or a <xref target="DataFrames">DATA</xref> frame.  Once the FLAG_FIN has been sent, the stream is considered to be half-closed.</t>
267        </section>
268
269        <section anchor="StreamHalfClose" title="Stream half-close">
270<t>When one side of the stream sends a frame with the FLAG_FIN flag set, the stream is half-closed from that endpoint. The sender of the FLAG_FIN MUST NOT send further frames on that stream. When both sides have half-closed, the stream is closed.</t>
271
272<t>If an endpoint receives a data frame after the stream is half-closed from the sender (e.g. the endpoint has already received a prior frame for the stream with the FIN flag set), it MUST send a RST_STREAM to the sender with the status STREAM_ALREADY_CLOSED.</t>
273        </section>
274
275        <section anchor="StreamClose" title="Stream close">
276<t>There are 3 ways that streams can be terminated:
277<list>
278<t>Normal termination: Normal stream termination occurs when both sender and recipient have half-closed the stream by sending a FLAG_FIN.</t>
279<t>Abrupt termination: Either the client or server can send a RST_STREAM control frame at any time. A RST_STREAM contains an error code to indicate the reason for failure.  When a RST_STREAM is sent from the stream originator, it indicates a failure to complete the stream and that no further data will be sent on the stream.  When a RST_STREAM is sent from the stream recipient, the sender, upon receipt, should stop sending any data on the stream.  The stream recipient should be aware that there is a race between data already in transit from the sender and the time the RST_STREAM is received.  See <xref target="StreamErrorHandler">Stream Error Handling</xref></t>
280<t>TCP connection teardown: If the TCP connection is torn down while un-closed streams exist, then the endpoint must assume that the stream was abnormally interrupted and may be incomplete.</t>
281</list>
282</t>
283
284<t>If an endpoint receives a data frame after the stream is closed, it must send a RST_STREAM to the sender with the status PROTOCOL_ERROR.</t>
285        </section>
286      </section>
287
288      <section title="Error Handling">
289<t>The SPDY framing layer has only two types of errors, and they are always handled consistently.  Any reference in this specification to "issue a session error" refers to <xref target="SessionErrorHandler"></xref>.  Any reference to "issue a stream error" refers to <xref target="StreamErrorHandler"></xref>.</t>
290
291        <section anchor="SessionErrorHandler" title="Session Error Handling">
292<t>A session error is any error which prevents further processing of the framing layer or which corrupts the session compression state.  When a session error occurs, the endpoint encountering the error MUST first send a <xref target="GOAWAY">GOAWAY</xref> frame with the stream id of most recently received stream from the remote endpoint, and the error code for why the session is terminating.  After sending the GOAWAY frame, the endpoint MUST close the TCP connection.</t>
293
294<t>Note that the session compression state is dependent upon both endpoints always processing all compressed data.  If an endpoint partially processes a frame containing compressed data without updating compression state properly, future control frames which use compression will be always be errored.  Implementations SHOULD always try to process compressed data so that errors which could be handled as stream errors do not become session errors.</t>
295
296<t>Note that because this GOAWAY is sent during a session error case, it is possible that the GOAWAY will not be reliably received by the receiving endpoint.  It is a best-effort attempt to communicate with the remote about why the session is going down.</t>
297        </section>
298
299        <section anchor="StreamErrorHandler" title="Stream Error Handling">
300<t>A stream error is an error related to a specific stream-id which does not affect processing of other streams at the framing layer.  Upon a stream error, the endpoint MUST send a <xref target="RST_STREAM">RST_STREAM</xref> frame which contains the stream id of the stream where the error occurred and the error status which caused the error.  After sending the RST_STREAM, the stream is closed to the sending endpoint.  After sending the RST_STREAM, if the sender receives any frames other than a RST_STREAM for that stream id, it will result in sending additional RST_STREAM frames.  An endpoint MUST NOT send a RST_STREAM in response to an RST_STREAM, as doing so would lead to RST_STREAM loops.  Sending a RST_STREAM does not cause the SPDY session to be closed.</t>
301
302<t>If an endpoint has multiple RST_STREAM frames to send in succession for the same stream-id and the same error code, it MAY coalesce them into a single RST_STREAM frame.  (This can happen if a stream is closed, but the remote sends multiple data frames.  There is no reason to send a RST_STREAM for each frame in succession).</t>
303        </section>
304      </section>
305
306      <section title="Data flow">
307<t>Because TCP provides a single stream of data on which SPDY multiplexes multiple logical streams, clients and servers must intelligently interleave data messages for concurrent sessions.</t>
308      </section>
309
310      <section title="Control frame types">
311        <section anchor="SYN_STREAM" title="SYN_STREAM">
312<t>The SYN_STREAM control frame allows the sender to asynchronously create a stream between the endpoints.  See <xref target="StreamCreation">Stream Creation</xref></t>
313          <figure>
314            <artwork>
315+------------------------------------+
316|1|    version    |         1        |
317+------------------------------------+
318|  Flags (8)  |  Length (24 bits)    |
319+------------------------------------+
320|X|           Stream-ID (31bits)     |
321+------------------------------------+
322|X| Associated-To-Stream-ID (31bits) |
323+------------------------------------+
324| Pri|Unused | Slot |                |
325+-------------------+                |
326| Number of Name/Value pairs (int32) |   &lt;+
327+------------------------------------+    |
328|     Length of name (int32)         |    | This section is the
329+------------------------------------+    | "Name/Value Header
330|           Name (string)            |    | Block", and is
331+------------------------------------+    | compressed.
332|     Length of value  (int32)       |    |
333+------------------------------------+    |
334|          Value   (string)          |    |
335+------------------------------------+    |
336|           (repeats)                |   &lt;+
337            </artwork>
338          </figure>
339
340<t>Flags: Flags related to this frame. Valid flags are:
341<list>
342<t>0x01 = FLAG_FIN - marks this frame as the last frame to be transmitted on this stream and puts the sender in the <xref target="StreamHalfClose">half-closed</xref> state.</t>
343<t>0x02 = FLAG_UNIDIRECTIONAL - a stream created with this flag puts the recipient in the <xref target="StreamHalfClose">half-closed</xref> state.</t>
344</list>
345</t>
346
347<t>Length: The length is the number of bytes which follow the length field in the frame.  For SYN_STREAM frames, this is 10 bytes plus the length of the compressed Name/Value block.</t>
348
349<t>Stream-ID: The 31-bit identifier for this stream.  This stream-id will be used in frames which are part of this stream.</t>
350
351<t>Associated-To-Stream-ID: The 31-bit identifier for a stream which this stream is associated to.  If this stream is independent of all other streams, it should be 0.</t>
352
353<t>Priority: A 3-bit <xref target="StreamPriority">priority</xref> field.</t>
354
355<t>Unused: 5 bits of unused space, reserved for future use.</t>
356
357<t>Slot: An 8 bit unsigned integer specifying the index in the server's CREDENTIAL vector of the client certificate to be used for this request. <xref target="CREDENTIAL">see CREDENTIAL frame</xref>.  The value 0 means no client certificate should be associated with this stream.</t>
358
359<t>Name/Value Header Block:  A set of name/value pairs carried as part of the SYN_STREAM.  <xref target="HeaderBlock">see Name/Value Header Block</xref>.</t>
360
361<t>If an endpoint receives a SYN_STREAM which is larger than the implementation supports, it MAY send a RST_STREAM with error code FRAME_TOO_LARGE.  All implementations MUST support the minimum size limits defined in <xref target="ControlFrames">the Control Frames section</xref>.</t>
362
363        </section>
364
365        <section anchor="SYN_REPLY" title="SYN_REPLY">
366<t>SYN_REPLY indicates the acceptance of a stream creation by the recipient of a SYN_STREAM frame.</t>
367          <figure>
368            <artwork>
369+------------------------------------+
370|1|    version    |         2        |
371+------------------------------------+
372|  Flags (8)  |  Length (24 bits)    |
373+------------------------------------+
374|X|           Stream-ID (31bits)     |
375+------------------------------------+
376| Number of Name/Value pairs (int32) |   &lt;+
377+------------------------------------+    |
378|     Length of name (int32)         |    | This section is the
379+------------------------------------+    | "Name/Value Header
380|           Name (string)            |    | Block", and is
381+------------------------------------+    | compressed.
382|     Length of value  (int32)       |    |
383+------------------------------------+    |
384|          Value   (string)          |    |
385+------------------------------------+    |
386|           (repeats)                |   &lt;+
387            </artwork>
388          </figure>
389
390<t>Flags: Flags related to this frame. Valid flags are:
391<list>
392<t>0x01 = FLAG_FIN - marks this frame as the last frame to be transmitted on this stream and puts the sender in the <xref target="StreamHalfClose">half-closed</xref> state.</t>
393</list>
394</t>
395
396<t>Length: The length is the number of bytes which follow the length field in the frame.  For SYN_REPLY frames, this is 4 bytes plus the length of the compressed Name/Value block.</t>
397
398<t>Stream-ID: The 31-bit identifier for this stream.</t>
399
400<t>If an endpoint receives multiple SYN_REPLY frames for the same active stream ID, it MUST issue a <xref target="StreamErrorHandler">stream error</xref> with the error code STREAM_IN_USE.</t>
401
402<t>Name/Value Header Block:  A set of name/value pairs carried as part of the SYN_STREAM.  <xref target="HeaderBlock">see Name/Value Header Block</xref>.</t>
403
404<t>If an endpoint receives a SYN_REPLY which is larger than the implementation supports, it MAY send a RST_STREAM with error code FRAME_TOO_LARGE.  All implementations MUST support the minimum size limits defined in <xref target="ControlFrames">the Control Frames section</xref>.</t>
405        </section>
406
407        <section anchor="RST_STREAM" title="RST_STREAM">
408<t>The RST_STREAM frame allows for abnormal termination of a stream.  When sent by the creator of a stream, it indicates the creator wishes to cancel the stream.  When sent by the recipient of a stream, it indicates an error or that the recipient did not want to accept the stream, so the stream should be closed.</t>
409          <figure>
410            <artwork>
411+----------------------------------+
412|1|   version    |         3       |
413+----------------------------------+
414| Flags (8)  |         8           |
415+----------------------------------+
416|X|          Stream-ID (31bits)    |
417+----------------------------------+
418|          Status code             |
419+----------------------------------+
420            </artwork>
421          </figure>
422<t>Flags: Flags related to this frame. RST_STREAM does not define any flags.  This value must be 0.</t>
423
424<t>Length: An unsigned 24-bit value representing the number of bytes after the length field. For RST_STREAM  control frames, this value is always 8.</t>
425
426<t>Stream-ID: The 31-bit identifier for this stream.</t>
427
428<t>Status code: (32 bits) An indicator for why the stream is being terminated.The following status codes are defined:
429<list>
430<t>1 - PROTOCOL_ERROR. This is a generic error, and should only be used if a more specific error is not available.</t>
431<t>2 - INVALID_STREAM. This is returned when a frame is received for a stream which is not active.</t>
432<t>3 - REFUSED_STREAM.  Indicates that the stream was refused before any processing has been done on the stream.</t>
433<t>4 - UNSUPPORTED_VERSION.  Indicates that the recipient of a stream does not support the SPDY version requested.</t>
434<t>5 - CANCEL.  Used by the creator of a stream to indicate that the stream is no longer needed.</t>
435<t>6 - INTERNAL_ERROR.  This is a generic error which can be used when the implementation has internally failed, not due to anything in the protocol.</t>
436<t>7 - FLOW_CONTROL_ERROR.  The endpoint detected that its peer violated the flow control protocol.</t>
437<t>8 - STREAM_IN_USE.  The endpoint received a SYN_REPLY for a stream already open.</t>
438<t>9 - STREAM_ALREADY_CLOSED.  The endpoint received a data or SYN_REPLY frame for a stream which is half closed.</t>
439<t>10 - INVALID_CREDENTIALS.  The server received a request for a resource whose origin does not have valid credentials in the client certificate vector.</t>
440<t>11 - FRAME_TOO_LARGE.  The endpoint received a frame which this implementation could not support.  If FRAME_TOO_LARGE is sent for a SYN_STREAM, HEADERS, or SYN_REPLY frame without fully processing the compressed portion of those frames, then the compression state will be out-of-sync with the other endpoint.  In this case, senders of FRAME_TOO_LARGE MUST close the session.</t>
441<t>Note:  0 is not a valid status code for a RST_STREAM.</t>
442</list>
443</t>
444
445<t>After receiving a RST_STREAM on a stream, the recipient must not send additional frames for that stream, and the stream moves into the closed state.</t>
446        </section>
447
448        <section anchor="SETTINGS" title="SETTINGS">
449<t>A SETTINGS frame contains a set of id/value pairs for communicating configuration data about how the two endpoints may communicate. SETTINGS frames can be sent at any time by either endpoint, are optionally sent, and are fully asynchronous.  When the server is the sender, the sender can request that configuration data be persisted by the client across SPDY sessions and returned to the server in future communications.</t>
450
451<t>Persistence of SETTINGS ID/Value pairs is done on a per origin/IP pair (the "origin" is the set of scheme, host, and port from the URI.  See <xref target="RFC6454"></xref>).  That is, when a client connects to a server, and the server persists settings within the client, the client SHOULD return the persisted settings on future connections to the same origin AND IP address and TCP port. Clients MUST NOT request servers to use the persistence features of the SETTINGS frames, and servers MUST ignore persistence related flags sent by a client.</t>
452          <figure>
453            <artwork>
454+----------------------------------+
455|1|   version    |         4       |
456+----------------------------------+
457| Flags (8)  |  Length (24 bits)   |
458+----------------------------------+
459|         Number of entries        |
460+----------------------------------+
461|          ID/Value Pairs          |
462|             ...                  |
463            </artwork>
464          </figure>
465<t>Control bit: The control bit is always 1 for this message.</t>
466
467<t>Version: The SPDY version number.</t>
468
469<t>Type: The message type for a SETTINGS message is 4.</t>
470
471<t>Flags: FLAG_SETTINGS_CLEAR_SETTINGS (0x1): When set, the client should clear any previously persisted SETTINGS ID/Value pairs.  If this frame contains ID/Value pairs with the FLAG_SETTINGS_PERSIST_VALUE set, then the client will first clear its existing, persisted settings, and then persist the values with the flag set which are contained within this frame.  Because persistence is only implemented on the client, this flag can only be used when the sender is the server.</t>
472
473<t>Length: An unsigned 24-bit value representing the number of bytes after the length field. The total size of a SETTINGS frame is 8 bytes + length.</t>
474
475<t>Number of entries: A 32-bit value representing the number of ID/value pairs in this message.</t>
476
477<t>ID: A 32-bit ID number, comprised of 8 bits of flags and 24 bits of unique ID.
478<list>
479  <t>ID.flags:
480  <list>
481    <t>FLAG_SETTINGS_PERSIST_VALUE (0x1):   When set, the sender of this SETTINGS frame is requesting that the recipient persist the ID/Value and return it in future SETTINGS frames sent from the sender to this recipient.  Because persistence is only implemented on the client, this flag is only sent by the server.</t>
482    <t>FLAG_SETTINGS_PERSISTED (0x2):  When set, the sender is notifying the recipient that this ID/Value pair was previously sent to the sender by the recipient with the FLAG_SETTINGS_PERSIST_VALUE, and the sender is returning it.  Because persistence is only implemented on the client, this flag is only sent by the client.</t>
483  </list>
484  </t>
485
486  <t>Defined IDs:
487  <list>
488<t>1 - SETTINGS_UPLOAD_BANDWIDTH allows the sender to send its expected upload bandwidth on this channel. This number is an estimate. The value should be the integral number of kilobytes per second that the sender predicts as an expected maximum upload channel capacity.</t>
489<t>2 - SETTINGS_DOWNLOAD_BANDWIDTH allows the sender to send its expected download bandwidth on this channel. This number is an estimate. The value should be the integral number of kilobytes per second that the sender predicts as an expected maximum download channel capacity.</t>
490<t>3 - SETTINGS_ROUND_TRIP_TIME allows the sender to send its expected round-trip-time on this channel. The round trip time is defined as the minimum amount of time to send a control frame from this client to the remote and receive a response. The value is represented in milliseconds.</t>
491<t>4 - SETTINGS_MAX_CONCURRENT_STREAMS allows the sender to inform the remote endpoint the maximum number of concurrent streams which it will allow. By default there is no limit. For implementors it is recommended that this value be no smaller than 100.</t>
492<t>5 - SETTINGS_CURRENT_CWND allows the sender to inform the remote endpoint of the current TCP CWND value.</t>
493<t>6 - SETTINGS_DOWNLOAD_RETRANS_RATE allows the sender to inform the remote endpoint the retransmission rate (bytes retransmitted / total bytes transmitted).</t>
494<t>7 - SETTINGS_INITIAL_WINDOW_SIZE allows the sender to inform the remote endpoint the initial window size (in bytes) for new streams.</t>
495<t>8 - SETTINGS_CLIENT_CERTIFICATE_VECTOR_SIZE allows the server to inform the client if the new size of the client certificate vector.</t>
496  </list>
497  </t>
498</list>
499</t>
500
501<t>Value: A 32-bit value.</t>
502
503<t>The message is intentionally extensible for future information which may improve client-server communications. The sender does not need to send every type of ID/value. It must only send those for which it has accurate values to convey. When multiple ID/value pairs are sent, they should be sent in order of lowest id to highest id.  A single SETTINGS frame MUST not contain multiple values for the same ID.  If the recipient of a SETTINGS frame discovers multiple values for the same ID, it MUST ignore all values except the first one.</t>
504
505<t>A server may send multiple SETTINGS frames containing different ID/Value pairs.  When the same ID/Value is sent twice, the most recent value overrides any previously sent values.  If the server sends IDs 1, 2, and 3 with the FLAG_SETTINGS_PERSIST_VALUE in a first SETTINGS frame, and then sends IDs 4 and 5 with the FLAG_SETTINGS_PERSIST_VALUE, when the client returns the persisted state on its next SETTINGS frame, it SHOULD send all 5 settings (1, 2, 3, 4, and 5 in this example) to the server.</t>
506        </section>
507
508        <section anchor="PING" title="PING">
509<t>The PING control frame is a mechanism for measuring a minimal round-trip time from the sender.  It can be sent from the client or the server.  Recipients of a PING frame should send an identical frame to the sender as soon as possible (if there is other pending data waiting to be sent, PING should take highest priority).  Each ping sent by a sender should use a unique ID.</t>
510          <figure>
511            <artwork>
512+----------------------------------+
513|1|   version    |         6       |
514+----------------------------------+
515| 0 (flags) |     4 (length)       |
516+----------------------------------|
517|            32-bit ID             |
518+----------------------------------+
519            </artwork>
520          </figure>
521<t>Control bit: The control bit is always 1 for this message.</t>
522
523<t>Version: The SPDY version number.</t>
524
525<t>Type: The message type for a PING message is 6.</t>
526
527<t>Length: This frame is always 4 bytes long.</t>
528
529<t>ID: A unique ID for this ping, represented as an unsigned 32 bit value.  When the client initiates a ping, it must use an odd numbered ID.  When the server initiates a ping, it must use an even numbered ping.  Use of odd/even IDs is required in order to avoid accidental looping on PINGs (where each side initiates an identical PING at the same time).</t>
530
531<t>Note: If a sender uses all possible PING ids (e.g. has sent all 2^31 possible IDs), it can wrap and start re-using IDs.</t>
532
533<t>If a server receives an even numbered PING which it did not initiate, it must ignore the PING.
534If a client receives an odd numbered PING which it did not initiate, it must ignore the PING.</t>
535        </section>
536
537        <section anchor="GOAWAY" title="GOAWAY">
538<t>The GOAWAY control frame is a mechanism to tell the remote side of the connection to stop creating streams on this session.  It can be sent from the client or the server. Once sent, the sender will not respond to any new SYN_STREAMs on this session. Recipients of a GOAWAY frame must not send additional streams on this session, although a new session can be established for new streams.  The purpose of this message is to allow an endpoint to gracefully stop accepting new streams (perhaps for a reboot or maintenance), while still finishing processing of previously established streams.</t>
539
540<t>There is an inherent race condition between an endpoint sending SYN_STREAMs and the remote sending a GOAWAY message.  To deal with this case, the GOAWAY contains a last-stream-id indicating the stream-id of the last stream which was created on the sending endpoint in this session.  If the receiver of the GOAWAY sent new SYN_STREAMs for sessions after this last-stream-id, they were not processed by the server and the receiver may treat the stream as though it had never been created at all (hence the receiver may want to re-create the stream later on a new session).</t>
541
542<t>Endpoints should always send a GOAWAY message before closing a connection so that the remote can know whether a stream has been partially processed or not.  (For example, if an HTTP client sends a POST at the same time that a server closes a connection, the client cannot know if the server started to process that POST request if the server does not send a GOAWAY frame to indicate where it stopped working).</t>
543
544<t>After sending a GOAWAY message, the sender must ignore all SYN_STREAM frames for new streams.</t>
545          <figure>
546            <artwork>
547+----------------------------------+
548|1|   version    |         7       |
549+----------------------------------+
550| 0 (flags) |     8 (length)       |
551+----------------------------------|
552|X|  Last-good-stream-ID (31 bits) |
553+----------------------------------+
554|          Status code             |
555+----------------------------------+
556            </artwork>
557          </figure>
558<t>Control bit: The control bit is always 1 for this message.</t>
559
560<t>Version: The SPDY version number.</t>
561
562<t>Type: The message type for a GOAWAY message is 7.</t>
563
564<t>Length: This frame is always 8 bytes long.</t>
565
566<t>Last-good-stream-Id: The last stream id which was replied to (with either a SYN_REPLY or RST_STREAM) by the sender of the GOAWAY message.  If no streams were replied to, this value MUST be 0.</t>
567
568<t>Status: The reason for closing the session.
569<list>
570<t>0 - OK. This is a normal session teardown.</t>
571<t>1 - PROTOCOL_ERROR. This is a generic error, and should only be used if a more specific error is not available.</t>
572<t>11 - INTERNAL_ERROR.  This is a generic error which can be used when the implementation has internally failed, not due to anything in the protocol.</t>
573</list>
574</t>
575        </section>
576
577        <section anchor="HEADERS" title="HEADERS">
578<t>The HEADERS frame augments a stream with additional headers. It may be optionally sent on an existing stream at any time.  Specific application of the headers in this frame is application-dependent.  The name/value header block within this frame is compressed.</t>
579          <figure>
580            <artwork>
581+------------------------------------+
582|1|   version     |          8       |
583+------------------------------------+
584| Flags (8)  |   Length (24 bits)    |
585+------------------------------------+
586|X|          Stream-ID (31bits)      |
587+------------------------------------+
588| Number of Name/Value pairs (int32) |   &lt;+
589+------------------------------------+    |
590|     Length of name (int32)         |    | This section is the
591+------------------------------------+    | "Name/Value Header
592|           Name (string)            |    | Block", and is
593+------------------------------------+    | compressed.
594|     Length of value  (int32)       |    |
595+------------------------------------+    |
596|          Value   (string)          |    |
597+------------------------------------+    |
598|           (repeats)                |   &lt;+
599            </artwork>
600          </figure>
601<t>Flags: Flags related to this frame. Valid flags are:
602<list>
603<t>0x01 = FLAG_FIN - marks this frame as the last frame to be transmitted on this stream and puts the sender in the <xref target="StreamHalfClose">half-closed</xref> state.</t>
604</list>
605</t>
606
607<t>Length: An unsigned 24 bit value representing the number of bytes after the length field. The minimum length of the length field is 4 (when the number of name value pairs is 0).</t>
608
609<t>Stream-ID: The stream this HEADERS block is associated with.</t>
610
611<t>Name/Value Header Block:  A set of name/value pairs carried as part of the SYN_STREAM.  <xref target="HeaderBlock">see Name/Value Header Block</xref>.</t>
612
613          </section>
614
615          <section anchor="WINDOW_UPDATE" title="WINDOW_UPDATE">
616<t>The WINDOW_UPDATE control frame is used to implement per stream flow control in SPDY. Flow control in SPDY is per hop, that is, only between the two endpoints of a SPDY connection. If there are one or more intermediaries between the client and the origin server, flow control signals are not explicitly forwarded by the intermediaries. (However, throttling of data transfer by any recipient may have the effect of indirectly propagating flow control information upstream back to the original sender.) Flow control only applies to the data portion of data frames. Recipients must buffer all control frames. If a recipient fails to buffer an entire control frame, it MUST issue a <xref target="StreamErrorHandler">stream error</xref> with the status code FLOW_CONTROL_ERROR for the stream.</t>
617
618<t>Flow control in SPDY is implemented by a data transfer window kept by the sender of each stream. The data transfer window is a simple uint32 that indicates how many bytes of data the sender can transmit. After a stream is created, but before any data frames have been transmitted, the sender begins with the initial window size. This window size is a measure of the buffering capability of the recipient. The sender must not send a data frame with data length greater than the transfer window size. After sending each data frame, the sender decrements its transfer window size by the amount of data transmitted. When the window size becomes less than or equal to 0, the sender must pause transmitting data frames. At the other end of the stream, the recipient sends a WINDOW_UPDATE control back to notify the sender that it has consumed some data and freed up buffer space to receive more data.</t>
619          <figure>
620            <artwork>
621+----------------------------------+
622|1|   version    |         9       |
623+----------------------------------+
624| 0 (flags) |     8 (length)       |
625+----------------------------------+
626|X|     Stream-ID (31-bits)        |
627+----------------------------------+
628|X|  Delta-Window-Size (31-bits)   |
629+----------------------------------+
630            </artwork>
631          </figure>
632<t>Control bit: The control bit is always 1 for this message.</t>
633
634<t>Version: The SPDY version number.</t>
635
636<t>Type: The message type for a WINDOW_UPDATE message is 9.</t>
637
638<t>Length: The length field is always 8 for this frame (there are 8 bytes after the length field).</t>
639
640<t>Stream-ID: The stream ID that this WINDOW_UPDATE control frame is for.</t>
641
642<t>Delta-Window-Size: The additional number of bytes that the sender can transmit in addition to existing remaining window size. The legal range for this field is 1 to 2^31 - 1 (0x7fffffff) bytes.</t>
643
644<t>The window size as kept by the sender must never exceed 2^31 (although it can become negative in one special case). If a sender receives a WINDOW_UPDATE that causes the its window size to exceed this limit, it must send RST_STREAM with status code FLOW_CONTROL_ERROR to terminate the stream.</t>
645
646<t>When a SPDY connection is first established, the default initial window size for all streams is 64KB. An endpoint can use the SETTINGS control frame to adjust the initial window size for the connection. That is, its peer can start out using the 64KB default initial window size when sending data frames before receiving the SETTINGS. Because SETTINGS  is asynchronous, there may be a race condition if the recipient wants to decrease the initial window size, but its peer immediately sends 64KB on the creation of a new connection, before waiting for the SETTINGS to arrive. This is one case where the window size kept by the sender will become negative. Once the sender detects this condition, it must stop sending data frames and wait for the recipient to catch up. The recipient has two choices:
647<list>
648<t>immediately send RST_STREAM with FLOW_CONTROL_ERROR status code.</t>
649<t>allow the head of line blocking (as there is only one stream for the session and the amount of data in flight is bounded by the default initial window size), and send WINDOW_UPDATE as it consumes data.</t>
650</list>
651</t>
652
653<t>In the case of option 2, both sides must compute the window size based on the initial window size in the SETTINGS. For example, if the recipient sets the initial window size to be 16KB, and the sender sends 64KB immediately on connection establishment, the sender will discover its window size is -48KB on receipt of the SETTINGS. As the recipient consumes the first 16KB, it must send a WINDOW_UPDATE of 16KB back to the sender. This interaction continues until the sender's window size becomes positive again, and it can resume transmitting data frames.</t>
654
655<t>After the recipient reads in a data frame with FLAG_FIN that marks the end of the data stream, it should not send WINDOW_UPDATE frames as it consumes the last data frame. A sender should ignore all the WINDOW_UPDATE frames associated with the stream after it send the last frame for the stream.</t>
656
657<t>The data frames from the sender and the WINDOW_UPDATE frames from the recipient are completely asynchronous with respect to each other. This property allows a recipient to aggressively update the window size kept by the sender to prevent the stream from stalling.</t>
658          </section>
659
660          <section anchor="CREDENTIAL" title="CREDENTIAL">
661<t>The CREDENTIAL control frame is used by the client to send additional client certificates to the server.  A SPDY client may decide to send requests for resources from different origins on the same SPDY session if it decides that that server handles both origins.  For example if the IP address associated with both hostnames matches and the SSL server certificate presented in the initial handshake is valid for both hostnames.  However, because the SSL connection can contain at most one client certificate, the client needs a mechanism to send additional client certificates to the server.</t>
662
663<t>The server is required to maintain a vector of client certificates associated with a SPDY session.  When the client needs to send a client certificate to the server, it will send a CREDENTIAL frame that specifies the index of the slot in which to store the certificate as well as proof that the client posesses the corresponding private key.  The initial size of this vector must be 8.  If the client provides a client certificate during the first TLS handshake, the contents of this certificate must be copied into the first slot (index 1) in the CREDENTIAL vector, though it may be overwritten by subsequent CREDENTIAL frames.  The server must exclusively use the CREDNETIAL vector when evaluating the client certificates associated with an origin.  The server may change the size of this vector by sending a SETTINGS frame with the setting SETTINGS_CLIENT_CERTIFICATE_VECTOR_SIZE value specified.  In the event that the new size is smaller than the current size, truncation occurs preserving lower-index slots as possible.</t> 
664
665<t>TLS renegotiation with client authentication is incompatible with SPDY given the multiplexed nature of SPDY.  Specifically, imagine that the client has 2 requests outstanding to the server for two different pages (in different tabs).  When the renegotiation + client certificate request comes in, the browser is unable to determine which resource triggered the client certificate request, in order to prompt the user accordingly.</t>
666
667          <figure>
668            <artwork>
669+----------------------------------+
670|1|000000000000001|0000000000001011|
671+----------------------------------+
672| flags (8)  |  Length (24 bits)   |
673+----------------------------------+
674|  Slot (16 bits) |                |
675+-----------------+                |
676|      Proof Length (32 bits)      |
677+----------------------------------+
678|               Proof              |
679+----------------------------------+ &lt;+
680|   Certificate Length (32 bits)   |  |
681+----------------------------------+  | Repeated until end of frame
682|            Certificate           |  |
683+----------------------------------+ &lt;+
684            </artwork>
685          </figure>
686
687<t>
688  Slot: The index in the server's client certificate vector where this
689  certificate should be stored.  If there is already a certificate stored at
690  this index, it will be overwritten.  The index is one based, not zero based;
691  zero is an invalid slot index.
692</t>
693<t>
694  Proof: Cryptographic proof that the client has possession of the private key
695  associated with the certificate.  The format is a TLS digitally-signed
696  element (<xref target="RFC5246" x:fmt="," x:sec="4.7"/>).  The signature
697  algorithm must be the same as that used in the CertificateVerify message.
698  However, since the MD5+SHA1 signature type used in TLS 1.0 connections can
699  not be correctly encoded in a digitally-signed element, SHA1 must be used
700  when MD5+SHA1 was used in the SSL connection.  The signature is calculated
701  over a 32 byte TLS extractor value (http://tools.ietf.org/html/rfc5705) with
702  a label of "EXPORTER SPDY certificate proof" using the empty string as
703  context. ForRSA certificates the signature would be a PKCS#1 v1.5 signature.
704  For ECDSA, it would be an ECDSA-Sig-Value
705  (http://tools.ietf.org/html/rfc5480#appendix-A).  For a 1024-bit RSA key,
706  the CREDENTIAL message would be ~500 bytes.
707</t>
708<t>Certificate: The certificate chain, starting with the leaf certificate.  Each certificate must be encoded as a 32 bit length, followed by a DER encoded certificate.  The certificate must be of the same type (RSA, ECDSA, etc) as the client certificate associated with the SSL connection.</t>
709<t>If the server receives a request for a resource with unacceptable credential (either missing or invalid), it must reply with a RST_STREAM frame with the status code INVALID_CREDENTIALS. Upon receipt of a RST_STREAM frame with INVALID_CREDENTIALS, the client should initiate a new stream directly to the requested origin and resend the request.  Note, SPDY does not allow the server to request different client authentication for different resources in the same origin.</t>
710<t>If the server receives an invalid CREDENTIAL frame, it MUST respond with a GOAWAY frame and shutdown the session.  </t>
711          </section>
712
713          <section anchor="HeaderBlock" title="Name/Value Header Block">
714            <t>The Name/Value Header Block is found in the SYN_STREAM, SYN_REPLY
715            and HEADERS control frames, and shares a common format:</t>
716          <figure>
717            <artwork>
718+------------------------------------+
719| Number of Name/Value pairs (int32) |
720+------------------------------------+
721|     Length of name (int32)         |
722+------------------------------------+
723|           Name (string)            |
724+------------------------------------+
725|     Length of value  (int32)       |
726+------------------------------------+
727|          Value   (string)          |
728+------------------------------------+
729|           (repeats)                |
730            </artwork>
731          </figure>
732
733<t>Number of Name/Value pairs: The number of repeating name/value pairs following this field.</t>
734
735<t>List of Name/Value pairs:
736<list>
737<t>Length of Name: a 32-bit value containing the number of octets in the name field.  Note that in practice, this length must not exceed 2^24, as that is the maximum size of a SPDY frame.</t>
738<t>Name: 0 or more octets, 8-bit sequences of data, excluding 0.</t>
739<t>Length of Value: a 32-bit value containing the number of octets in the value field.  Note that in practice, this length must not exceed 2^24, as that is the maximum size of a SPDY frame.</t>
740<t>Value: 0 or more octets, 8-bit sequences of data, excluding 0.</t>
741</list>
742</t>
743
744<t>Each header name must have at least one value.  Header names are encoded using the <xref target="ASCII">US-ASCII character set</xref> and must be all lower case.  The length of each name must be greater than zero.  A recipient of a zero-length name MUST issue a <xref target="StreamErrorHandler">stream error</xref> with the status code PROTOCOL_ERROR for the stream-id.</t>
745
746<t>Duplicate header names are not allowed.  To send two identically named headers, send a header with two values, where the values are separated by a single NUL (0) byte.  A header value can either be empty (e.g. the length is zero) or it can contain multiple, NUL-separated values, each with length greater than zero.  The value never starts nor ends with a NUL character.  Recipients of illegal value fields MUST issue a <xref target="StreamErrorHandler">stream error</xref> with the status code PROTOCOL_ERROR for the stream-id.</t>
747
748      <section title="Compression" anchor="Compression">
749        <t>The Name/Value Header Block is a section of the SYN_STREAM, SYN_REPLY, and HEADERS frames used to carry header meta-data.  This block is always compressed using zlib compression.  Within this specification, any reference to 'zlib' is referring to the <xref target="RFC1950">ZLIB Compressed Data Format Specification Version 3.3 as part of RFC1950.</xref></t>
750
751        <t>For each HEADERS compression instance, the initial state is initialized using the following <xref target="UDELCOMPRESSION">dictionary</xref>:</t>
752
753<figure>
754  <artwork type="code" x:isCodeComponent="yes">
755const unsigned char SPDY_dictionary_txt[] = {
756  0x00, 0x00, 0x00, 0x07, 0x6f, 0x70, 0x74, 0x69,  \\ - - - - o p t i
757  0x6f, 0x6e, 0x73, 0x00, 0x00, 0x00, 0x04, 0x68,  \\ o n s - - - - h
758  0x65, 0x61, 0x64, 0x00, 0x00, 0x00, 0x04, 0x70,  \\ e a d - - - - p
759  0x6f, 0x73, 0x74, 0x00, 0x00, 0x00, 0x03, 0x70,  \\ o s t - - - - p
760  0x75, 0x74, 0x00, 0x00, 0x00, 0x06, 0x64, 0x65,  \\ u t - - - - d e
761  0x6c, 0x65, 0x74, 0x65, 0x00, 0x00, 0x00, 0x05,  \\ l e t e - - - -
762  0x74, 0x72, 0x61, 0x63, 0x65, 0x00, 0x00, 0x00,  \\ t r a c e - - -
763  0x06, 0x61, 0x63, 0x63, 0x65, 0x70, 0x74, 0x00,  \\ - a c c e p t -
764  0x00, 0x00, 0x0e, 0x61, 0x63, 0x63, 0x65, 0x70,  \\ - - - a c c e p
765  0x74, 0x2d, 0x63, 0x68, 0x61, 0x72, 0x73, 0x65,  \\ t - c h a r s e
766  0x74, 0x00, 0x00, 0x00, 0x0f, 0x61, 0x63, 0x63,  \\ t - - - - a c c
767  0x65, 0x70, 0x74, 0x2d, 0x65, 0x6e, 0x63, 0x6f,  \\ e p t - e n c o
768  0x64, 0x69, 0x6e, 0x67, 0x00, 0x00, 0x00, 0x0f,  \\ d i n g - - - -
769  0x61, 0x63, 0x63, 0x65, 0x70, 0x74, 0x2d, 0x6c,  \\ a c c e p t - l
770  0x61, 0x6e, 0x67, 0x75, 0x61, 0x67, 0x65, 0x00,  \\ a n g u a g e -
771  0x00, 0x00, 0x0d, 0x61, 0x63, 0x63, 0x65, 0x70,  \\ - - - a c c e p
772  0x74, 0x2d, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x73,  \\ t - r a n g e s
773  0x00, 0x00, 0x00, 0x03, 0x61, 0x67, 0x65, 0x00,  \\ - - - - a g e -
774  0x00, 0x00, 0x05, 0x61, 0x6c, 0x6c, 0x6f, 0x77,  \\ - - - a l l o w
775  0x00, 0x00, 0x00, 0x0d, 0x61, 0x75, 0x74, 0x68,  \\ - - - - a u t h
776  0x6f, 0x72, 0x69, 0x7a, 0x61, 0x74, 0x69, 0x6f,  \\ o r i z a t i o
777  0x6e, 0x00, 0x00, 0x00, 0x0d, 0x63, 0x61, 0x63,  \\ n - - - - c a c
778  0x68, 0x65, 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x72,  \\ h e - c o n t r
779  0x6f, 0x6c, 0x00, 0x00, 0x00, 0x0a, 0x63, 0x6f,  \\ o l - - - - c o
780  0x6e, 0x6e, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e,  \\ n n e c t i o n
781  0x00, 0x00, 0x00, 0x0c, 0x63, 0x6f, 0x6e, 0x74,  \\ - - - - c o n t
782  0x65, 0x6e, 0x74, 0x2d, 0x62, 0x61, 0x73, 0x65,  \\ e n t - b a s e
783  0x00, 0x00, 0x00, 0x10, 0x63, 0x6f, 0x6e, 0x74,  \\ - - - - c o n t
784  0x65, 0x6e, 0x74, 0x2d, 0x65, 0x6e, 0x63, 0x6f,  \\ e n t - e n c o
785  0x64, 0x69, 0x6e, 0x67, 0x00, 0x00, 0x00, 0x10,  \\ d i n g - - - -
786  0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d,  \\ c o n t e n t -
787  0x6c, 0x61, 0x6e, 0x67, 0x75, 0x61, 0x67, 0x65,  \\ l a n g u a g e
788  0x00, 0x00, 0x00, 0x0e, 0x63, 0x6f, 0x6e, 0x74,  \\ - - - - c o n t
789  0x65, 0x6e, 0x74, 0x2d, 0x6c, 0x65, 0x6e, 0x67,  \\ e n t - l e n g
790  0x74, 0x68, 0x00, 0x00, 0x00, 0x10, 0x63, 0x6f,  \\ t h - - - - c o
791  0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d, 0x6c, 0x6f,  \\ n t e n t - l o
792  0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x00, 0x00,  \\ c a t i o n - -
793  0x00, 0x0b, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,  \\ - - c o n t e n
794  0x74, 0x2d, 0x6d, 0x64, 0x35, 0x00, 0x00, 0x00,  \\ t - m d 5 - - -
795  0x0d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,  \\ - c o n t e n t
796  0x2d, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x00, 0x00,  \\ - r a n g e - -
797  0x00, 0x0c, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,  \\ - - c o n t e n
798  0x74, 0x2d, 0x74, 0x79, 0x70, 0x65, 0x00, 0x00,  \\ t - t y p e - -
799  0x00, 0x04, 0x64, 0x61, 0x74, 0x65, 0x00, 0x00,  \\ - - d a t e - -
800  0x00, 0x04, 0x65, 0x74, 0x61, 0x67, 0x00, 0x00,  \\ - - e t a g - -
801  0x00, 0x06, 0x65, 0x78, 0x70, 0x65, 0x63, 0x74,  \\ - - e x p e c t
802  0x00, 0x00, 0x00, 0x07, 0x65, 0x78, 0x70, 0x69,  \\ - - - - e x p i
803  0x72, 0x65, 0x73, 0x00, 0x00, 0x00, 0x04, 0x66,  \\ r e s - - - - f
804  0x72, 0x6f, 0x6d, 0x00, 0x00, 0x00, 0x04, 0x68,  \\ r o m - - - - h
805  0x6f, 0x73, 0x74, 0x00, 0x00, 0x00, 0x08, 0x69,  \\ o s t - - - - i
806  0x66, 0x2d, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x00,  \\ f - m a t c h -
807  0x00, 0x00, 0x11, 0x69, 0x66, 0x2d, 0x6d, 0x6f,  \\ - - - i f - m o
808  0x64, 0x69, 0x66, 0x69, 0x65, 0x64, 0x2d, 0x73,  \\ d i f i e d - s
809  0x69, 0x6e, 0x63, 0x65, 0x00, 0x00, 0x00, 0x0d,  \\ i n c e - - - -
810  0x69, 0x66, 0x2d, 0x6e, 0x6f, 0x6e, 0x65, 0x2d,  \\ i f - n o n e -
811  0x6d, 0x61, 0x74, 0x63, 0x68, 0x00, 0x00, 0x00,  \\ m a t c h - - -
812  0x08, 0x69, 0x66, 0x2d, 0x72, 0x61, 0x6e, 0x67,  \\ - i f - r a n g
813  0x65, 0x00, 0x00, 0x00, 0x13, 0x69, 0x66, 0x2d,  \\ e - - - - i f -
814  0x75, 0x6e, 0x6d, 0x6f, 0x64, 0x69, 0x66, 0x69,  \\ u n m o d i f i
815  0x65, 0x64, 0x2d, 0x73, 0x69, 0x6e, 0x63, 0x65,  \\ e d - s i n c e
816  0x00, 0x00, 0x00, 0x0d, 0x6c, 0x61, 0x73, 0x74,  \\ - - - - l a s t
817  0x2d, 0x6d, 0x6f, 0x64, 0x69, 0x66, 0x69, 0x65,  \\ - m o d i f i e
818  0x64, 0x00, 0x00, 0x00, 0x08, 0x6c, 0x6f, 0x63,  \\ d - - - - l o c
819  0x61, 0x74, 0x69, 0x6f, 0x6e, 0x00, 0x00, 0x00,  \\ a t i o n - - -
820  0x0c, 0x6d, 0x61, 0x78, 0x2d, 0x66, 0x6f, 0x72,  \\ - m a x - f o r
821  0x77, 0x61, 0x72, 0x64, 0x73, 0x00, 0x00, 0x00,  \\ w a r d s - - -
822  0x06, 0x70, 0x72, 0x61, 0x67, 0x6d, 0x61, 0x00,  \\ - p r a g m a -
823  0x00, 0x00, 0x12, 0x70, 0x72, 0x6f, 0x78, 0x79,  \\ - - - p r o x y
824  0x2d, 0x61, 0x75, 0x74, 0x68, 0x65, 0x6e, 0x74,  \\ - a u t h e n t
825  0x69, 0x63, 0x61, 0x74, 0x65, 0x00, 0x00, 0x00,  \\ i c a t e - - -
826  0x13, 0x70, 0x72, 0x6f, 0x78, 0x79, 0x2d, 0x61,  \\ - p r o x y - a
827  0x75, 0x74, 0x68, 0x6f, 0x72, 0x69, 0x7a, 0x61,  \\ u t h o r i z a
828  0x74, 0x69, 0x6f, 0x6e, 0x00, 0x00, 0x00, 0x05,  \\ t i o n - - - -
829  0x72, 0x61, 0x6e, 0x67, 0x65, 0x00, 0x00, 0x00,  \\ r a n g e - - -
830  0x07, 0x72, 0x65, 0x66, 0x65, 0x72, 0x65, 0x72,  \\ - r e f e r e r
831  0x00, 0x00, 0x00, 0x0b, 0x72, 0x65, 0x74, 0x72,  \\ - - - - r e t r
832  0x79, 0x2d, 0x61, 0x66, 0x74, 0x65, 0x72, 0x00,  \\ y - a f t e r -
833  0x00, 0x00, 0x06, 0x73, 0x65, 0x72, 0x76, 0x65,  \\ - - - s e r v e
834  0x72, 0x00, 0x00, 0x00, 0x02, 0x74, 0x65, 0x00,  \\ r - - - - t e -
835  0x00, 0x00, 0x07, 0x74, 0x72, 0x61, 0x69, 0x6c,  \\ - - - t r a i l
836  0x65, 0x72, 0x00, 0x00, 0x00, 0x11, 0x74, 0x72,  \\ e r - - - - t r
837  0x61, 0x6e, 0x73, 0x66, 0x65, 0x72, 0x2d, 0x65,  \\ a n s f e r - e
838  0x6e, 0x63, 0x6f, 0x64, 0x69, 0x6e, 0x67, 0x00,  \\ n c o d i n g -
839  0x00, 0x00, 0x07, 0x75, 0x70, 0x67, 0x72, 0x61,  \\ - - - u p g r a
840  0x64, 0x65, 0x00, 0x00, 0x00, 0x0a, 0x75, 0x73,  \\ d e - - - - u s
841  0x65, 0x72, 0x2d, 0x61, 0x67, 0x65, 0x6e, 0x74,  \\ e r - a g e n t
842  0x00, 0x00, 0x00, 0x04, 0x76, 0x61, 0x72, 0x79,  \\ - - - - v a r y
843  0x00, 0x00, 0x00, 0x03, 0x76, 0x69, 0x61, 0x00,  \\ - - - - v i a -
844  0x00, 0x00, 0x07, 0x77, 0x61, 0x72, 0x6e, 0x69,  \\ - - - w a r n i
845  0x6e, 0x67, 0x00, 0x00, 0x00, 0x10, 0x77, 0x77,  \\ n g - - - - w w
846  0x77, 0x2d, 0x61, 0x75, 0x74, 0x68, 0x65, 0x6e,  \\ w - a u t h e n
847  0x74, 0x69, 0x63, 0x61, 0x74, 0x65, 0x00, 0x00,  \\ t i c a t e - -
848  0x00, 0x06, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64,  \\ - - m e t h o d
849  0x00, 0x00, 0x00, 0x03, 0x67, 0x65, 0x74, 0x00,  \\ - - - - g e t -
850  0x00, 0x00, 0x06, 0x73, 0x74, 0x61, 0x74, 0x75,  \\ - - - s t a t u
851  0x73, 0x00, 0x00, 0x00, 0x06, 0x32, 0x30, 0x30,  \\ s - - - - 2 0 0
852  0x20, 0x4f, 0x4b, 0x00, 0x00, 0x00, 0x07, 0x76,  \\ - O K - - - - v
853  0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e, 0x00, 0x00,  \\ e r s i o n - -
854  0x00, 0x08, 0x48, 0x54, 0x54, 0x50, 0x2f, 0x31,  \\ - - H T T P - 1
855  0x2e, 0x31, 0x00, 0x00, 0x00, 0x03, 0x75, 0x72,  \\ - 1 - - - - u r
856  0x6c, 0x00, 0x00, 0x00, 0x06, 0x70, 0x75, 0x62,  \\ l - - - - p u b
857  0x6c, 0x69, 0x63, 0x00, 0x00, 0x00, 0x0a, 0x73,  \\ l i c - - - - s
858  0x65, 0x74, 0x2d, 0x63, 0x6f, 0x6f, 0x6b, 0x69,  \\ e t - c o o k i
859  0x65, 0x00, 0x00, 0x00, 0x0a, 0x6b, 0x65, 0x65,  \\ e - - - - k e e
860  0x70, 0x2d, 0x61, 0x6c, 0x69, 0x76, 0x65, 0x00,  \\ p - a l i v e -
861  0x00, 0x00, 0x06, 0x6f, 0x72, 0x69, 0x67, 0x69,  \\ - - - o r i g i
862  0x6e, 0x31, 0x30, 0x30, 0x31, 0x30, 0x31, 0x32,  \\ n 1 0 0 1 0 1 2
863  0x30, 0x31, 0x32, 0x30, 0x32, 0x32, 0x30, 0x35,  \\ 0 1 2 0 2 2 0 5
864  0x32, 0x30, 0x36, 0x33, 0x30, 0x30, 0x33, 0x30,  \\ 2 0 6 3 0 0 3 0
865  0x32, 0x33, 0x30, 0x33, 0x33, 0x30, 0x34, 0x33,  \\ 2 3 0 3 3 0 4 3
866  0x30, 0x35, 0x33, 0x30, 0x36, 0x33, 0x30, 0x37,  \\ 0 5 3 0 6 3 0 7
867  0x34, 0x30, 0x32, 0x34, 0x30, 0x35, 0x34, 0x30,  \\ 4 0 2 4 0 5 4 0
868  0x36, 0x34, 0x30, 0x37, 0x34, 0x30, 0x38, 0x34,  \\ 6 4 0 7 4 0 8 4
869  0x30, 0x39, 0x34, 0x31, 0x30, 0x34, 0x31, 0x31,  \\ 0 9 4 1 0 4 1 1
870  0x34, 0x31, 0x32, 0x34, 0x31, 0x33, 0x34, 0x31,  \\ 4 1 2 4 1 3 4 1
871  0x34, 0x34, 0x31, 0x35, 0x34, 0x31, 0x36, 0x34,  \\ 4 4 1 5 4 1 6 4
872  0x31, 0x37, 0x35, 0x30, 0x32, 0x35, 0x30, 0x34,  \\ 1 7 5 0 2 5 0 4
873  0x35, 0x30, 0x35, 0x32, 0x30, 0x33, 0x20, 0x4e,  \\ 5 0 5 2 0 3 - N
874  0x6f, 0x6e, 0x2d, 0x41, 0x75, 0x74, 0x68, 0x6f,  \\ o n - A u t h o
875  0x72, 0x69, 0x74, 0x61, 0x74, 0x69, 0x76, 0x65,  \\ r i t a t i v e
876  0x20, 0x49, 0x6e, 0x66, 0x6f, 0x72, 0x6d, 0x61,  \\ - I n f o r m a
877  0x74, 0x69, 0x6f, 0x6e, 0x32, 0x30, 0x34, 0x20,  \\ t i o n 2 0 4 -
878  0x4e, 0x6f, 0x20, 0x43, 0x6f, 0x6e, 0x74, 0x65,  \\ N o - C o n t e
879  0x6e, 0x74, 0x33, 0x30, 0x31, 0x20, 0x4d, 0x6f,  \\ n t 3 0 1 - M o
880  0x76, 0x65, 0x64, 0x20, 0x50, 0x65, 0x72, 0x6d,  \\ v e d - P e r m
881  0x61, 0x6e, 0x65, 0x6e, 0x74, 0x6c, 0x79, 0x34,  \\ a n e n t l y 4
882  0x30, 0x30, 0x20, 0x42, 0x61, 0x64, 0x20, 0x52,  \\ 0 0 - B a d - R
883  0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x34, 0x30,  \\ e q u e s t 4 0
884  0x31, 0x20, 0x55, 0x6e, 0x61, 0x75, 0x74, 0x68,  \\ 1 - U n a u t h
885  0x6f, 0x72, 0x69, 0x7a, 0x65, 0x64, 0x34, 0x30,  \\ o r i z e d 4 0
886  0x33, 0x20, 0x46, 0x6f, 0x72, 0x62, 0x69, 0x64,  \\ 3 - F o r b i d
887  0x64, 0x65, 0x6e, 0x34, 0x30, 0x34, 0x20, 0x4e,  \\ d e n 4 0 4 - N
888  0x6f, 0x74, 0x20, 0x46, 0x6f, 0x75, 0x6e, 0x64,  \\ o t - F o u n d
889  0x35, 0x30, 0x30, 0x20, 0x49, 0x6e, 0x74, 0x65,  \\ 5 0 0 - I n t e
890  0x72, 0x6e, 0x61, 0x6c, 0x20, 0x53, 0x65, 0x72,  \\ r n a l - S e r
891  0x76, 0x65, 0x72, 0x20, 0x45, 0x72, 0x72, 0x6f,  \\ v e r - E r r o
892  0x72, 0x35, 0x30, 0x31, 0x20, 0x4e, 0x6f, 0x74,  \\ r 5 0 1 - N o t
893  0x20, 0x49, 0x6d, 0x70, 0x6c, 0x65, 0x6d, 0x65,  \\ - I m p l e m e
894  0x6e, 0x74, 0x65, 0x64, 0x35, 0x30, 0x33, 0x20,  \\ n t e d 5 0 3 -
895  0x53, 0x65, 0x72, 0x76, 0x69, 0x63, 0x65, 0x20,  \\ S e r v i c e -
896  0x55, 0x6e, 0x61, 0x76, 0x61, 0x69, 0x6c, 0x61,  \\ U n a v a i l a
897  0x62, 0x6c, 0x65, 0x4a, 0x61, 0x6e, 0x20, 0x46,  \\ b l e J a n - F
898  0x65, 0x62, 0x20, 0x4d, 0x61, 0x72, 0x20, 0x41,  \\ e b - M a r - A
899  0x70, 0x72, 0x20, 0x4d, 0x61, 0x79, 0x20, 0x4a,  \\ p r - M a y - J
900  0x75, 0x6e, 0x20, 0x4a, 0x75, 0x6c, 0x20, 0x41,  \\ u n - J u l - A
901  0x75, 0x67, 0x20, 0x53, 0x65, 0x70, 0x74, 0x20,  \\ u g - S e p t -
902  0x4f, 0x63, 0x74, 0x20, 0x4e, 0x6f, 0x76, 0x20,  \\ O c t - N o v -
903  0x44, 0x65, 0x63, 0x20, 0x30, 0x30, 0x3a, 0x30,  \\ D e c - 0 0 - 0
904  0x30, 0x3a, 0x30, 0x30, 0x20, 0x4d, 0x6f, 0x6e,  \\ 0 - 0 0 - M o n
905  0x2c, 0x20, 0x54, 0x75, 0x65, 0x2c, 0x20, 0x57,  \\ - - T u e - - W
906  0x65, 0x64, 0x2c, 0x20, 0x54, 0x68, 0x75, 0x2c,  \\ e d - - T h u -
907  0x20, 0x46, 0x72, 0x69, 0x2c, 0x20, 0x53, 0x61,  \\ - F r i - - S a
908  0x74, 0x2c, 0x20, 0x53, 0x75, 0x6e, 0x2c, 0x20,  \\ t - - S u n - -
909  0x47, 0x4d, 0x54, 0x63, 0x68, 0x75, 0x6e, 0x6b,  \\ G M T c h u n k
910  0x65, 0x64, 0x2c, 0x74, 0x65, 0x78, 0x74, 0x2f,  \\ e d - t e x t -
911  0x68, 0x74, 0x6d, 0x6c, 0x2c, 0x69, 0x6d, 0x61,  \\ h t m l - i m a
912  0x67, 0x65, 0x2f, 0x70, 0x6e, 0x67, 0x2c, 0x69,  \\ g e - p n g - i
913  0x6d, 0x61, 0x67, 0x65, 0x2f, 0x6a, 0x70, 0x67,  \\ m a g e - j p g
914  0x2c, 0x69, 0x6d, 0x61, 0x67, 0x65, 0x2f, 0x67,  \\ - i m a g e - g
915  0x69, 0x66, 0x2c, 0x61, 0x70, 0x70, 0x6c, 0x69,  \\ i f - a p p l i
916  0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x78,  \\ c a t i o n - x
917  0x6d, 0x6c, 0x2c, 0x61, 0x70, 0x70, 0x6c, 0x69,  \\ m l - a p p l i
918  0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x78,  \\ c a t i o n - x
919  0x68, 0x74, 0x6d, 0x6c, 0x2b, 0x78, 0x6d, 0x6c,  \\ h t m l - x m l
920  0x2c, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x70, 0x6c,  \\ - t e x t - p l
921  0x61, 0x69, 0x6e, 0x2c, 0x74, 0x65, 0x78, 0x74,  \\ a i n - t e x t
922  0x2f, 0x6a, 0x61, 0x76, 0x61, 0x73, 0x63, 0x72,  \\ - j a v a s c r
923  0x69, 0x70, 0x74, 0x2c, 0x70, 0x75, 0x62, 0x6c,  \\ i p t - p u b l
924  0x69, 0x63, 0x70, 0x72, 0x69, 0x76, 0x61, 0x74,  \\ i c p r i v a t
925  0x65, 0x6d, 0x61, 0x78, 0x2d, 0x61, 0x67, 0x65,  \\ e m a x - a g e
926  0x3d, 0x67, 0x7a, 0x69, 0x70, 0x2c, 0x64, 0x65,  \\ - g z i p - d e
927  0x66, 0x6c, 0x61, 0x74, 0x65, 0x2c, 0x73, 0x64,  \\ f l a t e - s d
928  0x63, 0x68, 0x63, 0x68, 0x61, 0x72, 0x73, 0x65,  \\ c h c h a r s e
929  0x74, 0x3d, 0x75, 0x74, 0x66, 0x2d, 0x38, 0x63,  \\ t - u t f - 8 c
930  0x68, 0x61, 0x72, 0x73, 0x65, 0x74, 0x3d, 0x69,  \\ h a r s e t - i
931  0x73, 0x6f, 0x2d, 0x38, 0x38, 0x35, 0x39, 0x2d,  \\ s o - 8 8 5 9 -
932  0x31, 0x2c, 0x75, 0x74, 0x66, 0x2d, 0x2c, 0x2a,  \\ 1 - u t f - - -
933  0x2c, 0x65, 0x6e, 0x71, 0x3d, 0x30, 0x2e         \\ - e n q - 0 -
934};
935</artwork>
936</figure>
937
938<t>The entire contents of the name/value header block is compressed using zlib.  There is a single zlib stream for all name value pairs in one direction on a connection.   SPDY uses a SYNC_FLUSH between each compressed frame.</t>
939
940<t>Implementation notes: the compression engine can be tuned to favor speed or size. Optimizing for size increases memory use and CPU consumption.  Because header blocks are generally small, implementors may want to reduce the window-size of the compression engine from the default 15bits (a 32KB window) to more like 11bits (a 2KB window).  The exact setting is chosen by the compressor, the decompressor will work with any setting.</t>
941          </section>
942        </section>
943      </section>
944    </section>
945
946    <section anchor="HTTPLayer" title="HTTP Layering over SPDY">
947<t>SPDY is intended to be as compatible as possible with current web-based applications. This means that, from the perspective of the server business logic or application API, the features of HTTP are unchanged. To achieve this, all of the application request and response header semantics are preserved, although the syntax of conveying those semantics has changed.  Thus, the rules from the <xref target="RFC2616">HTTP/1.1 specification in RFC2616</xref> apply with the changes in the sections below.</t>
948
949      <section title="Connection Management">
950<t>Clients SHOULD NOT open more than one SPDY session to a given <xref target="RFC6454">origin</xref> concurrently.</t>
951<t>Note that it is possible for one SPDY session to be finishing (e.g. a GOAWAY message has been sent, but not all streams have finished), while another SPDY session is starting.</t>
952        <section title="Use of GOAWAY">
953<t>SPDY provides a GOAWAY message which can be used when closing a connection from either the client or server.  Without a server GOAWAY message, HTTP has a race condition where the client sends a request (a new SYN_STREAM)  just as the server is closing the connection, and the client cannot know if the server received the stream or not.  By using the last-stream-id in the GOAWAY, servers can indicate to the client if a request was processed or not.</t>
954
955<t>Note that some servers will choose to send the GOAWAY and immediately terminate the connection without waiting for active streams to finish.  The client will be able to determine this because SPDY streams are determinstically closed.  This abrupt termination will force the client to heuristically decide whether to retry the pending requests.  Clients always need to be capable of dealing with this case because they must deal with accidental connection termination cases, which are the same as the server never having sent a GOAWAY.</t>
956
957<t>More sophisticated servers will use GOAWAY to implement a graceful teardown. They will send the GOAWAY and provide some time for the active streams to finish before terminating the connection.</t>
958
959<t>If a SPDY client closes the connection, it should also send a GOAWAY message.  This allows the server to know if any server-push streams were received by the client.</t>
960
961<t>If the endpoint closing the connection has not received any SYN_STREAMs from the remote, the GOAWAY will contain a last-stream-id of 0.</t>
962
963        </section>
964      </section>
965
966      <section title="HTTP Request/Response">
967        <section title="Request">
968<t>The client initiates a request by sending a SYN_STREAM frame.  For requests which do not contain a body, the SYN_STREAM frame MUST set the FLAG_FIN, indicating that the client intends to send no further data on this stream.  For requests which do contain a body, the SYN_STREAM will not contain the FLAG_FIN, and the body will follow the SYN_STREAM in a series of DATA frames. The last DATA frame will set the FLAG_FIN to indicate the end of the body.</t>
969
970<t>The SYN_STREAM Name/Value section will contain all of the HTTP headers which are associated with an HTTP request. The header block in SPDY is mostly unchanged from today's HTTP header block, with the following differences:
971<list>
972<t>The first line of the request is unfolded into name/value pairs like other HTTP headers and MUST be present:
973<list>
974<t>":method" - the HTTP method for this request (e.g. "GET", "POST", "HEAD", etc)</t>
975<t>":path" - the url-path for this url with "/" prefixed. (See <xref target="RFC1738">RFC1738</xref>).  For example, for "http://www.google.com/search?q=dogs" the path would be "/search?q=dogs".</t>
976<t>":version" - the HTTP version of this request (e.g. "HTTP/1.1")</t>
977</list>
978</t>
979<t>In addition, the following two name/value pairs must also be present in every request:
980<list>
981<t>":host" - the hostport (See <xref target="RFC1738">RFC1738</xref>) portion of the URL for this request (e.g. "www.google.com:1234"). This header is the same as the HTTP 'Host' header. </t>
982<t>":scheme" - the scheme portion of the URL for this request (e.g. "https"))</t>
983</list></t>
984<t>Header names are all lowercase.</t>
985<t>The Connection, Host, Keep-Alive, Proxy-Connection, and Transfer-Encoding headers are not valid and MUST not be sent.</t>
986<t>User-agents MUST support gzip compression. Regardless of the Accept-Encoding sent by the user-agent, the server may always send content encoded with gzip or deflate encoding.</t>
987<t>If a server receives a request where the sum of the data frame payload lengths does not equal the size of the Content-Length header, the server MUST return a 400 (Bad Request) error.</t>
988<t>POST-specific changes:
989<list>
990<t>Although POSTs are inherently chunked, POST requests SHOULD also be accompanied by a Content-Length header.  There are two reasons for this:  First, it assists with upload progress meters for an improved user experience.  But second, we know from early versions of SPDY that failure to send a content length header is incompatible with many existing HTTP server implementations.  Existing user-agents do not omit the Content-Length header, and server implementations have come to depend upon this.</t>
991</list>
992</t>
993</list>
994</t>
995
996<t>The user-agent is free to prioritize requests as it sees fit. If the user-agent cannot make progress without receiving a resource, it should attempt to raise the priority of that resource. Resources such as images, SHOULD generally use the lowest priority.</t>
997
998<t>If a client sends a SYN_STREAM without all of the method, host, path, scheme, and version headers, the server MUST reply with a HTTP 400 Bad Request reply.</t>
999        </section>
1000
1001        <section title="Response">
1002<t>The server responds to a client request with a SYN_REPLY frame. Symmetric to the client's upload stream, server will send data after the SYN_REPLY frame via a series of DATA frames, and the last data frame will contain the FLAG_FIN to indicate successful end-of-stream.  If a response (like a 202 or 204 response) contains no body, the SYN_REPLY frame may contain the FLAG_FIN flag to indicate no further data will be sent on the stream.</t>
1003
1004<t>
1005<list>
1006<t>The response status line is unfolded into name/value pairs like other HTTP headers and must be present:
1007<list>
1008<t>":status" - The HTTP response status code (e.g. "200" or "200 OK")</t>
1009<t>":version" - The HTTP response version (e.g. "HTTP/1.1")</t>
1010</list>
1011</t>
1012<t>All header names must be lowercase.</t>
1013<t>The Connection, Keep-Alive, Proxy-Connection, and Transfer-Encoding headers are not valid and MUST not be sent.</t>
1014<t>Responses MAY be accompanied by a Content-Length header for advisory purposes.  (e.g. for UI progress meters)</t>
1015<t>If a client receives a response where the sum of the data frame payload lengths does not equal the size of the Content-Length header, the client MUST ignore the content length header.</t>
1016</list>
1017</t>
1018
1019<t>If a client receives a SYN_REPLY without a status or without a version header, the client must reply with a RST_STREAM frame indicating a PROTOCOL ERROR.</t>
1020        </section>
1021
1022        <section title="Authentication" anchor="Authentication">
1023<t>When a client sends a request to an origin server that requires authentication, the server can reply with a "401 Unauthorized" response, and include a WWW-Authenticate challenge header that defines the authentication scheme to be used.  The client then retries the request with an Authorization header appropriate to the specified authentication scheme.</t>
1024
1025<t>There are four options for proxy authentication, Basic, Digest, NTLM and Negotiate (SPNEGO).  The first two options were defined in <xref target="RFC2617">RFC2617</xref>, and are stateless.  The second two options were developed by Microsoft and specified in <xref target="RFC4559">RFC4559</xref>, and are stateful; otherwise known as multi-round authentication, or connection authentication.</t>
1026
1027          <section title="Stateless Authentication">
1028<t>Stateless Authentication over SPDY is identical to how it is performed over HTTP. If multiple SPDY streams are concurrently sent to a single server, each will authenticate independently, similar to how two HTTP connections would independently authenticate to a proxy server.</t>
1029          </section>
1030
1031          <section title="Stateful Authentication">
1032<t>Unfortunately, the stateful authentication mechanisms were implemented and defined in a such a way that directly violates RFC2617 - they do not include a "realm" as part of the request.  This is problematic in SPDY because it makes it impossible for a client to disambiguate two concurrent server authentication challenges.</t>
1033
1034<t>To deal with this case, SPDY servers using Stateful Authentication MUST implement one of two changes:
1035<list>
1036<t>Servers can add a "realm=&lt;desired realm&gt;" header so that the two authentication requests can be disambiguated and run concurrently.  Unfortunately, given how these mechanisms work, this is probably not practical.</t>
1037<t>Upon sending the first stateful challenge response, the server MUST buffer and defer all further frames which are not part of completing the challenge until the challenge has completed.  Completing the authentication challenge may take multiple round trips.  Once the client receives a "401 Authenticate" response for a stateful authentication type, it MUST stop sending new requests to the server until the authentication has completed by receiving a non-401 response on at least one stream.</t>
1038</list>
1039</t>
1040          </section>
1041        </section>
1042      </section>
1043
1044      <section title="Server Push Transactions">
1045<t>SPDY enables a server to send multiple replies to a client for a single request.  The rationale for this feature is that sometimes a server knows that it will need to send multiple resources in response to a single request.  Without server push features, the client must first download the primary resource, then discover the secondary resource(s), and request them.  Pushing of resources avoids the round-trip delay, but also creates a potential race where a server can be pushing content which a user-agent is in the process of requesting.  The following mechanics attempt to prevent the race condition while enabling the performance benefit.</t>
1046
1047<t>Browsers receiving a pushed response MUST validate that the server is authorized to push the URL using the <xref target="RFC6454">browser same-origin</xref> policy.  For example, a SPDY connection to www.foo.com is generally not permitted to push a response for www.evil.com.</t>
1048
1049<t>If the browser accepts a pushed response (e.g. it does not send a RST_STREAM), the browser MUST attempt to cache the pushed response in same way that it would cache any other response.  This means validating the response headers and inserting into the disk cache.</t>
1050
1051<t>Because pushed responses have no request, they have no request headers associated with them.  At the framing layer, SPDY pushed streams contain an "associated-stream-id" which indicates the requested stream for which the pushed stream is related.  The pushed stream inherits all of the headers from the associated-stream-id with the exception of ":host", ":scheme", and ":path", which are provided as part of the pushed response stream headers.  The browser MUST store these inherited and implied request headers with the cached resource.</t>
1052
1053<t>Implementation note:  With server push, it is theoretically possible for servers to push unreasonable amounts of content or resources to the user-agent.  Browsers MUST implement throttles to protect against unreasonable push attacks.</t>
1054
1055        <section title="Server implementation">
1056<t>When the server intends to push a resource to the user-agent, it opens a new stream by sending a unidirectional SYN_STREAM.  The SYN_STREAM MUST include an Associated-To-Stream-ID, and MUST set the FLAG_UNIDIRECTIONAL flag.  The SYN_STREAM MUST include headers for ":scheme", ":host", ":path", which represent the URL for the resource being pushed. Subsequent headers may follow in HEADERS frames. The purpose of the association is so that the user-agent can differentiate which request induced the pushed stream; without it, if the user-agent had two tabs open to the same page, each pushing unique content under a fixed URL, the user-agent would not be able to differentiate the requests.</t>
1057
1058<t>The Associated-To-Stream-ID must be the ID of an existing, open stream.  The reason for this restriction is to have a clear endpoint for pushed content.  If the user-agent requested a resource on stream 11, the server replies on stream 11.  It can push any number of additional streams to the client before sending a FLAG_FIN on stream 11.  However, once the originating stream is closed no further push streams may be associated with it.  The pushed streams do not need to be closed (FIN set) before the originating stream is closed, they only need to be created before the originating stream closes.</t>
1059
1060<t>It is illegal for a server to push a resource with the Associated-To-Stream-ID of 0.</t>
1061
1062<t>To minimize race conditions with the client, the SYN_STREAM for the pushed resources MUST be sent prior to sending any content which could allow the client to discover the pushed resource and request it.</t>
1063
1064<t>The server MUST only push resources which would have been returned from a GET request.</t>
1065
1066<t>Note:  If the server does not have all of the Name/Value Response headers available at the time it issues the HEADERS frame for the pushed resource, it may later use an additional HEADERS frame to augment the name/value pairs to be associated with the pushed stream.  The subsequent HEADERS frame(s) must not contain a header for ':host', ':scheme', or ':path' (e.g. the server can't change the identity of the resource to be pushed).  The HEADERS frame must not contain duplicate headers with a previously sent HEADERS frame.  The server must send a HEADERS frame including the scheme/host/port headers before sending any data frames on the stream.</t>
1067        </section>
1068
1069        <section title="Client implementation">
1070<t>When fetching a resource the client has 3 possibilities:
1071<list>
1072<t>the resource is not being pushed</t>
1073<t>the resource is being pushed, but the data has not yet arrived</t>
1074<t>the resource is being pushed, and the data has started to arrive</t>
1075</list>
1076</t>
1077
1078<t>When a SYN_STREAM and HEADERS frame which contains an Associated-To-Stream-ID is received, the client must not issue GET requests for the resource in the pushed stream, and instead wait for the pushed stream to arrive.  </t>
1079
1080<t>If a client receives a server push stream with stream-id 0, it
1081 MUST issue a <xref target="SessionErrorHandler">session error</xref> with the status code PROTOCOL_ERROR.</t>
1082
1083<t>When a client receives a SYN_STREAM from the server without a the ':host', ':scheme', and ':path' headers in the Name/Value section, it MUST reply with a RST_STREAM with error code HTTP_PROTOCOL_ERROR.</t>
1084
1085<t>To cancel individual server push streams, the client can issue a <xref target="StreamErrorHandler">stream error</xref> with error code CANCEL.  Upon receipt, the server MUST stop sending on this stream immediately (this is an Abrupt termination).</t> 
1086
1087<t>To cancel all server push streams related to a request, the client may issue a <xref target="StreamErrorHandler">stream error</xref> with error code CANCEL on the associated-stream-id.  By cancelling that stream, the server MUST immediately stop sending frames for any streams with in-association-to for the original stream.</t>
1088
1089<t>If the server sends a HEADER frame containing duplicate headers with a previous HEADERS frame for the same stream, the client must issue a <xref target="StreamErrorHandler">stream error</xref> with error code PROTOCOL ERROR.</t>
1090
1091<t>If the server sends a HEADERS frame after sending a data frame for the same stream, the client MAY ignore the HEADERS frame.  Ignoring the HEADERS frame after a data frame prevents handling of HTTP's trailing headers (http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.40).</t>
1092        </section>
1093      </section>
1094
1095    </section>
1096
1097    <section title="Design Rationale and Notes">
1098<t>Authors' notes:  The notes in this section have no bearing on the SPDY protocol as specified within this document, and none of these notes should be considered authoritative about how the protocol works.  However, these notes may prove useful in future debates about how to resolve protocol ambiguities or how to evolve the protocol going forward.  They may be removed before the final draft.</t>
1099
1100      <section title="Separation of Framing Layer and Application Layer">
1101<t>Readers may note that this specification sometimes blends the <xref target="FramingLayer">framing layer</xref> with requirements of a specific application - <xref target="HTTPLayer">HTTP</xref>.  This is reflected in the request/response nature of the streams, the definition of the HEADERS and compression contexts which are very similar to HTTP, and other areas as well.</t>
1102
1103<t>This blending is intentional - the primary goal of this protocol is to create a low-latency protocol for use with HTTP.  Isolating the two layers is convenient for description of the protocol and how it relates to existing HTTP implementations.  However, the ability to reuse the SPDY framing layer is a non goal.</t>
1104      </section>
1105
1106      <section title="Error handling - Framing Layer">
1107<t>Error handling at the SPDY layer splits errors into two groups:  Those that affect an individual SPDY stream, and those that do not.</t>
1108
1109<t>When an error is confined to a single stream, but general framing is in tact, SPDY attempts to use the RST_STREAM as a mechanism to invalidate the stream but move forward without aborting the connection altogether.</t>
1110
1111<t>For errors occuring outside of a single stream context, SPDY assumes the entire session is hosed.  In this case, the endpoint detecting the error should initiate a connection close.</t>
1112      </section>
1113      <section title="One Connection Per Domain">
1114<t>SPDY attempts to use fewer connections than other protocols have traditionally used.  The rationale for this behavior is because it is very difficult to provide a consistent level of service (e.g. TCP slow-start), prioritization, or optimal compression when the client is connecting to the server through multiple channels.</t>
1115
1116<t>Through lab measurements, we have seen consistent latency benefits by using fewer connections from the client.  The overall number of packets sent by SPDY can be as much as 40% less than HTTP.  Handling large numbers of concurrent connections on the server also does become a scalability problem, and SPDY reduces this load.</t>
1117
1118<t>The use of multiple connections is not without benefit, however.  Because SPDY multiplexes multiple, independent streams onto a single stream, it creates a potential for head-of-line blocking problems at the transport level.  In tests so far, the negative effects of head-of-line blocking (especially in the presence of packet loss) is outweighed by the benefits of compression and prioritization.</t>
1119      </section>
1120      <section title="Fixed vs Variable Length Fields">
1121<t>SPDY favors use of fixed length 32bit fields in cases where smaller, variable length encodings could have been used.  To some, this seems like a tragic waste of bandwidth.  SPDY choses the simple encoding for speed and simplicity.</t>
1122
1123<t>The goal of SPDY is to reduce latency on the network.  The overhead of SPDY frames is generally quite low.  Each data frame is only an 8 byte overhead for a 1452 byte payload (~0.6%).  At the time of this writing, bandwidth is already plentiful, and there is a strong trend indicating that bandwidth will continue to increase.  With an average worldwide bandwidth of 1Mbps, and assuming that a variable length encoding could reduce the overhead by 50%, the latency saved by using a variable length encoding would be less than 100 nanoseconds.  More interesting are the effects when the larger encodings force a packet boundary, in which case a round-trip could be induced.  However, by addressing other aspects of SPDY and TCP interactions, we believe this is completely mitigated.</t>
1124      </section>
1125      <section title="Compression Context(s)">
1126<t>When isolating the compression contexts used for communicating with multiple origins, we had a few choices to make.  We could have maintained a map (or list) of compression contexts usable for each origin.  The basic case is easy - each HEADERS frame would need to identify the context to use for that frame.  However, compression contexts are not cheap, so the lifecycle of each context would need to be bounded.  For proxy servers, where we could churn through many contexts, this would be a concern.  We considered using a static set of contexts, say 16 of them, which would bound the memory use.  We also considered dynamic contexts, which could be created on the fly, and would need to be subsequently destroyed.  All of these are complicated, and ultimately we decided that such a mechanism creates too many problems to solve.</t>
1127
1128<t>Alternatively, we've chosen the simple approach, which is to simply provide a flag for resetting the compression context.  For the common case (no proxy), this fine because most requests are to the same origin and we never need to reset the context.  For cases where we are using two different origins over a single SPDY session, we simply reset the compression state between each transition.</t>
1129      </section>
1130      <section title="Unidirectional streams">
1131<t>Many readers notice that unidirectional streams are both a bit confusing in concept and also somewhat redundant.  If the recipient of a stream doesn't wish to send data on a stream, it could simply send a SYN_REPLY with the FLAG_FIN bit set.  The FLAG_UNIDIRECTIONAL is, therefore, not necessary.</t>
1132
1133<t>It is true that we don't need the UNIDIRECTIONAL markings.  It is added because it avoids the recipient of pushed streams from needing to send a set of empty frames (e.g. the SYN_STREAM w/ FLAG_FIN) which otherwise serve no purpose.</t>
1134      </section>
1135      <section title="Data Compression">
1136<t>Generic compression of data portion of the streams (as opposed to compression of the headers) without knowing the content of the stream is redundant.  There is no value in compressing a stream which is already compressed.  Because of this, SPDY does allow data compression to be optional.  We included it because study of existing websites shows that many sites are not using compression as they should, and users suffer because of it.  We wanted a mechanism where, at the SPDY layer, site administrators could simply force compression - it is better to compress twice than to not compress.</t>
1137
1138<t>Overall, however, with this feature being optional and sometimes redundant, it is unclear if it is useful at all.  We will likely remove it from the specification.</t>
1139      </section>
1140      <section title="Server Push">
1141<t>A subtle but important point is that server push streams must be declared before the associated stream is closed.  The reason for this is so that proxies have a lifetime for which they can discard information about previous streams.  If a pushed stream could associate itself with an already-closed stream, then endpoints would not have a specific lifecycle for when they could disavow knowledge of the streams which went before.</t>
1142      </section>
1143    </section>
1144
1145    <section title="Security Considerations">
1146      <section title="Use of Same-origin constraints">
1147<t>This specification uses the <xref target="RFC6454">same-origin policy</xref> in all cases where verification of content is required.</t>
1148      </section>
1149
1150      <section title="HTTP Headers and SPDY Headers">
1151<t>At the application level, HTTP uses name/value pairs in its headers.  Because SPDY merges the existing HTTP headers with SPDY headers, there is a possibility that some HTTP applications already use a particular header name.  To avoid any conflicts, all headers introduced for layering HTTP over SPDY are prefixed with ":".  ":" is not a valid sequence in HTTP header naming, preventing any possible conflict.</t>
1152      </section>
1153
1154      <section title="Cross-Protocol Attacks">
1155<t>By utilizing TLS, we believe that SPDY introduces no new cross-protocol attacks.  TLS encrypts the contents of all transmission (except the handshake itself), making it difficult for attackers to control the data which could be used in a cross-protocol attack.</t>
1156      </section>
1157
1158      <section title="Server Push Implicit Headers">
1159<t>Pushed resources do not have an associated request.  In order for existing HTTP cache control validations (such as the Vary header) to work, however, all cached resources must have a set of request headers.  For this reason, browsers MUST be careful to inherit request headers from the associated stream for the push.  This includes the 'Cookie' header.</t>
1160      </section>
1161    </section>
1162
1163    <section title="Privacy Considerations">
1164      <section title="Long Lived Connections">
1165<t>SPDY aims to keep connections open longer between clients and servers in order to reduce the latency when a user makes a request.  The maintenance of these connections over time could be used to expose private information.  For example, a user using a browser hours after the previous user stopped using that browser may be able to learn about what the previous user was doing.  This is a problem with HTTP in its current form as well, however the short lived connections make it less of a risk.</t>
1166      </section>
1167
1168      <section title="SETTINGS frame">
1169<t>The SPDY SETTINGS frame allows servers to store out-of-band transmitted information about the communication between client and server on the client.  Although this is intended only to be used to reduce latency, renegade servers could use it as a mechanism to store identifying information about the client in future requests.</t>
1170
1171<t>Clients implementing privacy modes, such as Google Chrome's "incognito mode", may wish to disable client-persisted SETTINGS storage.</t>
1172
1173<t>Clients MUST clear persisted SETTINGS information when clearing the cookies.</t>
1174
1175<t>TODO: Put range maximums on each type of setting to limit inappropriate uses.</t>
1176      </section>
1177    </section>
1178
1179    <section title="Incompatibilities with SPDY draft #2">
1180      <t>
1181Here is a list of the major changes between this draft and draft #2.
1182<list>
1183<t>Addition of flow control</t>
1184<t>Increased 16 bit length fields in SYN_STREAM and SYN_REPLY to 32 bits.</t>
1185<t>Changed definition of compression for DATA frames</t>
1186<t>Updated compression dictionary</t>
1187<t>Fixed off-by-one on the compression dictionary for headers</t>
1188<t>Increased priority field from 2bits to 3bits.</t>
1189<t>Removed NOOP frame</t>
1190<t>Split the request "url" into "scheme", "host", and "path"</t>
1191<t>Added the requirement that POSTs contain content-length.</t>
1192<t>Removed wasted 16bits of unused space from the end of the SYN_REPLY and HEADERS frames.</t>
1193<t>Fixed bug: Priorities were described backward (0 was lowest instead of highest).</t>
1194<t>Fixed bug: Name/Value header counts were duplicated in both the Name Value header block and also the containing frame.</t>
1195</list>
1196      </t>
1197    </section>
1198
1199    <section title="Requirements Notation">
1200      <t>
1201        The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
1202        "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
1203        document are to be interpreted as described in <xref target="RFC2119">RFC 2119</xref>.
1204      </t>
1205    </section>
1206
1207    <section title="Acknowledgements">
1208      <t>
1209        Many individuals have contributed to the design and evolution of SPDY:
1210        Adam Langley, Wan-Teh Chang, Jim Morrison, Mark Nottingham, Alyssa Wilk,
1211        Costin Manolache, William Chan, Vitaliy Lvin, Joe Chan, Adam Barth,
1212        Ryan Hamilton, Gavin Peters, Kent Alstad, Kevin Lindsay, Paul Amer,
1213        Fan Yang, Jonathan Leighton.
1214      </t>
1215    </section>
1216  </middle>
1217
1218  <back>
1219  <references title="Normative References">
1220
1221    <reference anchor='RFC0793'>
1222      <front>
1223        <title abbrev='Transmission Control Protocol'>Transmission Control Protocol</title>
1224        <author initials='J.' surname='Postel' fullname='Jon Postel'>
1225          <organization>University of Southern California (USC)/Information Sciences Institute</organization>
1226        </author>
1227        <date year='1981' day='1' month='September' />
1228      </front>
1229      <seriesInfo name='STD' value='7' />
1230      <seriesInfo name='RFC' value='793' />
1231    </reference>
1232
1233    <reference anchor='RFC1738'>
1234      <front>
1235        <title>Uniform Resource Locators (URL)</title>
1236        <author initials='T.' surname='Berners-Lee' fullname='Tim Berners-Lee'>
1237          <organization>CERN, World-Wide Web project</organization>
1238        </author>
1239        <author initials='L.' surname='Masinter' fullname='Larry Masinter'>
1240          <organization>Xerox PARC</organization>
1241        </author>
1242        <author initials='M.' surname='McCahill' fullname='Mark McCahill'>
1243          <organization>University of Minnesota, Computer and Information Services</organization>
1244        </author>
1245        <date year='1994' month='December' />
1246      </front>
1247      <seriesInfo name='RFC' value='1738' />
1248    </reference>
1249
1250    <reference anchor="RFC1950">
1251      <front>
1252        <title>ZLIB Compressed Data Format Specification version 3.3</title>
1253        <author initials="L.P." surname="Deutsch" fullname="L. Peter Deutsch">
1254          <organization>Aladdin Enterprises</organization>
1255          <address><email>ghost@aladdin.com</email></address>
1256        </author>
1257        <author initials="J.-L." surname="Gailly" fullname="Jean-Loup Gailly"/>
1258        <date month="May" year="1996"/>
1259      </front>
1260      <seriesInfo name="RFC" value="1950"/>
1261    </reference>
1262
1263    <reference anchor="RFC2119">
1264      <front>
1265        <title>Key words for use in RFCs to Indicate Requirement Levels</title>
1266        <author initials="S." surname="Bradner" fullname="Scott Bradner">
1267          <organization>Harvard University</organization>
1268          <address><email>sob@harvard.edu</email></address>
1269        </author>
1270        <date month="March" year="1997"/>
1271      </front>
1272      <seriesInfo name="BCP" value="14"/>
1273      <seriesInfo name="RFC" value="2119"/>
1274    </reference>
1275
1276    <reference anchor='RFC2285'>
1277      <front>
1278        <title abbrev='Benchmarking Terminology'>Benchmarking Terminology for LAN Switching Devices</title>
1279        <author initials='R.' surname='Mandeville' fullname='Robert Mandeville'>
1280          <organization>European Network Laboratories (ENL)</organization>
1281        </author>
1282        <date year='1998' month='February' />
1283      </front>
1284      <seriesInfo name='RFC' value='2285' />
1285    </reference>
1286
1287    <reference anchor="RFC2616">
1288      <front>
1289        <title>Hypertext Transfer Protocol -- HTTP/1.1</title>
1290        <author initials="R." surname="Fielding" fullname="R. Fielding">
1291          <organization>University of California, Irvine</organization>
1292          <address><email>fielding@ics.uci.edu</email></address>
1293        </author>
1294        <author initials="J." surname="Gettys" fullname="J. Gettys">
1295          <organization>W3C</organization>
1296          <address><email>jg@w3.org</email></address>
1297        </author>
1298        <author initials="J." surname="Mogul" fullname="J. Mogul">
1299          <organization>Compaq Computer Corporation</organization>
1300          <address><email>mogul@wrl.dec.com</email></address>
1301        </author>
1302        <author initials="H." surname="Frystyk" fullname="H. Frystyk">
1303          <organization>MIT Laboratory for Computer Science</organization>
1304          <address><email>frystyk@w3.org</email></address>
1305        </author>
1306        <author initials="L." surname="Masinter" fullname="L. Masinter">
1307          <organization>Xerox Corporation</organization>
1308          <address><email>masinter@parc.xerox.com</email></address>
1309        </author>
1310        <author initials="P." surname="Leach" fullname="P. Leach">
1311          <organization>Microsoft Corporation</organization>
1312          <address><email>paulle@microsoft.com</email></address>
1313        </author>
1314        <author initials="T." surname="Berners-Lee" fullname="T. Berners-Lee">
1315          <organization>W3C</organization>
1316          <address><email>timbl@w3.org</email></address>
1317        </author>
1318        <date month="June" year="1999"/>
1319      </front>
1320      <seriesInfo name="RFC" value="2616"/>
1321    </reference>
1322
1323    <reference anchor="RFC2617">
1324      <front>
1325        <title abbrev="HTTP Authentication">HTTP Authentication: Basic and Digest Access Authentication</title>
1326        <author initials="J." surname="Franks" fullname="John Franks">
1327          <organization>Northwestern University, Department of Mathematics</organization>
1328          <address><email>john@math.nwu.edu</email></address>
1329        </author>
1330        <author initials="P.M." surname="Hallam-Baker" fullname="Phillip M. Hallam-Baker">
1331          <organization>Verisign Inc.</organization>
1332          <address><email>pbaker@verisign.com</email></address>
1333        </author>
1334        <author initials="J.L." surname="Hostetler" fullname="Jeffery L. Hostetler">
1335          <organization>AbiSource, Inc.</organization>
1336          <address><email>jeff@AbiSource.com</email></address>
1337        </author>
1338        <author initials="S.D." surname="Lawrence" fullname="Scott D. Lawrence">
1339          <organization>Agranat Systems, Inc.</organization>
1340          <address><email>lawrence@agranat.com</email></address>
1341        </author>
1342        <author initials="P.J." surname="Leach" fullname="Paul J. Leach">
1343          <organization>Microsoft Corporation</organization>
1344          <address><email>paulle@microsoft.com</email></address>
1345        </author>
1346        <author initials="A." surname="Luotonen" fullname="Ari Luotonen">
1347          <organization>Netscape Communications Corporation</organization>
1348        </author>
1349        <author initials="L." surname="Stewart" fullname="Lawrence C. Stewart">
1350          <organization>Open Market, Inc.</organization>
1351          <address><email>stewart@OpenMarket.com</email></address>
1352        </author>
1353        <date month="June" year="1999"/>
1354      </front>
1355      <seriesInfo name="RFC" value="2617"/>
1356    </reference>
1357
1358    <reference anchor="RFC4366">
1359      <front>
1360        <title>Transport Layer Security (TLS) Extensions</title>
1361        <author initials="S." surname="Blake-Wilson" fullname="S. Blake-Wilson"/>
1362        <author initials="M." surname="Nystrom" fullname="M. Nystrom"/>
1363        <author initials="D." surname="Hopwood" fullname="D. Hopwood"/>
1364        <author initials="J." surname="Mikkelsen" fullname="J. Mikkelsen"/>
1365        <author initials="T." surname="Wright" fullname="T. Wright"/>
1366        <date year="2006" month="April"/>
1367      </front>
1368      <seriesInfo name="RFC" value="4366"/>
1369    </reference>
1370
1371    <reference anchor="RFC4559">
1372      <front>
1373        <title>SPNEGO-based Kerberos and NTLM HTTP Authentication in Microsoft Windows</title>
1374        <author initials="K." surname="Jaganathan" fullname="K. Jaganathan"/>
1375        <author initials="L." surname="Zhu" fullname="L. Zhu"/>
1376        <author initials="J." surname="Brezak" fullname="J. Brezak"/>
1377        <date year="2006" month="June"/>
1378      </front>
1379      <seriesInfo name="RFC" value="4559"/>
1380    </reference>
1381
1382    <reference anchor='RFC5246'>
1383      <front>
1384        <title>The Transport Layer Security (TLS) Protocol Version 1.2</title>
1385        <author initials='T.' surname='Dierks' fullname='T. Dierks'/>
1386        <author initials='E.' surname='Rescorla' fullname='E. Rescorla'/>
1387        <date year='2008' month='August' />
1388      </front>
1389      <seriesInfo name='RFC' value='5246' />
1390    </reference>
1391
1392    <reference anchor='RFC6454'>
1393      <front>
1394        <title>The Web Origin Concept</title>
1395        <author initials='A.' surname='Barth' fullname='A. Barth'/>
1396        <date year='2011' month='December' />
1397      </front>
1398      <seriesInfo name='RFC' value='6454' />
1399    </reference>
1400
1401    <reference anchor="TLSNPN">
1402      <front>
1403        <title>TLS Next Protocol Negotiation</title>
1404        <author initials="A." surname="Langley"/>
1405        <date year='2010' month='August' />
1406      </front>
1407      <seriesInfo name='Internet-Draft' value='draft-agl-tls-nextprotoneg-01' />
1408    </reference>
1409
1410    <reference anchor="ASCII">
1411      <front>
1412        <title>US-ASCII. Coded Character Set - 7-Bit American Standard Code for Information Interchange. Standard ANSI X3.4-1986, ANSI, 1986.</title>
1413        <author/>
1414        <date/>
1415      </front>
1416    </reference>
1417
1418    <reference anchor="UDELCOMPRESSION" target="http://www.eecis.udel.edu/~amer/PEL/poc/pdf/SPDY-Fan.pdf">
1419      <front>
1420        <title>A Methodology to Derive SPDY's Initial Dictionary for Zlib Compression</title>
1421        <author initials="F." surname="Yang"></author>
1422        <author initials="P." surname="Amer"></author>
1423        <author initials="J." surname="Leighton"></author>
1424        <date/>
1425      </front>
1426    </reference>
1427    </references>
1428
1429<section title="Change Log (to be removed by RFC Editor before publication)" anchor="change.log">
1430
1431<section title="Since draft-mbelshe-httpbis-spdy-00" anchor="changes.since.draft-mbelshe-httpbis-spdy-00">
1432<t>
1433  Adopted as base for draft-ietf-httpbis-http2.
1434</t>
1435<t>
1436  Updated authors/editors list.
1437</t>
1438<t>
1439  Added status note.
1440</t>
1441</section>
1442
1443</section>
1444
1445  </back>
1446</rfc>
1447
Note: See TracBrowser for help on using the repository browser.